
Synthesis and Consistency Verification of UML
Sequence Diagrams with Hierarchical Structure

Akira Matsumoto *, Tomoyuki Yokogawa †,
Sousuke Amasaki †, Hirohisa Aman ‡, Kazutami Arimoto †

Abstract

Automatic consistency checking for UML state machine diagrams and sequence diagrams
has been expected since developers spend considerable effort to keep the consistency. In
particular, the verification of diagrams with a hierarchical structure is required. Although
formalization of state machine diagrams with hierarchical structure has been widely treated,
it is not yet sufficient for sequence diagrams. In this paper, we propose an automatic method
for verifying the consistency between state machine diagrams and sequence diagrams with
a hierarchical structure. In our verification framework, the consistency of diagrams is de-
fined as an inclusive relation between the sets of traces and is checked using the FDR model
checker. FDR can check refinement relation between processes described as CSPM nota-
tion. We provide a process description of state machine diagrams and sequence diagrams
and can verify the consistency by checking traces inclusion of processes using FDR. Our
description supports for sequence diagrams with a hierarchical structure. We applied the
proposed process representation to an example diagram that describes interactions of basic
components of a wireless sensor network system and showed that the hierarchical behavior
of the diagram could be correctly represented.

Keywords: CSP, FDR, formal verification, model checking

1 Introduction

UML (Unified Modeling Language) is one of the most popular specification languages and
is a de-facto standard modeling language for object-oriented software. While it is less used
in software development projects [1], it is used well in model-driven software development
and embedded system design [2]. Recently UML is also used to model IoT (Internet of
Things) system [3], and especially the use of UML expands in application to modeling
wireless sensor networks [4][5][6]. Wireless sensor networks are often documented with
UML, and their mechanisms are reviewed on the documents. Such documents comprise

∗ Graduate School of Okayama Prefectural University, Okayama, Japan
† Okayama Prefectural University, Okayama, Japan
‡ Ehime University, Ehime, Japan

In formation Engineering Express
In ternational Institute of Applied Informatics
20 20, Vol. 6, No. 2, 1 - 19

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto

multiple models and views related to each other, and their inconsistencies must be man-
aged through system development [7]. The inconsistencies of different models and views
of software systems may cause many errors and, therefore may make their management
complicated. Developers spend considerable effort to keep the consistency [7][8][9][10],
and automatic consistency checking has been expected.

State machine diagram and sequence diagram of UML are widely used to model wire-
less sensor networks. Sequence diagrams represent interactions between components in a
network, and state machine diagrams elaborate behaviors of the components. Here, the state
machine diagrams must satisfy the interactions described in the sequence diagrams. Some
automatic consistency checking methods for those diagrams have been proposed so far.
Zhao et al. [11] proposed a method for checking the consistency between UML sequence
and state machine diagrams using SPIN model checker. A scenario described by a sequence
diagram is expressed as a “never claim,” and SPIN can check whether the state machine
diagrams have the behavior as claimed. Egyed [12] provided consistency rules for UML
class, sequence, and state machine diagrams. Kaufmann et al. [13] proposed a method to
verify whether state machine diagrams can execute a desired or forbidden sce-nario
modeled by a sequence diagram using SAT solver. Yokogawa et al. [14] developed a
method for inter-model consistency verification of a sequence diagram and state machine
diagrams using the FDR model checker [15]. Phuklang et al. [16] developed a tool support-
ing to conduct consistency verification. Those studies can successfully detect several types
of inconsistencies between state machine diagrams and a sequence diagram.

To specify large and complicated wireless sensor networks, first individual function-
alities are described as simple models, and then they are integrated into a large model. Such
models often have a hierarchical structure. There are several studies that provide for-
malisms for a state machine diagram with a hierarchical structure. André et al. [17][18]
provided a formalization of state machine diagrams with hierarchy (e.g. composite states,
internal/external transitions) and concurrent aspects (e.g. orthogonal regions, folk/join tran-
sitions) using colored Petri Nets. Zhang et al. [19] provided a translation method of state
machine diagrams into CSP#, which is an input language for the PAT model checker [20].
Their translation supports a large subset of state machine diagrams including join/folk tran-
sitions, history pseudo-states, entry/exit points, and so on. Concerning sequence diagrams,
however, most of the existing formalisms only focus on “flat” sequence diagrams and leave
hierarchical (i.e., non-flat) structure out of the scope.

Miyazaki et al. [21] provided a process representation of sequence diagrams with a
single combined fragment and a method for refinement checking of sequence diagrams
using LTSA [22]. Matsumoto et al. [23] proposed a method for consistency verification of
sequence diagrams with multiple combined fragments in a similar manner to [14].
However, these methods support only a few types of combined fragments and cannot
represent a complicated control structure of sequence diagrams.

In this paper, we extend the process representation shown in [23] to handle other types
of combined fragments describing the hierarchical control structure. Supporting the hierar-
chical structure makes it possible to guarantee the consistency of software system designs
with complicated scenarios. Besides, we simplify the process representation and make it
more structured. This modification makes it possible to omit redundant events on the
representation of control structure and to describe each interaction fragments as processes
individually.
 The contributions of this paper are: (1) providing process description of sequence
diagrams with a hierarchical structure in CPSM, (2) supporting six types of combined

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

2

fragments which can describe complicated control structure of interactions, and (3) pro-
viding a case study of process representation for interactions of a wireless sensor network
system.

2 Consistency of UML Diagrams

2.1 Sequence Diagrams

A sequence diagram is composed of lifelines L, event occurrences E, messages M, inter-
action fragments F , and combined fragments C. A lifeline corresponds to a module of a
system. A message represents an interaction between modules. An event occurrence de-
scribes sending/receiving of a message or a reference of a combined fragment. Sending and
receiving of message m is labeled as m! and m?, and a reference of a combined fragment c
is labeled as c*. An interaction fragment is a collection of interactions and is defined as a
sequence of event occurrences. A combined fragment is described as a frame over lifelines
and represents a control structure of interaction fragments. A combined fragment is com-
posed of an interaction operator and one or more interaction fragments. We now focus on
six types of interaction operators defined in UML 2.0, alt, opt, par, loop, strict and seq. alt
operator represents a non-deterministic selection of interaction fragments. One of the inter-
actions inside the alt frame is executed. opt operator represents an arbitrary execution of an
interaction fragment. It can be decided arbitrarily whether or not to execute the interaction
inside the opt frame. par operator represents a parallel execution of interaction fragments.
The interactions of the par frame are executed interleavingly. loop operator represents an
iterative execution of an interaction fragment. The interaction inside the loop frame is iter-
atively executed, and the iteration non-deterministically finishes. strict operator represents
the strong sequencing of interaction fragments. The interactions inside the strict frame are
executed in order from top to bottom. seq operator represents the weak sequencing of an
interaction fragment. The event occurrences on the same lifeline inside the seq frame are
executed in order from top to bottom.

(a) SQ1 (b) SQ2 (c) SQ3

(d) SQ4 (e) SQ5 (f) SQ6 (g) SQ7

Figure 1: Examples of sequence diagrams

Fig. 1 shows examples of sequence diagrams. Fig. 1 (a) describes a (flat) sequence

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 3

diagram. Fig. 1 (b) ∼ (g) describe sequence diagrams with a combined fragment. SQi =
⟨Li,E i,Mi,F i,Ci⟩ (i = 1 ∼ 7) are defined as follows:

L1 = L2 = L3 = L4 = L5 = L6 = L7 = {M1,M2},
M1 = M2 = M3 = M4 = M5 = M6 = M7 = {a,b},
E1 = {a!,a?,b!,b?},E2 = {a!,a?,b!,b?,c1*},E3 = {a!,a?,b!,b?,c2*},
E4 = {a!,a?,b!,b?,c3*},E5 = {a!,a?,b!,b?,c4*},
E6 = {a!,a?,b!,b?,c5*},E7 = {a!,a?,b!,b?,c6*},
F1 = { f1},F2 = { f2, f3, f4},F3 = { f5, f6},F4 = { f7, f8, f9},F5 = { f10, f11},
F6 = { f12, f13, f14},F7 = { f15, f16} where

f1 = {⟨M1,(a!b?)⟩,⟨M2,(a?b!)⟩},
f2 = {⟨M1,(c1*)⟩,⟨M2,(c1*)⟩}, f3 = {⟨M1,(a!)⟩,⟨M2,(a?)⟩},
f4 = {⟨M1,(b?)⟩,⟨M2,(b!)⟩},
f5 = {⟨M1,(a!c2*)⟩,⟨M2,(a?c2*)⟩}, f6 = {⟨M1,(b?)⟩,⟨M2,(b!)⟩},
f7 = {⟨M1,(c3*)⟩,⟨M2,(c3*)⟩}, f8 = {⟨M1,(a!)⟩,⟨M2,(a?)⟩},
f9 = {⟨M1,(b?)⟩,⟨M2,(b!)⟩},
f10 = {⟨M1,(a!c4*)⟩,⟨M2,(a?c4*)⟩}, f11 = {⟨M1,(b?)⟩,⟨M2,(b!)⟩},
f12 = {⟨M1,(c5*)⟩,⟨M2,(c5*)⟩}, f13 = {⟨M1,(a!)⟩,⟨M2,(a?)⟩},
f14 = {⟨M1,(b!)⟩,⟨M2,(b?)⟩},
f15 = {⟨M1,(a!c6*)⟩,⟨M2,(a?c6*)⟩}, f16 = {⟨M1,(b!)⟩,⟨M2,(b?)⟩},

C1 = {},C2 = {c1},C3 = {c2},C4 = {c3},C5 = {c4},C6 = {c5},C7 = {c6} where

c1 = ⟨alt,{ f3, f4}⟩,c2 = ⟨opt,{ f6}⟩,c3 = ⟨par,{ f8, f9}⟩,c4 = ⟨loop,{ f11}⟩,
c5 = ⟨strict,{ f13, f14}⟩,c6 = ⟨seq,{ f16}⟩.

The semantics of sequence diagrams is defined with a set of computations, which is
a sequence of labels. The sequence diagram in Fig. 1 describe interactions between M1
and M2. The simple sequence diagram SQ1 has one computation a!a?b!b?. Since the alt
frame describes non-deterministic choice of interactions, SQ2 has two computations a!a?
and b!b?. Similarly, SQ3 with the opt frame has two computations a!a?b!b? and a!a?. Since
the par frame describes an interleaving of interactions, SQ4 has the following six compu-
tations a!a?b!b?, a!b!a?b?, a!b!b?a?, b!b?a!a?, b!a!b?a?, and b!a!a?b?. Since SQ5 has a
loop frame, SQ5 has the following infinite computations a!a?, a!a?b!b?, a!a?b!b?b!b?, · · · .
Since SQ6 has a strict frame, SQ6 has one computation a!a?b!b?. On the other hand, since
SQ7 has a seq frame, SQ7 has two computations a!a?b!b? and a!b!a?b?.

2.2 Framework of Consistency Verification

The consistency of diagrams is defined as an inclusive relation between the sets of compu-
tations [14]. FDR can check a trace inclusion of processes by checking traces refinement
relation. By representing sequence diagrams as processes whose traces correspond to their
computations, a consistency verification can be done by checking traces refinement of the
processes using FDR.

We adopt a similar verification framework to [16] for a sequence diagram and state
machine diagrams. Fig. 2 shows the framework for consistency verification using FDR.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto4

state machine
diagrams

sequence
diagram

process
representation

(CSPM)

translation
(Our method)

traces refinement
check
(FDR)

state machine
diagrams

state machine
diagrams consistent

inconsistent
+

counterexample

pass

fail

Figure 2: A framework of consistency verification.

These diagrams are translated into a process representation described by CSPM. A model
checker FDR takes in the representation and checks a trace refinement relation between the
processes of the diagrams. Passing the trace refinement check means that the computations
of the sequence diagram are included by those of the state machine diagrams. Therefore,
it can be said that the consistency of the diagrams is confirmed. In contrast, failing the
check means that the diagrams are inconsistent. In the case of failure, some computations
of the sequence diagram are not included by those of the state machine diagrams, and
FDR generates a counterexample that shows the computation which is not included. The
counterexample can help to fix the inconsistency of diagrams. As stated above, this paper
only focuses on the process representation of sequence diagrams.

2.3 CSPM

CSPM is a functional language for defining CSP (Communicating Sequential Processes) [24]
processes, which is supported by FDR tool. We briefly introduce CSPM notations which are
used in the proposed method. Fig. 3 describes an example of CSPM program.

channel a, b

A = {a}

P = a -> Q

Q = b -> SKIP

R = Q; (a -> SKIP)

S = P [] R

T = P [|A|] R

U = Q ||| (a -> SKIP)

Figure 3: An example of CSPM program.

A channel is used to create an event and is declared with channel. This example has
two channels a and b. Processes are defined by events. “->” denotes prefix operator and
the process P performs the event a and then Q is run. “SKIP” denotes a predefined process
which immediately terminates. The process Q performs the event b and then terminates. A
sequential composition of processes is defined by “;” operator. The process X; Y behaves
like X until it terminates and then Y is run. In this example, R performs the events b and
a, and then terminates. An external choice of processes is defined by “[]” operator. The
process X[]Y behaves like either X or Y according to the initial event of them. In this exam-
ple, S performs either “a and b” or “b and a”, and then terminates. A parallel composition
of processes is defined by “[||]” operator. The process X[|A|]Y runs X and Y in parallel
forcing them to synchronize on the events in A. Since P and R are synchronized by the event

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 5

a, T first performs b of R, and then performs the synchronized event a, then finally performs
b of P and terminates. An interleave composition of processes is defined by “|||” operator.
The process X|||Y runs X and Y in parallel without any synchronization. In this example,
U performs the events a and b in any order. An event can be hidden by hide operator “\.”
The process X\A behaves like X but when X\A performs the event in A, it is observed as a τ
event from other processes.

3 Process Representation

3.1 Overview

A sequence diagram is represented as a process composing processes for its interaction
fragments, combined fragments, and messages. Interaction fragments and lifelines are rep-
resented as processes that engage in the event occurrences on them. The order of events
represents the order relations between event occurrences.

Our method obtains the process representation of a sequence diagram by the following
steps:

Step 1. defining sending/receiving of message as a channel (Sec. 3.2),
Step 2. defining begin/end of executing combined fragment as a channel (Sec. 3.2),
Step 3. representing behavior of messages as processes (Sec. 3.3),
Step 4. representing interaction fragments as processes (Sec. 3.4),
Step 5. representing combined fragments as processes (Sec. 3.5), and
Step 6. representing whole sequence diagram as a process (Sec. 3.6).

3.2 Defining Channels

In our method, event occurrences of the sequence diagram are represented as channels.
Sending and receiving of message labeled by m! and m? is represented channel ms and
mr. Reference of combined fragment labeled by c* is represented two channel cb and
ce. The channel cb and ce represents beginning and ending of the combined fragment c,
respectively. For example, channel definition of SQ2 which has two messages a, b and one
combined fragment c1 can be obtained as follows:

channel as, ar, bs, br

channel c1b , c1e

3.3 Representing Messages

For each message m, the sending and receiving of m labeled by m! and m? have an ordering
relation, that is, m! must be executed before m?. Such relation can be represented as a
process M = ms->mr->M. By synchronizing the process M, we can remove the paths of the
process which violate the order relation over ms and mr. For example, the messages of SQ1
(similar to the other diagrams in Fig. 1) can be represented as the following process MSG:

A = as->ar->A

B = bs->br->B

MSG = A ||| B

The processes A and B represent messages a and b. MSG can be obtained as an interleaving
composition of the processes for the messages.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto6

3.4 Representing Interaction Fragments

To represent an interaction fragment, we first represent the order relation of event occur-
rences on each lifeline. And then, we can obtain the process representing the whole inter-
action fragment by composing the processes for lifelines. We now consider the following
interaction fragment f :

f = {⟨l1,(e1,1e1,2 · · ·)⟩,⟨l2,(e2,1e2,2 · · ·)⟩, · · ·}

where li indicates a lifeline and ei, j indicates the j-th event occurrence on the lifeline li. The
process representing lifeline li can be obtained as the following process F Li:

F Li = Pre f ix(ei,1)->Pre f ix(ei,2)-> · · ·->SKIP.

When ei, j is sending or receiving of message m labeled by m! or m?, Pre f ix(ei,1) denotes an
event ms or mr, respectively. When ei, j is a reference of combined fragment c, Pre f ix(ei,1)
denotes a prefix cb->ce. The process representation of the interaction fragment f can be
obtained as an interleaving of F Li as follows:

FI = F L1 ||| F L2 ||| · · ·

In the case that f includes some combined fragments ci on lifeline l j and lk, F Lj and F Lk,
need to be synchronized by the events cib and cie as follows:

FI = F L1 ||| · · ·||| F Lj |[{cib, cie}]| F Lk ||| · · ·

This is because the execution of ci must start simultaneously on the lifelines l j and lk.
For example, the process F1I for the interaction fragment f1 of the sequence diagram

SQ1 is obtained as follows:

F1_M1 = as ->br ->SKIP

F1_M2 = ar ->bs ->SKIP

F1I = F1_M1 ||| F1_M2

By synchronizing F1I with MSG described above, we can obtain the process representation
for SQ1 as follows:

SQ1 = F1I [|{as, ar, bs, br}|] MSG

3.5 Representing Combined Fragments

3.5.1 alt operator

As stated above, a combined fragment is composed of several interaction fragments. The
process for a combined fragment can be obtained by composing the processes for interaction
fragments according to the interaction operator.

We consider the following combined fragment c with alt operator:

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

c = ⟨alt,{ f1, f2, · · · , fn}⟩

When the execution of combined fragment c starts, one of the interaction fragments f1, f2,··· ,
fn is selected non-deterministically and executed. The execution of the combined fragment c
will finish when the execution of the interaction fragment completes. Such behavior can be

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 7

represented by an external choice operator ([]) and a sequential composition operator (;).
The process representing c is obtained by composing the processes for interaction fragments
as follows:

CI = (cb->(F1I [] F2I [] · · ·[] FnI));(ce->CI)

By synchronizing the process for c with the process for interaction fragment f referring c,
we can represent whole interactions of f as a process.

Consider SQ2, the interaction fragment f2 includes the combined fragment c1, and c1 is
composed of f3 and f4. The interaction fragment f2 is represented as the following process
F2I:

F2_M1 = c1b ->c1e ->SKIP

F2_M2 = c1b ->c1e ->SKIP

F2I = F2_M1 [|{c1b , c1e }|] F2_M2

The interaction fragments f3 and f4 are represented as the following processes F3I and
F4I:

F3_M1 = as ->SKIP

F3_M2 = ar ->SKIP

F3I = F3_M1 ||| F3_M2

F4_M1 = br ->SKIP

F4_M2 = bs ->SKIP

F4I = F4_M1 ||| F4_M2

The combined fragment c1 is represented as the following process C1I:

C1I = (c1b ->(F3I [] F4I));(c1e ->C1I)

The whole interactions of fragment f2 including c1 can be obtained as the following process
F2C1I:

F2C1I = F2I [|{c1b , c1e }|] C1I

Finally By synchronizing F2C1I with MSG described above, we can obtain the process rep-
resentation for SQ2 as follows:

SQ2 = F2C1I [|{as, ar, bs, br}|] MSG\{c1b , c1e}

Note that the events c1b and c1e are hidden. This is because we only focus on the inclusive
relation over sending/receiving of messages of diagrams to verify their consistency.

3.5.2 opt operator

We consider the following combined fragment c with opt operator:

c = ⟨opt,{ f}⟩

When the execution of combined fragment c starts, it is decided non-deterministically
whether or not the interaction fragments f is executed. Similar to alt, such behavior can be
represented by an external choice and a sequential composition. The process representing
c is obtained by composing the processes for interaction fragments as follows:

CI = (cb->(FI [] SKIP));(ce->CI)

By synchronizing the process for c with the process for interaction fragment f referring c,
we can represent whole interactions of f as a process.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto8

Consider SQ3, the interaction fragment f5 includes the combined fragment c2, and c1 is
composed of f6. The interaction fragment f5 is represented as the following process F5I:

F5_M1 = as ->c2b ->c2e ->SKIP

F5_M2 = ar ->c2b ->c2e ->SKIP

F5I = F5_M1 [|{c2b , c2e }|] F5_M2

The interaction fragments f6 is represented as the following process F6I:

F6_M1 = br ->SKIP

F6_M2 = bs ->SKIP

F6I = F6_M1 ||| F6_M2

The combined fragment c2 is represented as the following process C2I:

C2I = (c2b ->(F6I [] SKIP));(c2e ->SKIP)

The whole interactions of fragment f5 including c2 can be obtained as the following process
F5C2I:

F5C2I = F5I [|{c2b , c2e }|] C2I

Finally By synchronizing F5C2I with MSG described above, we can obtain the process rep-
resentation for SQ4 as follows:

SQ4 = F5C2I [|{as, ar, bs, br}|] MSG\{c2b , c2e}

3.5.3 par operator

We consider the following combined fragment c with par operator:

c = ⟨par,{ f1, f2, · · · , fn}⟩

When the execution of combined fragment c starts, all interaction fragments f1, f2, · · · , fn

are interleavingly executed. The execution of the combined fragment c will finish when
the execution of the interaction fragment completes. Such behavior can be represented
by an interleave operator (|||). The process representing c is obtained by composing the
processes for interaction fragments as follows:

CI = (cb->(F1I ||| F2I ||| · · ·||| FnI));(ce->CI)

By synchronizing the process for c with the process for interaction fragment f referring c,
we can represent whole interactions of f as a process.

Consider SQ4, the interaction fragment f7 includes the combined fragment c3, and c3 is
composed of f8 and f9. The interaction fragment f7 is represented as the following process
F7I:

F7_M1 = c3b ->c3e ->SKIP

F7_M2 = c3b ->c3e ->SKIP

F7I = F7_M1 [|{c3b , c3e }|] F7_M2

The interaction fragments f8 and f9 are represented as the following processes F8I and
F9I:

F8_M1 = as ->SKIP

F8_M2 = ar ->SKIP

F8I = F8_M1 ||| F8_M2

F9_M1 = br ->SKIP

F9_M2 = bs ->SKIP

F9I = F9_M1 ||| F9_M2

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 9

The combined fragment c3 is represented as the following process C3I:

C3I = (c3b ->(F8I ||| F9I));(c3e ->C3I)

The whole interactions of fragment f7 including c3 can be obtained as the following process
F7C3I:

F7C3I = F7I [|{c3b , c3e }|] C3I

Finally By synchronizing F7C3I with MSG described above, we can obtain the process rep-
resentation for SQ3 as follows:

SQ3 = F7C3I [|{as, ar, bs, br}|] MSG \ {c3b , c3e}

3.5.4 loop operator

We consider the following combined fragment c with loop operator:

c = ⟨loop,{ f}⟩

When the execution of combined fragment c starts, the interactions of f is arbitrarily re-
peated. Such behavior can be represented by an external choice and a sequential compo-
sition. The process representing c is obtained by composing the processes for interaction
fragments as follows:

CI = cb->CL

CL = ((FI;CL)[](ce->CI)

By synchronizing the process for c with the process for interaction fragment f referring c,
we can represent whole interactions of f as a process.

Consider SQ5, the interaction fragment f10 includes the combined fragment c4, and c4
is composed of f11. The interaction fragment f10 is represented as the following process
F10I:

F10_M1 = as->c4b ->c4e ->SKIP

F10_M2 = ar->c4b ->c4e ->SKIP

F10I = F10_M1 [|{c4b , c4e}|] F10_M2

The interaction fragments f11 is represented as the following process F11I:

F11_M1 = br->SKIP

F11_M2 = bs->SKIP

F11I = F11_M1 ||| F11_M2

The combined fragment c4 is represented as the following process C4I:

C4I = c4b ->C4L

C4L = (F11I;C4L)[](c4e ->C4I)

The whole interactions of fragment f10 including c4 can be obtained as the following pro-
cess F10C4I:

F10C4I = F10I [|{c4b , c4e}|] C4I

Finally By synchronizing F10C4I with MSG described above, we can obtain the process
representation for SQ5 as follows:

SQ5 = F10C4I [|{as, ar, bs, br}|] MSG \ {c4b , c4e}

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto10

3.5.5 strict operator

We consider the following combined fragment c with strict operator:

c = ⟨strict,{ f1, f2, · · · , fn}⟩

When the execution of combined fragment c starts, all interaction fragments f1, f2, · · · , fn

are executed in order from f1 to fn. The execution of the combined fragment c will finish
when the execution of the interaction fragment completes. Such behavior can be repre-
sented by a sequential composition operator (;). The process representing c is obtained by
composing the processes for interaction fragments as follows:

CI = (cb->F1I); F2I; · · ·; FnI;(ce->CI)

By synchronizing the process for c with the process for interaction fragment f referring c,
we can represent whole interactions of f as a process.

Consider SQ6, the interaction fragment f12 includes the combined fragment c5, and c5
is composed of f13 and f14. The interaction fragment f12 is represented as the following
process F12I:

F12_M1 = c5b ->c5e ->SKIP

F12_M2 = c5b ->c5e ->SKIP

F12I = F12_M1 [|{c5b , c5e}|] F12_M2

The interaction fragments f13 and f14 are represented as the following processes F13I and
F14I:

F13_M1 = as->SKIP

F13_M2 = ar->SKIP

F13I = F13_M1 ||| F13_M2

F14_M1 = bs->SKIP

F14_M2 = br->SKIP

F14I = F14_M1 ||| F14_M2

The combined fragment c5 is represented as the following process C5I:

C5I = c5b ->F13I; F14I; c5e ->C5I

The whole interactions of fragment f12 including c5 can be obtained as the following pro-
cess F12C5I:

F12C5I = F12I [|{c5b , c5e}|] C5I

Finally By synchronizing F12C5I with MSG described above, we can obtain the process
representation for SQ5 as follows:

SQ5 = F12C5I [|{as, ar, bs, br}|] MSG \ {c5b , c5e}

3.5.6 seq operator

We consider the following combined fragment c with seq operator:

c = ⟨seq,{ f}⟩

Since the behavior of combined fragment c is similar to the behavior of the interaction
fragments f inside c, the process representing c is obtained by composing the processes for
interaction fragments as follows:

CI = (cb->FI);(ce->CI)

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 11

By synchronizing the process for c with the process for interaction fragment f referring c,
we can represent whole interactions of f as a process.

Consider SQ7, the interaction fragment f15 includes the combined fragment c6, and c6
is composed of f16. The interaction fragment f15 is represented as the following process
F15I:

F15_M1 = c6b ->c6e ->SKIP

F15_M2 = c6b ->c6e ->SKIP

F15I = F15_M1 [|{c6b , c6e}|] F15_M2

The interaction fragments f16 is represented as the following process F16I:

F16_M1 = as ->bs->SKIP

F16_M2 = ar ->br->SKIP

F16I = F16_M1 ||| F16_M2

The combined fragment c6 is represented as the following process C6I:

C6I = c6b ->F16I; c6e ->C6I

The whole interactions of fragment f15 including c6 can be obtained as the following pro-
cess F15C6I:

F15C6I = F15I [|{c6b , c6e}|] C6I

Finally By synchronizing F15C6I with MSG described above, we can obtain the process
representation for SQ6 as follows:

SQ6 = F15C6I [|{as, ar, bs, br}|] MSG \ {c6b , c6e}

Fig. 4 shows the graphs of the processes SQ1, SQ2, SQ3, SQ4, SQ5, SQ6 and SQ7 gener-
ated by FDR tool.

as

ar

bs

br

(a) SQ1

τ

bs

br

τ τ

ar

as

τ τ

(b) SQ2

as

ar

τ

τ

τ

bs

br

τ

τ

(c) SQ3

τ

τ

τ

as

as

as

ar

ar

ar

bs

bs

bs

br

br

br

(d) SQ4

as

ar

τ

τ
bs

br

(e) SQ5

τ

as

ar

τ

bs

br

τ

τ

(f) SQ6

τ

as

ar

bs

br

τ

τ

ar

bs

(g) SQ7

Figure 4: The graphs of the processes generated by FDR.

3.6 Representing Interactions of Whole Sequence Diagram

As stated in Sec. 3.5, we can obtain the process representing whole interactions of f in-
cluding c by synchronizing the processes for f and c. When a sequence diagram has nested

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto12

structure, processes for combined fragments are composed step-by-step from the deepest
one. Processes that have nest relation are synchronized by the begin/end events of the
deeper one.

Figure 5: A sequence diagram with a hierarchical structure.

Consider the sequence diagram shown in Fig. 5 which has the topmost interaction
fragment (referring f) and combined fragments c1,c2,c3,c4,c5. Since c1, c2 and c3 have
nested structure and the deepest fragment is c3, we first synchronize the processes C2I and
C3I by the begin/end events of c3 as follows:

C2C3I = C2I [|{c3b , c3e }|] C3I

Then the process C1I and the obtained process C2C3I are synchronized by the begin/end
events of c2 as follows:

C1C2C3I = C1I[|{c2b , c2e }|] C2C3I

Processes in the same depth are synchronized without begin/end events. The processes C4I,
C5I and C1C2C3I are synchronized as follows:

C4C5I = C4I ||| C5I

C1C2C3C4C5I = C1C2C3I ||| C4C5I

Finally, the process FI and C1C2C3C4C5I are synchronized as follows:

FC1C2C3C4C5

= FI[|{c1b , c1e , c4b , c4e , c5b , c5e }|] C1C2C3C4C5I

4 A Case Study

We applied the proposed method for process representation to a sequence diagram shown
in [5]. Fig. 6 shows the sequence diagram, which describes interactions of basic compo-
nents of a wireless sensor network system. This sequence diagram has two loop combined
fragments as a nested structure. This system has six components: Mediator, Power Scal-
ing Monitor (Monitor), Power Scaling Controller (Reasoner), Power Transmission Actuator

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 13

(Actuator), Node Degree Observation (NDObserver) and Battery Level Observation (Bat-
tObserver). This sequence diagram depicts the process of monitoring neighbor sensor nodes
and conducting appropriate power transmission.

Figure 6: A sequence diagram describing interactions of a wireless sensor network [5].

The Mediator component first starts the Monitor component. The Monitor periodically
measures the number of neighbor nodes and the battery level of the nodes. According to
the measured values, the component decides whether or not to trigger the Reasoner compo-
nent. The Reasoner will request the latest measured values to the Mediator. The Mediator
captures the request and gets the data from the Monitor and finally returns the data to the
Reasoner. Then, the Reasoner will send the request to modify the transmission power of
nodes to the Mediator. The Mediator captures the request and invokes the Actuator, and the
Actuator handles the request.

According to the proposed process representation, the sequence diagram is encoded to
CSPM description shown in Fig. 7. FDR generates the graph for the process SQ shown in
Fig. 8. As shown in Fig. 8, the nested iterating behavior described by loop is correctly
represented in the graph.

5 Summary and Future Remarks

In this paper, we provided a method for the process representation of sequence diagrams.
The proposed process representation is suited for consistency verification with state ma-
chine diagrams, which is proposed in [14]. Our method supports six types of combined
fragments which are used to describe the complicated control structure of interaction frag-
ments. It also can handle sequence diagrams with a hierarchical structure. We showed a

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto14

case study on which we translate a sequence diagram depicting interactions in a wireless
sensor network into CSPM description. The CSPM description can be analyzed by FDR
tool, and we can successfully obtain the process representation of the sequence diagram.

In this paper, we provided the process description for six types of combined fragments
describing a structure of interactions. We will extend our method to handle the other com-
bined fragment notations of sequence diagrams as future work. The framework of consis-
tency verification we proposed can detect inconsistency of diagrams using FDR. In the case
that inconsistency is detected, FDR provides a counterexample that shows evidence for vi-
olation of trace inclusion relation. Supporting inconsistency fixing using a counterexample
generated by FDR is our future plan.

Acknowledgments

This research was partially supported by JST CREST Grant Number JPMJCR1531, Japan.

References

[1] M. Petre, “UML in practice,” Proc. on Int’l Conf. on Softw. Eng. (ICSE 2013), pp.
722–731, 2013.

[2] D. Torre, Y. Labiche, and M. Genero, “UML Consistency Rules: A Systematic Map-
ping Study,” Proc. of the 18th Int’l Conf. on Evaluation and Assessment in Softw. Eng.,
(EASE 2014), pp. 1–10, 2014.

[3] K. Thramboulidis and F. Christoulakis, “UML4IoT - UML-based approach to exploit
IoT in cyber-physical manufacturing systems,” Computers in Industry, vol. 82, pp.
259–272, 2016.

[4] B. Wang and J. S. Baras, “Integrated modeling and simulation framework for wire-
less sensor networks,” in 2012 IEEE 21st Int’l Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, June 2012, pp. 268–273.

[5] V. H. Dı́az, J.-F. Martı́nez, N. L. Martı́nez, and R. M. Del Toro, “Self-Adaptive
Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless
Sensors Networks,” Sensors, vol. 15, no. 9, pp. 24 125–24 142, sep 2015. [Online].
Available: http://www.mdpi.com/1424-8220/15/9/24125

[6] S. Uke and R. Thool, “UML Based Modeling for Data Aggregation in Secured Wire-
less Sensor Network,” Procedia Comp. Sci., vol. 78, pp. 706–713, 2016, 1st Int’l Conf.
on Inf. Security and Privacy 2015.

[7] Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sourrouille, “Consistency Problems in
UML-Based Software Development,” in UML Modeling Languages and Applications,
UML 2004 Satellite Activities, 2005, pp. 1–12.

[8] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of UML model consistency
management,” Information and Software Technology, vol. 51, no. 12, pp. 1631–1645,
2009.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 15

[9] F. ul Muram, H. Tran, and U. Zdun, “Systematic Review of Software Behavioral
Model Consistency Checking,” ACM Computing Surveys, vol. 50, no. 2, pp. 1–39,
2017. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3071073.3037755

[10] D. Torre, Y. Labiche, M. Genero, and M. Elaasar, “A systematic identification of
consistency rules for UML diagrams,” Journal of Systems and Software, vol. 144, no.
June, pp. 121–142, 2018.

[11] X. Zhao, Q. Long, and Z. Qiu, “Model Checking Dynamic UML Consistency,” in
Proc. of the 8th Int’l Conf. on Formal Engineering Methods, ICFEM 2006, 2006,
Book, pp. 440–459.

[12] A. Egyed, “Automatically detecting and tracking inconsistencies in software design
models,” IEEE Trans. Softw. Eng., vol. 37, pp. 188–204, March 2011.

[13] P. Kaufmann, M. Kronegger, A. Pfandler, M. Seidl, and M. Widl, “A SAT-Based
Debugging Tool for State Machines and Sequence Diagrams,” in Proc. of the7th Int’l
Conf. on Softw. Language Eng. (SLE 2014), 2014, pp. 21–40.

[14] T. Yokogawa, S. Amasaki, K. Okazaki, Y. Sato, K. Arimoto, and H. Miyazaki,
“Consistency verification of UML diagrams based on process bisimulation (fast ab-
stract),” in Proc. of the 19th IEEE Pacific Rim Int’l Symp. on Dependable Computing
(PRDC’13), 2013, pp. 126–127.

[15] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe, “FDR3: a parallel
refinement checker for CSP,” International Journal on Software Tools for Technology
Transfer, vol. 18, no. 2, pp. 149–167, 2016.

[16] S. Phuklang, T. Yokogawa, P. Leelaprute, and K. Arimoto, “Tool Support for Consis-
tency Verification of UML Diagrams,” in Poster Session on The 18th Int’l Conf. on
Product-Focused Softw. Process Improvement (Profes 2017), 2017.

[17] É. André, C. Choppy, and K. Klai, “Formalizing non-concurrent UML state machines
using colored petri nets,” ACM SIGSOFT Software Engineering Notes, vol. 37, no. 4,
pp. 1–8, 2012.

[18] É. André, M. M. Benmoussa, and C. Choppy, “Formalising concurrent UML state
machines using coloured Petri nets,” Formal Aspects of Computing, vol. 28, no. 5, pp.
805–845, 2016.

[19] S. J. Zhang and Y. Liu, “An automatic approach to model checking UML state ma-
chines,” in Proc. of the 4th Int’l Conf. on Secure Softw. Integration and Reliability
Improvement Companion (SSIRI-C), 2010, pp. 1–6.

[20] J. Sun, Y. Liu, and J. S. Dong, “Model checking CSP revisited: Introducing a process
analysis toolkit,” in Proc. International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, vol. 17 CCIS, 2008, pp. 307–322.

[21] H. Miyazaki, T. Yokogawa, S. Amasaki, K. Asada, and Y. Sato, “Synthesis and refine-
ment check of sequence diagrams.” IEICE Trans. on Inf. and Syst., vol. E95-D, no. 9,
pp. 2193–2201, 2012.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto16

[22] J. Magee and J. Kramer, Concurrency: State Models & Java Programs. New York,
NY, USA: John Wiley & Sons, Inc., 1999.

[23] A. Matsumoto, T. Yokogawa, S. Amasaki, K. Arimoto, and H. Aman, “Consistency
Verification of UML Sequence Diagrams Modeling Wireless Sensor Networks,” in
Proc. 8th International Congress on Advanced Applied Informatics (IIAI-AAI 2019),
2019, pp. 458–461.

[24] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM, vol. 21,
no. 8, pp. 666–677, 1978.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 17

channel sm1 , rm1 , sm2 , rm2 , sm3 , rm3 , sm4 , rm4 , sm5 , rm5 ,

sm6 , rm6 , sm7 , rm7 , sm8 , rm8 , sm9 , rm9 , sm10 , rm10 , sm11 , rm11 ,

sm12 , rm12 , sm13 , rm13 , sm14 , rm14 , sm15 , rm15 , sm16 , rm16

channel c1b , c1e , c2b , c2e

msg = {sm1 , rm1 , sm2 , rm2 , sm3 , rm3 , sm4 , rm4 , sm5 , rm5 , sm6 , rm6 ,

sm7 , rm7 , sm8 , rm8 , sm9 , rm9 , sm10 , rm10 , sm11 , rm11 , sm12 , rm12 ,

sm13 , rm13 , sm14 , rm14 , sm15 , rm15 , sm16 , rm16}

F1_Mediator = sm1 ->rm2 ->c1b ->c1e ->SKIP

F1_Monitor = rm1 ->sm2 ->c1b ->c1e ->SKIP

F1_Reasoner = c1b ->c1e ->SKIP

F1_Actuator = c1b ->c1e ->SKIP

F1_NDObserver = c1b ->c1e ->SKIP

F1_BattObserver = c1b ->c1e ->SKIP

F1I = F1_Mediator [|{c1b , c1e}|] (F1_Monitor [|{c1b , c1e }|]

(F1_Reasoner [|{c1b , c1e }|] (F1_Actuator [|{c1b , c1e }|]

(F1_NDObserver [|{c1b , c1e}|] F1_BattObserver))))

F2_Mediator = rm9 ->sm10 ->rm11 ->sm12 ->rm13 ->sm14 ->rm15 ->sm16 ->SKIP

F2_Monitor = c2b ->c2e ->sm7 ->rm8 ->rm10 ->sm11 ->SKIP

F2_Reasoner = c2b ->c2e ->rm7 ->sm8 ->sm9 ->rm12 ->sm13 ->rm16 ->SKIP

F2_Actuator = c2b ->c2e ->rm14 ->sm15 ->SKIP

F2_NDObserver = c2b ->c2e ->SKIP

F2_BattObserver = c2b ->c2e ->SKIP

F2I = F2_Mediator ||| (F2_Monitor [|{c2b , c2e }|]

(F2_Reasoner [|{c2b , c2e }|] (F2_Actuator [|{c2b , c2e }|]

(F2_NDObserver [|{c2b , c2e}|] F2_BattObserver))))

F3_Monitor = sm3 ->rm4 ->sm5 ->rm6 ->SKIP

F3_NDObserver = rm3 ->sm4 ->SKIP

F3_BattObserver = rm5 ->sm6 ->SKIP

F3I = F3_Monitor ||| (F3_NDObserver ||| F3_BattObserver)

C1I = c1b ->C1L

C1L = ((F2I;C1L)[](c1e ->C1I))

C2I = c2b ->C2L

C2L = ((F3I;C2L)[](c2e ->C2I))

C1C2I = C1I [|{c2b , c2e }|] C2I

F1C1C2I = F1I [|{c1b , c1e }|] C1C2I

M1 = sm1 ->rm1 ->M1

M2 = sm2 ->rm2 ->M2

M3 = sm3 ->rm3 ->M3

M4 = sm4 ->rm4 ->M4

M5 = sm5 ->rm5 ->M5

M6 = sm6 ->rm6 ->M6

M7 = sm7 ->rm7 ->M7

M8 = sm8 ->rm8 ->M8

M9 = sm9 ->rm9 ->M9

M10 = sm10 ->rm10 ->M10

M11 = sm11 ->rm11 ->M11

M12 = sm12 ->rm12 ->M12

M13 = sm13 ->rm13 ->M13

M14 = sm14 ->rm14 ->M14

M15 = sm15 ->rm15 ->M15

M16 = sm16 ->rm16 ->M16

MSG = M1 ||| M2 ||| M3 ||| M4 ||| M5 ||| M6 ||| M7 ||| M8 |||

M9 ||| M10 ||| M11 ||| M12 ||| M13 ||| M14 ||| M15 ||| M16

SQ = F1C1C2I [|msg|] MSG \ {c1b , c1e , c2b , c2e}

Figure 7: CSPM description.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman, K. Arimoto18

sm1

rm1

sm2

rm2

τ

τ

τ

sm3

rm3

sm4

rm4

sm5

rm5

sm6

rm6

τ

sm7

rm7

sm8

rm8
sm9

rm9

sm10

rm8

rm8

rm8

sm9

rm9

sm10

rm10

sm11

rm11

sm12

rm12

sm13

rm13

sm14

rm14

sm15

rm15

sm16

rm16

Figure 8: Graph for the process SQ by FDR.

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Synthesis and Consistency Verification of UML Sequence Diagrams with Hierarchical Structure 19

	空白ページ

