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Toward a robot that acquires logical recognition of space
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Abstract

For cooperation between robots and humans, a robot should have logical recognition re-
garding space. For example, if a robot, such as a housekeeping robot, can recognize the
arrangement structure of the furniture and the concept of “a room”, this information will be
useful for asking the robot to carry out tasks. Therefore, our aim is for the robot to acquire
information on the relationship between locations while moving. So, in hopes that the robot
can recognize that “I have exited the room”, we conducted an initial-stage experiment in-
volving a robot leaving a room using knowledge of the relationship between the entrance
of the room and the door. This paper describes the insights obtained from this experiment.
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1 Introduction

In the past, as research on the means for robots to move in indoor or outdoor spaces, tech-
nologies, such as spatial recognition by SLAM and generation of moving plans using plan-
ning, have been developed. However, these technologies lack the concept of logical recog-
nition of the spaces in which robots are located.

For example, suppose that a human says to a robot that “please put this plushie over
the cabinet in the next room”. At that time, if the robot does not logically understand the
relationships between the rooms or the furniture arrangement in the room, the robot cannot
understand the “next room”, and it is difficult for the robot and the person who asked for
that task to communicate with each other.

From such a point of view, it is necessary to acquire the logical recognition of a space
and maintain it as knowledge for robots, such as housekeeping robots, to coexist with hu-
mans. If a robot has abilities such as recognizing the furniture arrangement in a room
structurally, and obtain the concept of “a room” as a single place, the robot will be able to
recognize from which room to which room it has moved. If the robot can gain such recog-
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Figure 1: Robot’s environment in experimental room Figure 2: Q.bo Lite Evo

nition and keep it as knowledge, the information will be useful for asking the robot to carry
out tasks.

From this viewpoint, we conducted a verification experiment in which the robot was
given a relationship between a door and the entrance in a room as knowledge, then it exited
the room through the entrance using that knowledge (Fig. 1). In this experiment, we aimed
for the robot to recognize that it has got out of the room. However, due to various problems,
our aim has not been achieved yet at present. In this paper, we describe the findings we
gained from the experiment and discuss them.!

Note that this paper focuses on the discussion on the problems for robots to acquire log-
ical recognition regarding places. Our larger goal is for robots to discover new knowledge
about the relationships between rooms using relationships obtained from its observations.
For discussion from that point of view, please refer to our another study[1].

2 Implementation of our robot program

2.1 Robot and BDI model

For this study, we used Thecorpora’s Q.bo Lite Evo robot (Fig. 2). It has cameras as its
eyes, which can capture the forward view. It also has two ultrasonic sensors near its front
wheel that can detect obstacles.

Our implementation of the robot’s behavior is based on the BDI model[2], a model of
autonomous agents that emulates the process of human goal achievement. A BDI agent,
an agent based on the BDI model, first generates its goal using its beliefs obtained from its
environments. By practical reasoning[3], using these beliefs, it selects a means (basically
from its plan library) to achieve the goal, forms it as its intention, then attempts to maintain
the intention and execute it (the large box at the top of Fig. 3).

To make the robot have a goal and act while reasoning its sub-goals and plans to achieve
them, we used the BDI model for the robot’s action decision. To implement this, we used
Jason[4], a platform for implementing the BDI architecture (the fundamental agent archi-
tecture on the BDI model). With Jason, practical reasoning can be described in a logic
programming language approximately corresponding to Prolog.

'The video of this experiment is available at http://blackknight.ics.nara-wu.ac.jp/~kuma/
index2.html#roboexit as of December 10, 2017.
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Although the robot’s goals and sub-goals are simple, the use of the BDI architecture has
a clear advantage that we can describe goal-oriented actions in a Prolog-like language. In
addition, to achieve our future goal of actualizing robots that attempt to reach their desti-
nations by forming sub-goals, we can take advantage of the BDI model in which the robot
can hold or modify its intentions and maintain its sub-goals in response to environmental
changes or failures of actions in the real world[5].

2.2 ROS and Jason practical  JaSON (BDI
plan Iibrary reasoning  architecture)
The robot’s motors and sensors are con- ason (BDI)

performing

trolled using ROS[6]. We use ROS from menia nterpreter) [ sctone } TCP
. . . states — H
Python (Fig. 3). By processing the vi- B,D, | Jherceving | _cation
sual information from the sensors using
libSVM, the (non-)presence of a target Python perception
object is determined, and the result is Sensor Si:}?:ry, SVM ;
i action
1 ROS | mation
passed to Jason. J.ason then acquires the motor O
result as a perception and uses it for prac- output | Motor output

tical reasoning to determine the robot’s
action, i.e., selects the plan for the cur-
rent goal and passes an atomic action to
the Python side. On the Python side, the
motor output determined based on that action is passed to ROS, and the robot acts.

We are currently focused on developing a mechanism for determining actions from
goals as a practical reasoning based on logic programming. Hence, object recognition using
libSVM currently involves a naive method, and its precision is not very high. Improving
upon this is our future task.

Figure 3: BDI agent and implementation of
robot’s behavior

2.3 Design of atomic actions

Atomic actions are designed at the level of, for example, “proceed while avoiding obsta-
cles”, and implemented on the Python side. Plans using these actions as the smallest units
of action are prepared on the Jason side. As a result, when writing plans for the BDI agent,
we can plan using atomic actions, which are robust against obstacles.

We implemented the following atomic actions. The heading of each entry shows the
name of the action. Actions forward_Qbo and search_Qbo were implemented in our
previous research[7, 8].

looking_Qbo: search for an object and take an argument as an ID of the target object.
First, obtain 3 images from the camera by rotating the robot’s head in different direc-
tions (covering about a 160° view) and splitting each image into 3 x 2 areas. Next,
estimate whether the target object exists in each area using SVM. If, for some areas,
the target is judged to exist at a certainty higher than some threshold, the target is
considered to exist in the direction of the area with the highest certainty. If not, the
target is considered not to exist. The result is returned as a perception.

forward_Qbo: take an argument as a base direction, turn to the specified base direction,
and move ahead a constant length. The capability to detect an obstacle with ultrasonic
sensors in parallel with moving is built into this action, and for detecting an obstacle,
the robot stops. After this action, information of the robot’s direction and whether the
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robot is facing an obstacle is received as perceptions (the same holds for search_

Qbo).

search_Qbo : take an argument as a base direction, turn to the direction that is close to the
specified base direction, and move to where no obstacles are found. This first involves

turning to the specified direction, and if there is any obstacle in that direction, turning
around little by little until facing no obstacle.

2.4 Decision-making program for robots

We prepared a decision-making program for our robot as a plan of the BDI agent as follows.
Currently, we assume that a robot is in a room whose door is opened inward. The final goal
for the robot is “to move out of the room”, and we set a goal of “reach the exit of the room”
as an intermediate step. The plan to achieve this goal is written on Jason (as shown in Fig.

4) and consists of the following sequence of sub-goals: 1) access the door of the room and
ii) at that point, find the entrance of the room.

—— e
Qre wall :".:
+!reach_exit expected &
<- // access the door tglénetcrtzlagge &

reach_object (door) ; ﬁent )
// find the entrance direction
lreach_object (entry). of robot &

Figure 4: Plan for finding entrance of room Figure 5: Belief regarding direction to door
and entrance

To achieve these sub-goals, we prepared sub-plan “ro” shown in Fig. 6 on Jason. Note
that a tag beginning with “@” at the top of each plan shows the name of that plan. This plan,
working with some sub-subplans, is prepared for reaching the front of a target object. It
is commonly used in both 1) and ii) above. In Fig. 6 (and for other figures referred in this
section), a plan is in the form of “triggering_event : precondition <- plan_body” (where
precondition can be omitted), and “!”, “+!” denote a sub-goal and event of goal addition,
respectively. Note that not all definitions of sub-goals are given in this paper. The symbol
“~+” denotes a belief revision. Atoms that appear in plan_body, which do not begin with

any special symbol such as “!” or “-+”, are atomic actions; inside Jason, atomic actions

are implemented using Java. The symbol “//” denotes a comment. Sub-plan “ro” executes
the following processes.

(1) Initially set the approximate direction of the target.
(2) Receive perception.

(3) Attempt to find the target object using looking_Qbo.

(4) Depending on the perception caused by (3), decide the next action (forward_Qbo

or search_Qbo) as follows (see Fig. 7), and send it to the Python side via TCP (by
tcp_write).

(a) As abase direction, choose the direction toward the target if it is visible. If not,
choose the direction initially given as an approximate direction to it.

Copyright © by 1IAI. Unauthorized reproduction of this article is prohibited.
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@ro

+!reach_object(Object)

<- // initially set approximate direction to object
Iset_expected_target_direction(Object) ;
Isearch_object(Object). // main process of search

Os_td1

+!set_expected_target_direction(door)

<- // set expected direction of door given ad hoc
-+expected_target_direction(0).

@s_td2

+!set_expected_target_direction(entry)
my_current_direction(Dir)

<- // expected direction of door entry is separated
// by 45 degrees from current direction
—-+expected_target_direction(Dir + 45).

@sol

+!search_object(0Object)

:  not front_of(Object) // if not in front of object yet

<- // receive perception caused by previous action
lget_my_current_direction;
lget_information_of_obstacle;
// internally call looking_Qbo to find target object
laround_search(Object) ;
// decide next action and send it to robot
ldecide_action;
// recursively try to achieve the goal
I'search_object(0Object) .

©so2
+!search_object(Object)
<- true. // if already in front of object

Figure 6: Sub-plans for finding object

(b) Select forward_Qbo to proceed if the robot is facing no obstacle, or search_
Qbo to avoid the obstacle as the next action. The base direction chosen in (4)(a)
is given as the argument of the action.

(5) Repeat the process from (2) to (4) by recursive call.

Between 1) and ii) mentioned above, to obtain the initial direction of the entrance, the
robot uses an empirical rule that the expected direction to the room entrance is separated
by 45° from the direction of the robot when it reaches the front of the door (plan “s_td2”

in Fig. 6). This rule comes from the fact that the angle between the entrance and door was
about 90° in this experiment (Fig. 5).

2.5 Discussion on process of recognizing door

In this study, the robot recognized the door via its visual perception. However, due to the
limit of its range of vision, the robot could only acquire a partial image of the door instead of
that of the entire door. In this study, the room door had a horizontal slit under the doorknob,
which the robot selected as a characteristic of the door in order to recognize it. We argue

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.
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@dal

+!decide_action

: // if target is visible, and facing obstacle
found_target(Object) & target_direction(Dir) &
found_obstacle

<- // find nearest direction with no obstacle
tcp_write(search_Qbo(Dir)).

Q@da2

+!decide_action
// if target is visible, and not facing obstacle
found_target(Object) & target_direction(Dir)

<- // proceed toward the target
tcp_write(forward_Qbo(Dir)).

@da3

+!decide_action

: // if target is not visible, and facing obstacle
found_obstacle & expected_target_direction(Dir)
// expected_target_direction/1 returns approximate
// direction of the target given initially

<- // find direction with no obstacle near initial direction
tcp_write(search_Qbo(Dir)).

@da4

+!decide_action
// if target is not visible, nor facing obstacle
expected_target_direction(Dir)

<- // proceed toward initial direction
tcp_write(forward_Qbo(Dir)).

Figure 7: Sub-plans for deciding action

that the procedure described above is close to the concentration of mind in human object
recognition. When a human opens a door, he/she concentrates his/her consciousness on
a characteristic part of the door, such as the doorknob, to recognize the door and open it,
instead of having awareness of the entire door. We assume that localized use of information
is also useful for robots to recognize their environments.

3 Experimental results

We now discuss the results of our experiment.

First, the robot moved in the expected direction of the door given initially, found the
door, and moved in the direction toward the front of the door. When it approached the front
of the door, the context of plan “so1” in Fig. 6 for reaching the front of the door was not
satisfied under the following two conditions: recognizing the door by using the SVM and
meeting the requirement of the ultrasonic sensors on its body, where we call these
conditions “stop conditions” for plan “re” in Fig. 4. Then goal !reach object (door) (in
plan “re”) was achieved through plan “so2” in Fig. 6. Therefore, the robot’s next goal
was !reach_object(entry) (in plan “re”) for reaching the entrance and exiting the
room, and the robot moved in the direction by setting the rule of sub-plan “s_td2” in Fig. 6
to find the entrance. With this knowledge, the robot moved to the entrance of the room and
exited the room. This is a desirable result (Fig. 8).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.
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Figure 9: Route of robot’s movement during
experiment (dotted line is executing plan for
reaching front of door. Large circle is con-
dition of recognizing door. Small circle is
condition of meeting requirement of ultra-
Sonic sensors.)

Figure 8: Route of robot’s movement dur-
ing experiment (dotted line denotes execut-
ing plan for reaching front of door. One-
dot chain line denotes plan for reaching en-
trance of room.)

Second, though the robot moved in the expected direction toward the door given ini-
tially, found the experimental room door, and moved in the direction toward the front of
the door, like the first result, it found the opposite room door while it was moving toward
the experimental room door. Therefore, the robot mistook the target as the opposite room
door and moved toward the vicinity of the entrance of that room. At this point, the con-
text of plan “so1” for reaching the front of the door was not satisfied because when the
robot approached the entrance of the room, the stop conditions were incorrectly satisfied
by finding the opposite door and meeting the requirement of the ultrasonic sensors since its
body was caught on the edge of the doorway. Then goal !reach_object(door) (in plan
“re”) was achieved with plan “so2”. Therefore, the robot started to exit at that location by
executing goal !reach_object (entry) (in plan “re”). As a result, the robot could not
find the entrance and exit the room by using this knowledge (Fig. 9).

4 Discussion

So far, we could not achieve our objective described in Sec. 1 through this experiment. This
is mainly because the sense of robot’s recognition is different from that of a human’s. In
the following, we list the important problems to be solved for improving the accuracy of
the experiment.

4.1 Recognition of door

As the robot approached the door, the image of the door, which was small in the field of
vision at first, gradually became larger. Then, as the robot neared the door, the entire door
spread out from the view of the robot. As a result, the robot could not recognize that what
was seen in the field of vision was the same object as the door that it had been looking at.
This is because the robot uses only local visual information.

Furthermore, in our experiment, the robot could not find the difference between the
nearby door and the opposite room door. The reason for this is considered to be that since

Copyright © by 1IAI. Unauthorized reproduction of this article is prohibited.
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the robot classifies objects by feature extraction using the SVM based on camera images, it
cannot distinguish objects with similar features from each other using perspective.
With these facts, the robot mistakenly recognized the door of the opposite room.

4.2 Stop conditions of plan in continuous space

From the second result in Sec. 3, the robot did not move properly due to improperly imple-
menting the stop conditions. In this experiment, we implemented the rule for the following
two stop conditions: “The front of the door” by recognizing the door, and meeting the re-
quirement of the ultrasonic sensors. In the real world, we can understand “the front of the
door” empirically, but it is difficult to implement such a condition. Because the real world is
a continuous space, it is difficult to uniquely determine such an abstraction.

4.3 Method and amount of data used for learning

Currently, at most several hundred sets of image data are used for learning. This is consid-
ered to be a major factor of low precision. The accuracy of the experiment can be improved
by increasing the amount of such data. However, it is a major problem that it takes consid-
erable manpower and time to increase the amount of data.

There is also a possibility of improvement by introducing recent techniques, such as
deep learning, for classifying door images.

As another problem, to recognize the door and approach it, it is necessary to keep
recognizing that it is a door. Currently, the robot judges whether an image obtained from
the camera is a door each time an action is taken. For this reason, if the recognition rate
is not high, it tends to lose sight of the door. To address this problem, we should consider
introducing methods such as object tracking.

4.4 Recognition of situation change

As a method of understanding the relative positional relation, we were thinking of using
the rapid change of view when exiting a room. However, in our observation, the scenery
observed by the robot changed much faster than with our eyes, even when it did not exit the
room. This seems to be partly due to the low height of the robot.

4.5 Summary and future directions

We discussed problems to be solved to achieve our goal of a robot recognizing the change
in the situation of exiting a room. To address issues and achieve our goal, one possible idea
we are considering is to understand the shape of a building using 3D LIDAR (e.g. [9, 10]),
and based on this information, make the robot be able to recognize that it has moved from
a room to a corridor. One of our future tasks is to solve these problems and have the robot
acquire the ability to obtain the logical relationship between the locations as knowledge and
create a map by moving to the destination while achieving its subgoal.

5 Related work

Zhang et al. [11] proposed an autonomous mobility control method by combining high-
level planning implemented in answer set programming (ASP) and low-level planning im-
plemented in the partial observation Markov decision process (POMDP). By making high-

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.
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level inference using ASP, simulation results improved compared to behavior control only
with POMDP. They also succeeded in experiments with real robots. While their method is
based on self-location estimation using existing SLAM technology, we discussed a behavior
control method without using SLAM.

Niichter et al. [12] proposed a method for understanding the space of the real world
by labeling floors, ceilings, and walls using the inference rules of Prolog based on the
vertical or parallel relationship on a 3D map obtained from a robot’s 3D scan and using
6D SLAM[13]. However, they mentioned that using HTN planning[14] for determining a
robot’s movement using this logical information is a subject for future analysis. In contrast,
we used the BDI model and logic programming for determining a robot’s movement, and
the robot performed goal-oriented actions.

Lidoris et al. [15] conducted the ACE project for developing a robot that can reach a
destination without an existing map or GPS sensors and move outdoors. The main con-
tribution of their paper was that the robot could reach a destination by asking pedestrians.
Their robot is composed of a finite state machine consisting of three action-decision mod-
ules “Active, Inactive, and PriorityCheck”. Unlike that, we used the BDI model for the
robot’s action decision, and the robot could flexibly modify its goal.

Brandstatter et al. [16] presented a self-position estimation method other than SLAM.
They solved localization and navigation problems using the internal discrete topological
representation of the environment called an internal map. The internal map consists of
locations that are candidates for the self-position of the agent, regions which are sets of the
locations, and adjacency relation between the regions. An agent can estimate the location
based on the positional relationship and distance of the landmark seen from the current
position. Location estimation can also be used for navigating to the destination. While they
only conducted simulation, we gave an implementation based on logic programming.

6 Conclusion

We implemented a system that acquires logical recognition of positions in space and moves
inside that space and conducted an experiment to clarify the current problems. We have to
further consider the stop condition of the plan, which is one of the implementation prob-
lems. We believe that problems related to perspective and identity, recognition using local
information, and learning volume and method can be improved by improving hardware per-
formance and by changing the handling method. Furthermore, with regard to the robot’s
recognition of changes to the situation, such as recognition of “exiting the room”, which
was the goal of this research, we are considering creating knowledge unique to robots by
using dedicated hardware such as 3D LIDAR or combining various sensors. Through fur-
ther experiments based on the above process, we aim to solve these problems and create
intelligence for robots that cooperate with humans, such as housekeeping robots.
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