
Visual Explanation of Eigenvalues and Math Process in 

Latent Semantic Analysis

Yukari Shirota *,  Basabi Chacraborty †

Abstract 

Latent Semantic Analysis (LSA) is a widely used method in text mining field to extract the un-

derlying concepts in the text document. The mathematical technique behind LSA is Singular 

Value Decomposition (SVD) in which the key concept is the eigenvalues.  It is difficult to un-

derstand the underlying mathematics for general people, not proficient in mathematics. One rea-

son might be that the linear algebra textbooks available in the market are not written for non–

mathematics majors such as economics students. We believe that there is better teaching method 

to explain the eigenvalues and eigenvectors to our students. In this paper, we would like to illus-

trate the method. In the main part of the paper, we have proposed a visualization of the mathe-

matical process behind LSA to make it easily understandable to general people, novice in math-

ematics. In addition, to understand the SVD process more deeply, another example which is a 

time series data analysis by SVD is also presented. 

Keywords: LSA, text mining, SVD, visualization, mathematics; multi-variant analysis, eigen-

value 

1 Introduction 

Learning mathematics is originally enjoyable. However, it is not  simple. We teach multi-variant 

analysis methods to our university students. Our job is to motivate them to work hard  in order to 

understand the mathematical philosophy before working  with statistical tools such as SPSS and 

SAS. From over 15-year experience of teaching mathematics to undergraduate students, we 

found that text books of linear algebra are in general too difficult for them to understand. Some 

simple interpretation is needed so that the students become  excited about learning mathematics. 

We found that visualization of the mathematical process  behind any technique might  help them 

growing their  interests in mathematics. This paper describes visualization of the mathematical 

process in Latent Semantic Analysis (LSA). Currently many researchers use text mining tech-

niques in various fields because of the recent popularity of the analysis of big data  around the 

world in various  application areas. Especially LSA is widely used in the area of text mining [1]. 

For example, text mining technologies are  used to extract the  content of the   communication 
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between the citizens and their governments as voices of the people  and these are used as feedback 

for government decision support. Evangelopoulos et al. presented how LSA is implemented on 

real E-Democracy data so that the politicians can efficiently interpret  the feedback by citizen [2]. 

We think that understanding the mathematical process behind LSA  would lead to skills for un-

derstanding  various other multi-variant analytical methods. The mathematical process behind 

LSA is  Singular Value Decomposition (SVD). SVD includes the significant essence of eigen-

values and eigenvectors. So at the beginning we would like to visually explain eigenvalues and 

eigenvectors. Then SVD is explained visually through an application of LSA. 

    In addition, another SVD application which is a time series data analysis problem is described. 
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derstanding  various other multi-variant analytical methods. The mathematical process behind 

LSA is  Singular Value Decomposition (SVD). SVD includes the significant essence of eigen-

values and eigenvectors. So at the beginning we would like to visually explain eigenvalues and 

eigenvectors. Then SVD is explained visually through an application of LSA. In addition, another 

SVD application which is a time series data analysis problem is described. 

2 Review of LSA and SVD Teaching Methods 

In this section,  a review the existing teaching methods of LSA and SVD is presented. Analysis 

of text data starts with the generation  of a term-frequency matrix which is analyzed with the 

purpose of extracting latent components of meaning through SVD. A matrix operation that ex-

tracts simultaneous least-square principal components of two sets of variables, namely the set of 

terms and the sets of documents, is executed in [1, 3].  LSA (or Latent Semantic Indexing LSI) 

is explained in the textbooks such as [3-5]. SVD is an extension of PCA (Pricipal Component 

Analysis). The PCA extracts eigenvalues and eigenvectors of a covariance-matrix when the ma-

trix is symmetrical. However, a term-frequency matrix is not symmetrical. Therefore, we use 

SVD instead of PCA. PCA is explained in the textbooks such as [6-9]. We also have developed 

various  interactive and visual teaching materials in [10-12] for PCA. Knowledge of PCA is help-

ful before learning SVD.  Let us suppose that the term-document matrix is represented by 𝐗. By 

SVD, we obtain 𝐗 = 𝐔𝚺 𝑽Τ where 𝐔𝚺 is the term-eigenvectors, 𝚺 𝑽Τ is the document-ei-

genvectors, and 𝚺 is the diagonal matrix of singular values. SVD is explained in the textbooks 

such as [4, 13]. 

   The mathematical definition of SVD can also be found in  many web sites such as 

Wikipe-dia[14]. The wikipedia article offers the visual explanation concerning the matrix 

operation. However, we hardly think that seeing and reading the explanation will make 

students understand the meaning of SVD, because the visualized example is  two-

dimensional and it illustrates only two canonical unit vectors. For students who want to 

learn text mining, much more application-based explanation is required. The existing 

textbooks and papers which explain LSA offer only the example with  calculation and its 

analysis. They do not focus on explanation of the meaning of the mathematical process 

behind LSA. Before learning SVD, students need to understand the concept of eigenvalues, 

because to understand  SVD, the most significant concept is the eigen-values. The 

eigenvalue is invariant under the change of the basis matrix. To express the invariance of 

eigenvalues, the terms "characteristic value" or "proper value" are sometimes used instead of 
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“eigenvalue” in some linear algebra textbook [15]. However, we hardly think that the term can 

give a concrete image of eigenvalues to our students. If the target is students in a mathematics 

department, they would be able to grasp the concept for themselves. However, students having 

non mathematics major could have difficulties to understand the eigenvalue concepts. 

    Generally speaking, a textbook of linear algebra should teach the eigenvalue concept in a more 

easily understandable way. In many existing textbooks, the following  explanation is offered[16, 

17]: First, given a matrix. Then find the eigenvalues and the eigenvectors. Finally obtain the 

diagonal matrix. We think that it should be described more directly what is invariant after the 

change of a basis matrix. Therefore, we propose a method to explain the process for our students. 

When I teach eigenvalues in my classes, I use the fable story titled “Enlargement Factors of the 

Magnification Machine are Eigenvalues” [11]. The summary of this story is that the magnifica-

tion machine which corresponds to the diagonal matrix was invented in the CENTRE country 

and to export the machine to another country which uses a different basis, the linear transfor-

mation was executed. The key point is an eigenvalue is expressed as an enlargement factor of the 

magnification machine. By the story, many students could comprehend the eigenvalue concept. 
The visual teaching materials of eigenvectors and eigenvalues through PCA has been illustrated 

(See Figure 1). The data used is the agriculture and industry values added percentage of GDP 

from World Bank Data 2012. It is ordinary two dimensional data around us. Using the data, three-

dimensional histogram has been drawn. Then we mold the shape by the Gaussian distribution 

model as shown in Figure 1. The Gaussian model shape is the approximation of the given data.  

The eigenvalues and eigenvectors on the graphics are then added as the two arrows. The arrows’ 

directions correspond to the eigenvectors and the arrow lengths correspond to the eigenvalues. 

How much the data is expanded to the respective directions conveys the meaning of eigenvalues.  

The concrete values of the covariance matrix are as follows: 

From the two eigenvectors, we can get the rotation matrix of the data as follows: 

When we use the above-mentioned fable story, the magnificent operation by 233 times and 

108 times in CENTRE expression is divided to three step operations as follows: (1) interpre-

tation from CENTRE one to WEST country one, (2) magnificent operation in WEST, and 

(3) interpretation from WEST one to CENRE one. The point of the teaching method is that

the diagonal matrix which expresses the enlargement factors should be offered first before

other non-diagonal matrices. Another point is the usage of Gaussian distribution model. By

these, our students get to understand the eigenvalue concepts more deeply. We shall apply

the eigenvalue-centered way of explanation to LSA/SVD explanation in the next section.

3 Visualization of Mathematical Process of SVD 
In this section, we would like to explain our proposed teaching materials for the mathematical 

process behind SVD. The target students are supposed to learn LSA. Here we emphasize the
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conceptual underpinnings of the mathematics by using stories and illustrations and interactive 

visual graphics. 

Let us suppose that a term-document (or term-frequency) matrix X in Figure 2 is given. There 

are three documents and the six significant words selected from the documents. The words are 

"kindness", "tenderness", "dream", "glory", "promise", and "confidence". We suppose in advance 

that there are three essential concepts in the given documents/books; they are love, hope, and 

trust. We selected the three concepts because these are the strongest concepts without which a 

man cannot survive and that we think students can easily associate the latent concept to an eigen-

vector. The impact factor of the concepts are considered to be the eigenvalues. Although this 

explanation is not correct from a mathematical standpoint, this analogy would make students 

easily understand the mathematical  process behind LSA. 

Looking at the matrix 𝑿, we can see that the document #1 is related to the concept "love", the 

document #2 is related to the concept "hope", and the document #3 is related to the concept “trust”. 

In real text mining, at first  we generally have no idea of such concepts or topics. After SVD, 

looking at  the results of SVD, the interpretation of latent semantics would be conducted. The 

given term-document matrix in Figure 2 is supposed to be divided into three matrices by SVD, 

𝑿 = 𝑼𝜮 𝑽𝛵, as shown in Figure 3.  In general, results of SVD is given as follows:

𝛴: an 𝑟 × 𝑟 diagonal matrix. 

𝜆𝑖 (Diagonal elements of the 𝑖 rows and 𝑖 columns) is   𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0

A column vector of 𝑼 is an unit vector and orthonormal basis of the space spanned by the column 

vector of 𝑿. A row vector of 𝑽𝑇 is an unit vector and orthonormal basis of the space spanned by 
the row vector of 𝑿. An eigenvalue 𝜆𝑖 shows the importance of as the base of the 𝑖th column 
vector of 𝑼  (or the  𝑖th row vector of   𝑽𝑇).

For interpretation of  the above explanations, we use a story (See Figure 4 and 5); where there 

are six-dimensional term world and three-dimensional document world as shown in the figures. 

The transformation from a document to a word is executed by the matrix  𝑿 and the transfor-

mation from a word to a document is executed by the matrix  𝑿Τ. As shown in Figure 3, the first 
unit column vector in 𝑼 is magnified by the eigenvalue 81.63 and then the resultant vector is 

the first term-eigenvector which corresponds to the first column 𝑼𝜮.  Similarly  the first unit 

column vector in 𝑽 is magnified by the eigenvalue 81.63 and then the resultant vector is the first 

term-eigenvector which corresponds to the first column of 𝑽𝜮, because (𝑽𝜮 )𝛵 = 𝜮𝑇𝑽𝑇 = 
𝜮 𝑽𝑇

The first term-eigenvector in Figure 4 corresponds to the latent concept “trust” and the 

eigenvector keeps the same vector direction even after a return trip to and from the document 

world. Any term vector other than the term-eigenvector is skewed by the transformation.  The to-

and-from transformation can be expressed by the matrix 𝑿𝑿Τ  of which eigenvalues are 
approximately 6664, 4908, and 3153. We found  eigenvalues of  𝑿𝑿Τ are equal to square of 
eigenvalues in 𝚺. For example, the square of 81.63 equals to 6664. We could consider that the 

three latent concepts such as love can be expressed as the three term-eigenvectors in the term 

world (See Figure 4) and that the three latent concepts can be also expressed as the three 

document-eigenvectors in the document world (See Figure 5). The term-eigenvector in the term 

world will be transformed to the corresponding document; for example the book is supposed to 

be a book defining  the concept “love”.  After a transformation, the latent concept is invariant. 

The eigenvector changes in the space. However, the latent concept is invariant and the impact 

factor (eigenvalue) is invariant. 
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The canonical unit document-eigenvectors are shown in Figure 6. The scaled document-eigen-

vectors by the eigenvalues are also shown in Figure 6. This kind of geometrical presentations 

have already used in the existing textbooks and papers. Therefore we skip the visual explanations 

like this such as skewed vectors and a dimension reduction projection in this paper. 

4 SVD in Time Series Data Analysis 
The SVD is used in various application fields. In this section, we present another SVD application 

which is the stock price fluctuation analysis. In the financial field, SVD is used to make portfolios. 

Using SVD, we can find the similar kind of industry group like telephone companies and banking 

companies [18,19,20]. For example, Bank A and Bank B tend to move similarly. The given data 

of the application is stock price time series data as shown in Figure 7. In the example, there are 

seven companies and their 22 days stock price data. The results of SVD are seven eigenvalues. 

The two types of eigenvectors correspond to one eigenvalue and in the application they are a 7-

dimensional vector and a 22-dimensional vector. In [20], the vectors are called Brand-Eigenvec-

tor and Motion-Eigenvector. The paper also uses the notations. The Brand-Eigenvector shows 

the group of companies with similar stock movement. On the other hand, the Motion-Eigenvector 

shows an average fluctuation of the group.  

In Figure 8, the transformation of Brand-Eigenvectors from the Brand World to the Daily mo-

tion world and  again  to the Brand World is shown. The Brand-Eigenvector has the same direc-

tion as  before, only being multiplied by the eigenvalue squared. In Figure 9, Motion-Eigenvec-

tors are shown. The Motion-Eigenvector is 22-dimensional and each value illustrates the group 

average fluctuation.  

5 Conclusions 
We discuss visual explanation methods of SVD in LSA. In this paper, we presented two applica-

tions of SVD. Through two examples, we can see that SVD shows two different standpoints of 

an intrinsic meaning of one eigenvalue. In LSA, they are expressed by words and documents. In 

the stock price analysis, they are expressed by companies (brands) and fluctuations. As SVD is 

used in various application fields, understanding the mathematical  process would be very helpful 

in many fields. Currently the multi-variant analysis methods have becoming more complicated. 

To teach the mathematical process, visual approach is helpful. We use various visualization ma-

terials; they are interactive and visual materials (See our other published  materials ), simulations, 

stories, and illustrations as shown in Figure 1. As shown in the paper, we present that mathemat-

ical illustrations have the strong descriptive power and they are useful in mathematical education. 

In our statistics classes, we found that these mathematical illustrations have made many students 

easily understand the essence of the theories. 

The people need more visualized explanation as we use more  complicated mathematical or 

statistical analysis. In statistics education, we have to make students convinced the meaning of 

the theory  by using visual materials before making students calculate the expressions. We would 

like to continuously develop visual teaching materials of multi-variant analytical methods for text 

mining researchers. 
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  Figure 1: PCA visual teaching materials which explain the eigenvalues and eigenvectors. 

Figure 2: The given term-document matrix which was artificially created sample data with 

Multivariate Gaussian Model

determinant
inverse matrix
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three latent topics “love”, “hope”, and “trust”. 

Figure 3: The SVD has made the term-document matrix divided into the three matrices. 

Figure 4: The SVD has made the term-document matrix divided into the three matrices. 
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Figure 5: The mathematical illustration of term-eigenvectors and eigenvalues in SVD. 

Figure 6: The unit document-eigenvectors and scaled one which is scaled by its eigenvalue. 

Figure 7: The given time series data of the stock price fluctuation. In advance, the data has 

been standardized. 
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 Figure 8: The BrandEigenvectors transformation between the two expression worlds. 

Figure 9: The MotionEigenvectors transformation between the two expression worlds. 
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