OpenCL-Based Implementation of an FPGA Accelerator for Molecular Dynamics Simulation

Keywords: OpenCL for FPGA, molecular dynamics simulation, hardware acceleration, scientific computing

Abstract

Molecular dynamics (MD) simulations are very important to study physical properties of the atoms and molecules. However, a huge amount of processing time is required to simulate a few nano-seconds of an actual experiment. Although the hardware acceleration using FPGAs provides promising results, huge design time and hardware design skills are required to implement an accelerator successfully. In this paper, we propose an OpenCLbased heterogeneous computing system with an FPGA accelerator. OpenCL is a c-like programming environment to design FPGA accelerators. We achieved over 4.9 times speed-up compared to CPU-based processing, by using only 16% of the Arria 10 FPGA resources. The speed-up is limited by the memory access bandwidth. It is possible to achieve 24 times speed-up by using an FPGA board with over 50 GBps bandwidth.

Author Biography

Hasitha Muthumala Waidyasooriya, Tohoku University

Hasitha Muthumala Waidyasooriya received the B.E degree in Information Engineering, M.S degree in Information Sciences and Ph.D. in Information Sciences from Tohoku University, Japan, in 2006, 2008 and 2010 respectively. He is currently an Assistant Professor with the Graduate School of In- formation Sciences, Tohoku University. His research interests include heterogeneous multicore processor architectures and high-level design methodology for VLSIs. 

References

D. C. Rapaport, The art of molecular dynamics simulation, Cambridge university press, 2004.

F. Jensen, Introduction to computational chemistry, John Wiley & Sons, 2013.

C. Z. Wang, and K. M. Ho. ”Material simulations with tight-binding molecular dynamics,” Journal of phase equilibria, vol. 18 no. 6, 1997, pp. 516-529.

V. Daggett, ”Protein folding-simulation,” Chemical reviews, vol. 106 no. 5, 2006, pp. 1898-1916.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, ”The amber biomolecular simulation programs,” Journal of computational chemistry, vol. 26 no. 16, 2005, pp. 1668-1688.

K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, et al., ”Scalable algorithms for molecular dynamics simulations on commodity clusters,” Proc. ACM/IEEE SC Conference, 2006, pp. 43-43.

S. Pronk, S.Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al., G”romacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics vol. 29, no. 7, 2013, pp. 845-854.

S. Plimpton, P. Crozier, and A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia National Laboratories, vol. 18, 2007.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, ”CHARMM: a program for macromolecular energy, minimization, and dynamics calculations,” Journal of computational chemistry, vol. 4 no. 2, 1983, pp. 187-217.

T. Narumi, Y. Ohno, N. Okimoto, A. Suenaga, R. Yanai, and M. Taiji, ”A high-speed special-purpose computer for molecular dynamics simulations: MDGRAPE-3,” NIC Workshop, vol. 34, 2006, pp. 29-36.

D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, et al., ”Anton, a special-purpose machine for molecular dynamics simulation,” Communications of the ACM, vol. 51, no. 7, 2008, pp. 91-97.

D. E. Shaw, J. Grossman, J.A. Bank, B. Batson, J.A. Butts, J.C. Chao, M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton, et al., ”Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer,” Proc. International Conference for High Performance Computing, Networking, Storage and Analysis, 2014, pp. 41-53.

E. Cho, A. G. Bourgeois, and F. Tan, ”An FPGA design to achieve fast and accurate results for molecular dynamics simulations,” Parallel and Distributed Processing and Applications, Springer, 2007, pp. 256-267.

M. Chiu and M. C. Herbordt, ”Molecular dynamics simulation high-performance reconfigurable computing systems,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 3 no. 4, 2010, pp. 23:1-23:37.

M. A. Khan, Scalable molecular dynamics simulation using FPGAs and multicore processors, PhD thesis, Boston University College of Engineering, 2013.

Intel FPGA SDK for OpenCL, https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html, 2016.

The open standard for parallel programming of heterogeneous systems. https://www.khronos.org/opencl/, 2015.

N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.S. Seo, and Y. Cao, ”Throughput-optimized OpenCL-based FPGA accel- erator for large-scale convolutional neural networks,” Proc. ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays (FPGA’16), 2016, pp. 16-25.

H.M. Waidyasooriya, Y.Takei, S.Tatsumi and M.Hariyama, ”OpenCL- Based FPGAPlatform for Stencil Computation and Its Optimization Methodology,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no.5, 2017, pp.1390-1402.

Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Kota Kasahara, ”Architecture of an FPGA Accelerator for Molecular Dynamics Simulation Using OpenCL,” Proc. 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016), 2016, pp. 115-119.

Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Kota Kasahara, ”An FPGA Accelerator for Molecular Dynamics Simulation Using OpenCL,” International Journal of Networked and Distributed Computing, Vol. 5, No. 1, 2017, pp.52-61.

T. Mashimo, Y. Fukunishi, N. Kamiya, Y. Takano, I. Fukuda, and H. Nakamura, ”Molecular dynamics simulations accelerated by GPU for biological macromolecules with a non-Ewald scheme for electrostatic interactions,” Journal of chemical theory and computation, vol. 9 no. 12, 2013, pp. 5599-5609.

mypresto, http://presto.protein.osaka-u.ac.jp/myPresto4/index.php?lang=en, 2015.

Alan Hinchliffe, Molecular modelling for beginners, John Wiley & Sons, 2005.

Terasic, DE5a-Net Arria 10 FPGA Development Kit, https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=231&No=970&PartNo=2

S.Kasap and K.Benkrid, ”Parallel processor design and implementation for molecular dynamics simulations on a FPGA-based supercomputer,” Journal of Computers, vol. 7 no. 6, 2012, pp. 1312-1328.

Published
2017-06-30
Section
Technical Papers (Information and Communication Technology)