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Abstract

Environmental Microorganisms (EMs) are very tiny living beings which impact the entire
biosphere by their environmental functions. Traditionally, a lot of manual efforts through
morphological analysis using microscopes have been put on looking for EMs. However,
these methods are time-consuming and laborious. To overcome this, we develop a Content-
based Image Retrieval (CBIR) system for the EM image retrieval task within a Double-
stage Optimisation-based Fusion framework. In the first stage, in order to effectively use
the colour information of EM images, a Multiple Colour Channel Fusion (MCCR) method
based on a Particle Swarm Optimisation (PSO) is developed to search for similar database
images to a query image using local features. In the second stage, in order to enhance the
retrieval performance of the first stage, a retrieval method based on Immune Evolutionary
Particle Swarm Optimisation - Shuffled Frog Leaping Algorithm (IEPSO-SFLA) is devised
to further combine global features. Finally, the experimental result shows that our double-
stage fusion method obtains a mean average precision of 35.87% for 21 classes of EMs,
which is superior to the existing methods.

Keywords: Environmental Microorganisms, Content-based Image Retrieval, Microscopic
Images, Double-stage Fusion, Multiple Colour Channel Fusion

1 Introduction

Environmental Microorganisms (EMs) are present in every part of the biosphere (rivers,
forests, mountains, etc.), playing critical roles in earth’s biogeochemical cycles [1]. They
are cost-effective agents for in-situ remediation of domestic, agricultural and industrial
wastes and subsurface pollution in soils, sediments and marine environments. For example,
Vorticella can digest organic pollutant in wastwater and improve the quality of fresh wa-
ter. Traditionally, environmental microbiological researchers identify a new EM by check-
ing references or asking experts. However, these traditional methods are time-consuming
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and inefficient. To improve the search effectiveness of EM information, especially for
complex EM images, we develop a Content-based Image Retrieval (CBIR) system (EM-
CBIR) [2, 3]. The system searches over a database to find EM images that are relevant to a
query EM image. Through the CBIR method, features are automatically extracted from EM
images to represent their semantic properties, such as colour, shape and texture, etc. Hence,
EM-CBIR can help environmental researchers obtain useful EM information effectively
and economically [4].

Since the contents of EM images are very complex to describe completely by a single
feature, we combine different features in our EM-CBIR system to cover the colour, texture
and shape information. In particular, our system is developed by addressing the following
three issues: First, because the light colour and intensity of EM images are not stable, the
colour feature extraction is affected. To manage this, we propose a Multiple Colour Channel
Fusion (MCCF) approach to obtain more abundant colour information from different colour
channels. Second, in different colour channels, we extract local features which are useful to
describe various texture characteristics of EM images. Thirdly, global features are applied
to describe the morphological properties of the EMs. Thus, these features show robust
descriptive power in EM image retrieval tasks.

Putting the above three issues together, we develop a double-stage EM-CBIR system
illustrated in Figure 1. Here, we aim to assist a user to quickly know what kind of EMs are
included in an environmental sample. The first fusion stage is performed using the MCCF
approach. This computes a similarity between a query and a database image by fusing
their similarities in terms of local features on different colour channels. In the second
stage, the resulting similarity is further combined with the similarity in terms of global
features. Here, Immune Evolutionary Particle Swarm Optimisation - Shuffled Frog Leaping
Algorithm (IEPSO-SFLA) is used to combine similarities by weighting them based on the
correspondence accuracy [5], IEPSO-SFLA has the optimal searching ability and stability
as well as the rapid convergence. Experimental results on real-world images show the
effectiveness of the proposed system.

Figure 1: A work flow of our double-stage EM-CBIR system.
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2 Related Work

EM image retrieval and classification: There are some existing works for EM image 
retrieval and classification. In [6, 7], a semi-automatic EM image classification approach is 
proposed. In this method, image segmentation, shape feature extraction and support vector 
machines are used to discriminate between regions of an interesting EM and the others. In 
[2], the characteristics of shapes in different segmented EM regions are represented by an 
edge-based feature descriptor and used for an image retrieval task.

All the aforementioned methods require image segmentation to extract shape features 
from EM images. Thus, their effectiveness depends on the accuracy of image segmentation, 
which is still a difficult task. In contrast, [8] introduces an EM classification approach 
that firstly uses Sparse Coding (SC) to extract useful local features by analysing a large 
number of image patches, and then employs Weakly Supervised Learning to perform the 
joint localisation and classification of an EM by finding a dense region of local features 
specific to this EM. However, because SC is computationally expensive, we particularly 
choose Scale Invariant Feature Transform (SIFT) features [9] as the local feature in our 
work. SIFT features are usually extracted from grey images, and ignores the useful colour 
information which finally hinders the ultimate performance. Hence, we adopt an approach 
to extract SIFT features from multiple colour channels.

Some works extract SIFT features by applying multiple colour channel strategy to ob-
tain a larger amount of information. For example, [10] extracted SIFT features over three 
channels of HSV colour space, and [11] devises several SIFT feature extraction methods to 
effectively make use of colour spaces. While these methods only consider one colour space 
consisting of three colour channels, our method extracts SIFT features from much more 
colour channels (ten channels).
Fusion and optimisation: In [12], late fusion is used to enhance the classification and 
the clustering results in multi-view learning tasks, where features extracted from multiple 
camera views of a single object are effectively combined. There is another fusion approach, 
early fusion, which combines all features into a single high-dimensional vector. However, 
this causes the curse of dimensionality problem where important features may be weakened 
when it performs retrieval tasks based on this single vector. Late fusion exploits different 
features separately from each other, so it is more robust to the curse of dimensionality 
problem than early fusion. Thus, our double-stage fusion method uses late fusion [13], 
where similarity matrix in terms of local and global features are separately exploited and 
merged into one retrieval result.

There are several optimisation algorithms developed in the last years, such as Parti-cle 
Swarm Optimisation (PSO) [14, 15], Immune Evolutionary Algorithm (IEA) [5] and 
Shuffled Frog Leaping Algorithm (SFLA) [16, 17]. These algorithms which have swarm 
intelligence are essentially random search algorithms. Algorithms described above can be 
used to solve practical problems, only in need of designing relative evaluation functions, 
independent of the strict mathematical feature and the structure characteristic for optimisa-
tion problems. Therefore, they have been widely used in many fields. Since we have ten 
local features for each EM image, the computation cost is expensive. Hence, we apply PSO 
in our first stage fusion work, which has fast convergence rate to guarantee the computa-
tional efficiency. IEPSO-SFLA integrates the global search idea of the PSO into SFLA, to 
simultaneously pursue the information of two optimal solutions in the sub-swarm and the 
whole-swarm, so as to search thoroughly near by the space gap of the worst solution. In 
addition, it integrates IEA into SFLA making immune evolutionary iterative computation
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to the optimal solution in the whole-swarm, so as to fully use the information of optimal
solution. This algorithm can not only be free from trapping into a local optimum, but also
quickly converge close to the global optimal solution with a higher precision. Thus, IEPSO-
SFLA is used to compute optimal weights for the second fusion stage.

3 Double-stage EM-CBIR Method

In this section, we present our double-stage fusion approach by sequentially describing
the first fusion stage using local features, the global feature-based method, and the second
fusion stage using IEPSO-SFLA optimisation.
First fusion stage: To increase the discrimination power of local features, we decompose
an EM image into ten colour channels, as shown in Figure 2 [18, 19]. Then, we extract SIFT
features on each channel. Especially, these are extracted from interest points detected by
Harris corner detector [20]. In Figure 2, interest points detected on ten colour channels are
depicted by yellow circles. As can see from this, different colour channels yield different
interest points, from which we can extract SIFT features characterising various characteris-
tics of the EM. Note that SIFT feature extraction does not need any pre-processing such as
segmentation.

Figure 2: Examples of interest points detected on different colour channels.

For the jth channel (1 ≤ j ≤ J(= 10)), we match SIFT features in a query image with
the ones in a database image using random sample consensus (RANSAC) [21]. Their over-
all distance d j is computed as the sum of Euclidean distances between matched SIFT fea-
tures. To avoid any deviations from different value ranges, we normalise similarity for each
channel so that the values range from 0 to 1. Afterwards, we define the similarity between
the two images on the jth channel as s j = 1− d j, and use MCCF to fuse similarities on J
channels as follows:

S1(J) =
1
J

J

∑
j=1

x js j , (1)

where xxx = (x1, . . . ,xJ)
T is a weight vector in which x j represents the weight for the simi-

larity on the jth colour channel. Our late fusion method using PSO aims to compute the 
optimal weight vector xx̂x that maximises the mean of Average Precisions (mAP) on C = 21 
EM classes (see Figure 4). For each EM class, an Average Precision (AP) represents the 
average of precisions each of which is computed at the position where a relevant EM image 
is ranked. The value of an AP increases when relevant EM images are ranked at higher
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positions. By taking the mean of such APs over C classes, the mAP expresses an overall
retrieval performance using xxx.

To find x̂xx, PSO considers a swarm of M particles (candidate weight vectors) X =
{xxxm}M

m=1. It iteratively updates the mth particle xxxm as xxxt
m = xxxt−1

m + vvvt
m where t is the it-

eration index and vvvt
m is the velocity computed as follows:

vvvt
m = ψvvvt−1

m + c1r1(l(xxxm)
t − xxxt−1

m )+ c2r2(g(X)t − xxxt−1
m ), (2)

where c1 and c2 are learning factors in the range of [0, 2], r1 and r2 are random numbers
between 0 and 1, and ψ is an inertial weight parameter that progressively decreases along
iterations [22]. In addition, l(xxxm)

t represents the best weight vector found by the mth parti-
cle xxxm until the tth iteration (i.e., this maximises mAP), and g(X)t is the best weight vector
found by the whole set of M particles X . This way, inspired by the social behaviour of a
swarm, PSO attempts to find x̂xx by updating xxxm based on the local best solution l(xxxm)

t and
the global best one g(X)t .
Global feature-based method: To ensure the accuracy of removing impurities in micro-
scopic images, we use a semi-automatic segmentation method which purifies an EM region
boundary that is roughly specified by a user [6]. Figure. 3 shows an overview of this method
that combines conventional manual segmentation utilities with a novel automatic approach.
First, as depicted in Figure. 3 (a), we use a cursor operation to draw a rectangle that ap-
proximates the region of an EM. Sobel edge detector is then applied to search the contour
of this EM as shown in (b). Subsequently, morphological operations are used to fill holes
and smooth the contour as in (c). Finally, (d) presents the final step where the foreground
depicting the EM is selected by a single click to get the segmentation result in (e).

Figure 3: An illustration of our semi-automatic segmentation method.

To discriminate structural properties of each segmented EM region, we use Internal
Structure Histogram (ISH) that is a contour-based shape feature and invariant to rotation
and colour changes [2]. ISH is extracted by equidistantly distributing sample points on
the contour of the EM region. Then, we create a histogram representing the distribution
of angles, each of which is defined by a combination of three sample points. Finally, we
obtain the similarity (S2) by computing the similarity between each pair of EM regions as
the Euclidean Distance between their global feature vectors.
Second fusion stage: For a query and a database image, we perform IEPSO-SFLA to
combine their local feature-based similarity S1 computed at the first fusion stage and their
global feature-based similarity S2 computed above:

S3(I) =
1
I

I

∑
i=1

wiSi, (3)

where I = 2 and www = (w1,w2)
T is a weight vector to fuse S1 and S2. Using IEPSO-SFLA, we 

aim to find the optimal weight vector wŵw leading to the maximum mAP.
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Before describing IEPSO-SFLA, SFLA is a biologically-inspired optimisation method
that considers P ‘frogs’, each of which wwwp (1 ≤ p ≤ P) corresponds to a candidate weight
vector. SFLA partitions frogs into α groups consisting of β frogs (i.e., P = α × β ), and
attempts to find the optimal ŵww by performing the local search in each group and shuffling
search results over groups. However, SFLA is an unconstrained optimisation method, so
it has problems of slow and premature convergence. Thus, IEPSO-SFLA is proposed by
integrating the global search ideas of IEA and PSO into SFLA, so as to quickly converge to
the optimal or a nearly optimal weight vector.

IEPSO-SFLA iteratively tries to refine three different frogs to better ones in the fol-
lowing way (the goodness of a frog is measured by the mAP obtained based on its weight
vector). Frog wwwk

worst,old,basic is the worst frog in the kth group and updated to wwwk
worst,new,basic

by Equation (4). Here, this update is based on the basic SFLA algorithm, so the index basic
is used for wwwk

worst,old,basic and wwwk
worst,new,basic. The second frog wwwg

best,old is the best frog in the
whole set of P frogs, and refined into wwwg

best,new. The last frog wwwk
worst,old is the worst frog in

the kth group, and Equation (6) is used to change it to wwwk
worst,new.

wwwk
worst,new,basic = wwwk

worst,old + r1(wwwk
best −wwwk

worst,old,basic), (4)

wwwg
best,new = wwwg

best,old +N(0,1)σoe−
At
T , (5)

wwwk
worst,new = wwwk

worst,old + r1(wwwk
best −wwwk

worst,old)+ r2(www
g
best,new−wwwk

worst,old), (6)

where r1 and r2 are random numbers between 0 and 1. wwwk
best is the best frog in the kth group, 

N(0,1) is the random number sampled from the standard normal distribution, σo is the 
standard deviation corresponding to initial weight, A is the dynamic adjustment coefficient 
of the standard devotion (usually in the range of [1,10]), t is the iteration index and T is the 
total number of iterations. By repeating the refinement of these three frogs, IEPSO-SFLA 
raises the overall goodness level of frogs to find the optimal wŵw.

4 Experimental Results

4.1 Experiment Setting

We perform experiments on a real EM dataset (EMDS) consisting of 21 classes of EMs 
{ω1, . . . ,ω21} as shown in Figure 4. Each class is represented by 20 microscopic images. In 
our experiments, we use each EM image as a query image once and all the remaining 
images for testing. First, we evaluate the PSO-based MCCF method using local features. 
The EM-CBIR system extracts SIFT features from ten different colour channels ( RGB, R, 
G, B, I, HSV, H, S, V and mean HSV ). Then, we launch late fusion based on PSO for 
weighting similarities on 10 colour channels. Some tests are conducted using various 
swarm sizes in the range of [50,1200]. We chose the best solution obtained with the swam 
size of 50. Learning factors are set as c1 = c2 = 2. Second, we evaluate the IEPSO-SFLA 
based retrieval method using global features is combined for improving the retrieval 
performance of the first stage. According to preliminary experiments, we initialise SFLA 
partitions frogs P into α = 20 groups consisting of β = 42 frogs, P is 840 (42×20). 
Normally, the dynamic adjustment coefficient of the standard deviation is initialised in the 
range of [1,10]. Here, we fix A to be 1, and set T = 10 for the total number of iterations. 
Then, tests are conducted. Finally, we evaluate the performance of our system in terms of 
AP and mAP for all 21 classes.
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Figure 4: EM categories of EMDS.

4.2 Evaluation of Image Retrieval

In Figure 5 we compare APs and mAPs of ten colour channels and the first stage fusion
using PSO on 21 classes of EM images. We can see that the first stage fusion significantly
improves retrieval results. Among 18 of 21 classes, retrieval results are improved. In partic-
ular, it yields an impressive performance improvement for ω2, ω4, ω5 and ω6, which have
fewer key points only on a single colour channel. APs of the first stage fusion method for
these classes amount to 44%, 35%, 35%, and 35%, respectively. By analysing the original
EM images, we find that the performance gets worse for EMs which have high transparency,
rough edge or more impurities, such as ω13 and ω17 in Figure 4. Table 1 presents the first
stage fusion weights obtained by applying the PSO method on 10 colour channels. This
shows that PSO works well for the RGB and the V channel, they are associated with the
weights 0.72 and 0.86, respectively.

Figure 5: Evaluation of retrieval results using ten colour channels and the first stage fusion
on 21 classes of EM images

Table 1: Fusion weights obtained by first stage fusion methods on ten colour channels. ‘I’
and ‘mHSV’ represent the channel Gray and mean HSV, respectively.

RGB R G B I HSV H S V mHSV

Weight 0.72 0.08 0.46 0.34 0.43 0.25 0.16 0.06 0.86 0.09

Figure 6 presents the comparison among retrieval results by the first stage fusion method
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based on local features, results by the global feature-based method, and the ones obtained
using the proposed double-stage optimisation-based method. The third method achieves the
mAP of 35.87%, which obtains an improvement for ω2, ω8, ω11, ω14 and ω17. Compared to
this, the mAP of the first stage fusion is 23%, the global feature method is 33.9%. Table 2
gives fusion weights obtained using the proposed double-stage optimisation-based method.
This shows that these weights are specific to classes, and are not related to feature, as
well as the similarity obtained by global feature-based method contributes more. Thus, the
performance of our double-stage fusion method outperforms the other two methods.

Figure 6: Comparison between the performances of the different fusion methods.

Table 2: Fusion weights obtained by the proposed double-stage fusion on 21 EM classes.
W (S1) and W (S2) represent weights for the local and global feature-based method, respec-
tively.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11

W (S1) 0.10 0.45 0.20 0.20 0.25 0.20 0.15 0.35 0.10 0.20 0.30

W (S2) 0.90 0.55 0.80 0.80 0.75 0.80 0.85 0.65 0.90 0.80 0.70

ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21

W (S1) 0.45 0.20 0.15 0.30 0.25 0.10 0.15 0.15 0.15 0.20

W (S2) 0.55 0.80 0.85 0.70 0.75 0.90 0.85 0.85 0.85 0.80

In addition, we compare the proposed method to several commonly used similarity 
measurements, includes Manhattan similarity, Euclidean similarity and Cosine similarity in 
EM retrieval. They achieve a mAP of 28.2%, 35.87% and 18.2%, respectively. We also 
compare our method to three other existing contour-based shape features, namely Shape 
Signature (SS), Fourier Descriptor (FD), and Shape Context (ShC) in retrieval work. The 
SS yields a mAP of 31.4%, the FD achieves 28.8%, and the ShC obtains 28.7%. Through 
the retrieval results, we can conclude that our method has the highest mAP of 35.87%.

Figure 7 shows the examples of retrieval results visually. The first column shows the 
query images. From the second to the last columns, the database images are sorted by their 
re-weighted similarities from similar to dissimilar. The images in red boxes are the images 
relevant to a query. This convincing result verifies the suitability of the proposed method 
which can accurately find a specify EM from many images where various EMs appear.
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Figure 7: Examples of EM retrieval results using double-stage optimisation-based fusion.

5 Conclusion and Future Work

In this paper, we introduced an EM-CBIR method using double-stage optimisation-based
fusion. Our method combines local feature-based and global feature-based approaches to
enhance the final retrieval performance. In our experiments the double-stage optimisation-
based fusion achieves a mAP of 35.87% and outperforms both the local feature and global
feature based retrieval evaluation. This validates the effectiveness of the proposed approach.
In our future work, we will adopt a deep convolutional neural network to improve the feature
extraction performance of EM images [23].
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