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Abstract

Reading is a cognitive activity that we perform aiming at various purposes, such as gain-
ing knowledge and entertaining ourselves, with different scripts and layouts. Therefore, 
automatic reading detection gives useful information about users’ reading activities. Deep 
learning enables automatic feature extraction and model creation but needs large-sized la-
beled data. The self-supervised learning devised to overcome this limitation work as non-
contrastive self-supervised learning (SSL) and contrastive self-supervised learning (con-
trastive learning). Although SSL is well explored for reading analysis, contrastive learning 
is not still well explored. This paper explores contrastive learning that works in several 
ways. A Simple Framework for Contrastive Learning of Visual Representations (SimCLR) 
is one way that has attracted much attention in many research domains because of its supe-
rior performance. We explore SimCLR for the cognitive activity recognition task of fine-
grained reading detection employing electrooculography datasets. These datasets describe 
eye movements that have been recorded for in-the-wild condition. The obtained results 
are compared against SSL and supervised baselines. The results show that, for an equal 
number of training samples, the SimCLR method obtains a maximum performance gain of 
3.02 and 3.96 percentage points compared to the two baselines, respectively. Besides, Sim-
CLR shows the best performance for large-sized data with a data efficiency of about 80%, 
whereas SSL shows the best performance for small-sized data. The analysis conducted in 
this paper shows a direction for researchers and system designers to employ self-supervised 
learning for automatic reading detection.

Keywords: Contrastive learning, Reading detection, Self-supervised learning, SimCLR.

1 Introduction

When a human reads, they are decoding a series of symbols to obtain the intended mean-
ing from these symbols [1]. Humans perform different types of non-mutually exclusive 
reading activities, such as reading for knowledge acquisition or reading for entertainment. 
Therefore, reading is an important source of information that shapes our minds and is key 
for both the development and maintenance of cognitive ability [2]. So that, understanding
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and improving daily reading habits through reading behavior monitoring can provide sev-
eral benefits, including improved reading quality, increased vocabulary, and logical think-
ing [3]. For instance, just as people are encouraged to be physically fit by monitoring step
counts [4], tracking the read volume in a day has the potential to motivate them to read
more. Researchers have devised multiple ways to measure the daily read volume, and one
idea to quantify reading is by estimating the number of read words [5]. Another idea is read-
ing detection, which aims to differentiate periods of reading from all other activities [6]. A
challenge is that since reading is one of the main activities of our daily lives, reading materi-
als are numerous and have different scripts and layouts. Therefore another important area of
study is in identifying subordinate reading categories, e.g., fine-grained reading detection.

There is a wide range of diversity in how writing is presented in the world. To start,
there is a wide range of writing systems, from scripts to pictographic systems. For example,
the Japanese writing system follows two conventions that are horizontal and vertical. The
horizontal writing moves from left to right with multiple downward rows without spaces be-
tween words. On the other hand, vertical writing moves from top to bottom having multiple
columns from right to left [7]. According to the conventions, reading Japanese vertical text
usually includes the user reading novels or newspapers. Besides, in Japan, reading English
text means the user is reading something technical materials such as scientific papers if the
user is a science student. Finally, reading Japanese horizontal includes all other text mate-
rials. Therefore, instead of just differentiating reading from all other activities, fine-grained
reading detection gives more valuable information about reading activities.

Reading activities are reflected by reading behavior, such as a reader having difficulty
in understanding the contents of a document is characterized by low reading speed and fre-
quent rereading. Therefore, a fundamental way of reading detection is by analyzing reading
behavior. Reading detection by analyzing reading behavior can be conducted in multiple
ways [8, 9] whereas most of the existing technologies employ classical machine learning in
laboratory settings. But, these technologies suffer from multiple issues, including poor per-
formance in real-world applications beyond the controlled laboratory settings (in-the-wild).

A large number of machine learning techniques have been proposed to improve the
accuracy in real-world applications. The increasingly popular machine learning algorithm is
deep learning (DL) [10] which enables simultaneous automatic feature extraction and model
creation employing noisy in-the-wild data. DL attracted much attention in the last decade
by successfully solving many tasks in various domains with superior performance [11, 12].
Among all its successes, the major drawback is that it is the world’s most data-hungry
algorithm that needs to prepare large-sized labeled data, that captures diverse behavior,
to attain peak performance. In most domains, accumulating enough labels is a serious
issue [13]. This is because in-the-wild study is labor-intensive, financially expensive, and
needs significant investment. These limitations prohibit generating labeled datasets with
satisfactory size. The lack of large-sized labeled data is also a problem for reading analysis
such as reading detection, reading quality classification, and read word count. Therefore, it
is not easy to directly apply DL in reading analysis.

The self-supervised learning [14] is a promising way to solve challenges posed by the
over-dependence of DL algorithms on labeled data that can be separated into two task types,
pretext task and target task. The pretext task is formatted by employing an automated pro-
cess to synthesize training data from unlabeled data and solved to pre-train the model. An
example of a pretext task is the identification of transformations (for example, noise addi-
tion and permutation) applied to data samples. After pre-training, the model is fine-tuned
for the target task training (reading detection). Based on the pre-training self-supervised
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learning work in two ways [15]; noncontrastive self-supervised learning (SSL) [14] and
contrastive self-supervised learning (contrastive learning) [16, 17].

The SSL technique arranges the pretext task of classification by automatically generat-
ing labels (pseudo labels) employing unlabeled data. There are many ways to create clas-
sification tasks by generating pseudo labels such as transformation prediction and masked
prediction [18]. An enhanced objective function solved in classification assists the model
in learning robust feature representation, which is needed to solve the target task.

On the other hand, contrastive learning arranges a pretext task by generating positive
data samples coming from similar distributions and negative data samples coming from dis-
similar distributions. The model learns features by solving a contrastive task of maximizing
agreement, i. e., minimizing and maximizing the distance between positive and negative
data samples, respectively. Based on contrastive task generation, contrastive learning work
in multiple ways [19]. The simple framework for contrastive learning of visual represen-
tations (SimCLR) [20] is one framework proposed in the computer vision domain. It uses
data augmentation for generating positive and negative data samples to create pretext tasks.
In the activity recognition domain, researchers have also adopted the SimCLR method with
effective performance for tackling the lack of large-sized labeled data issues by employing
simple signal transformations for data augmentation [21, 22].

Previous work on activity recognition using SimCLR is for the class of “physical human
activity recognition.” This recognizes physical activities employing data produced from a
series of observations collected from a set of body-worn sensors for physical movement.
Another class of activity recognition is “cognitive human activity recognition,” which rec-
ognizes activities that are related to human mental processes by employing data captured
from biological signals. Reading is a cognitive human activity. In reading analysis, the lack
of labeled data is a serious issue, and researchers adopted SSL to tackle it [23]. However,
the usefulness of contrastive learning in this field is not well known, and we do not know if
different signal transformations will be more effective for data augmentation.

In this work, to answer these questions, we take fine-grained reading detection, as a
representative task of reading analysis, which is the classification of four classes: reading
English (ENG), Japanese vertical (JV), and Japanese horizontal (JH) texts, and not reading
anything (NR). We evaluate the SimCLR method, as a surrogate of contrastive learning, for
this task employing seven signal transformations for data augmentation with a combination
of two. We employ electrooculography (EOG) data describing users’ eye movements and
record for in-the-wild condition to evaluate the SimCLR method. We compare obtained
results against the SSL and pure supervised (supervised) baselines.

The obtained results show that for a significant number of signal transformation pairs
with a wide range of 100% to 20% of available labeled data (5,340), the SimCLR method
outperforms the SSL and supervised baselines. Besides, the SimCLR method shows a
maximum performance gain of 3.02 and 3.96 percentage points compared to the SSL and
supervised baselines, respectively, when an equal number of labeled data is used for training
both. The results also show a data efficiency of about 80% for the SimCLR method against
both baselines. It means that the same performance was obtained for the SimCLR method
and baselines with 20% of the data and 100% of the data, respectively. Further analysis
shows that the SimCLR method performed best compared to the baselines for enough data
samples although SSL is superior when data is scarce. The detailed results show directions
to apply contrastive learning to pursue the best performance based on the amount of avail-
able labeled data that makes it practical to get accurate user reading behavior for giving
feedback to motivate and improve users’ reading behavior.
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The remainder of this paper is composed as follows. Section 2 includes a literature
review that is divided into three subsections to cover three perspectives of this paper self-
supervised learning, contrastive learning, and reading detection. Section 3 presents the
methodology with a detailed explanation of the employed self-supervised learning tech-
niques. Section 4 includes the description of the employed datasets. Section 5 presents
experimental protocols and outcomes of the experiments with a detailed comparative dis-
cussion of SimCLR, SSL, and supervised learning. Finally, we concluded the paper with a
future direction in Section 6.

2 Literature Review

The research work presented in this paper is related to three fields; SSL, contrastive learn-
ing, and reading detection. In this section, we describe how our work builds on these fields.

2.1 Self-Supervised Learning

The SSL utilizes pretext tasks that need domain expertise which requires some semantic
understanding. This technique generates discriminative and predictive models that gen-
erally measure how good is the classifier by calculating loss in the output space. These
methods have shown great promise across many domains [15]. In physical activity recog-
nition, a number of SSL methods have been proposed for time-series data. A multi-task
SSL method is proposed by Saeed et al. [14] by creating pretext tasks by employing signal
transformations to the unlabeled data. Another SSL method is proposed in [24] for learn-
ing effective representations from sensory data to mitigate the lack of large and labeled
data showing that the SSL is effective. A similar SSL method is proposed by Taghanaki et
al. [25] for boosting performance by pre-training the network by generating a pretext task
of predicting the values in future time steps. Likewise, the masked reconstruction pretext
task is proposed by Haresamudram et al. [26] for self-supervised pre-training using time
series data. Tang et al. [27] increased the internal and external diversity of training data to
learn more generalizable features by combining multi-task SSL and teacher-student self-
training. Although most of the existing SSL methods are for physical activity recognition,
researchers take a pioneering step to apply SSL for cognitive activity recognition, and Is-
lam et al. [23] proposed an SSL method for reading activity classification employing simple
signal transformations for pre-training the model.

2.2 Contrastive Learning

Contrastive learning [19] measures how good the representation is and calculates loss in
the representation space. This technique teaches the model to identify data samples coming
from similar distribution and dissimilar distribution called positive and negative data sam-
ples, respectively. The model, therefore, is pre-trained by learning the features by solving a
contrastive task that maximizes agreement [28]. Recently, contrastive learning has attracted
much attention because of the enhanced performances that can be performed in numerous
ways [19]. Hadsell et al. [29] introduced a contrastive loss function with the goal to maxi-
mize the distance between dissimilar pairs and minimize the distance between similar pairs.
Haresamudram et al. [30] have employed contrastive predictive coding to learn the tempo-
ral structures of sensor data. Schroff et al. [31] introduced a triplet loss in feature extraction
that consists of anchor images, positive images of the same image, and negative images of
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a different image. The goal is to minimize the distance between the anchor and positive im-
ages and maximize the distance between the anchor and negative images. Chen et al. [32]
have employed siamese networks for contrastive learning. Chen et al. [20] propose a con-
trastive learning framework called SimCLR, which learns representations by maximizing
agreement between differently augmented views of the same data example via a contrastive
loss in the latent space. The SimCLR has attracted much attention by superior performance
and adopted in various research domains. The SimCLR has also been adopted in physical
activity recognition and health to tackle the lack of large-sized labeled data issues. Tang
et al. [21] have explored SimCLR in human activity recognition where they employed sig-
nal transformations for data augmentation using sensory data. Wang et al. [22] have also
applied SimCLR to human activity recognition where authors evaluated the conventional
signal transformations for data augmentation and proposed a new one that achieved good
performance. Khaertdinov et al. [33] combine the SimCLR framework, with a transformer-
based encoder for sensor-based human activity recognition. Shah et al [17] have applied
SimCLR to human activity recognition for clinical outcomes. Although contrastive learn-
ing and SimCLR have been well explored for different purposes including physical activity
recognition, it is not still well explored for cognitive activity recognition.

2.3 Reading Detection

Reading is a cognitive human activity [1]. Reading analysis, as a representative of cognitive
activity recognition, varies depending on the purpose. In the past years, researchers devised
methods for automatic reading detection to assist readers. Bulling et al. [8] proposed a
method to detect reading as a part of other human activities. Strukelj et al. [9] proposed
a method to accomplish different modes of reading. The goal is to differentiate regular
reading, through reading, skimming, and spell-checking. On the other hand, Landsmann
et al. [6] proposed a method for reading detection, reading versus not reading. The lack
of large and labeled data in this research domain forces to carry out most of the studies
by using classical machine learning, except for a small portion employing DL [34]. The
application of SSL for reading analysis has shown ways to tackle the lack of large-sized
labeled data issues [23] in cognitive activity recognition. Contrastive learning has shown
a potential solution to adopt DL in many domains including physical activity recognition
using small-sized labeled data. But to the best of our knowledge, it has not been as of
yet well explored for cognitive activity recognition with the exception of the preliminary
work [35]. This study, therefore, aimed to take fine-grained reading detection as an example
of cognitive human activity and explore SimCLR contrastive learning for it.

3 Method

We explore the SimCLR method, with the necessary modifications to apply, for fine-grained
reading detection that consists of SimCLR pre-training and target task training, as shown in
Figure 1. Reading detection distinguishes between reading and not reading. In this study,
we implement reading detection as a classification task by dividing the users’ reading and
not reading activities into short segments and then classifying them into fine-grained classes
as reading ENG, JV, JH texts, and NR.
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3.1 SimCLR Pre-training

The SimCLR pre-training, as shown in the upper part of Figure 1, is done employing the
unlabeled EOG data and a constraint by applying data augmentation. The SimCLR pre-
training works based on the constraint that the extracted features coming from two aug-
mented data samples originating from the same data sample must be similar, and those
originating from separate data samples must be dissimilar. Therefore, we divide the unla-
beled continuous time-series EOG data into short data segments. We then group the EOG
data segments into batches of size 1024. From each original batch (b), we generate two
slightly dissimilar copies of (ḃ and b̈) by applying a pair of signal transformations twice
with slightly different random parameters. The augmented copies of the batch are sent to
an encoder whose outputs, (ḣ and ḧ), are then sent to a projection head that outputs two
feature vectors (ż and z̈). Finally, we compute NT-Xent contrastive loss [20] employing
these two feature vectors with maximizing the agreement which maximizes the similarity
between augmented copies of data segments originating from the same data segment and
minimize the similarity between augmented copies of data segments originating from the
separate data segments.

We employ seven signal transformations [21, 23] to generate transformation pairs for
data augmentation which are scaling, noise addition, negate, time-flip, channel shuffle, per-
mutation, and time-warp. In short, scaling is done by multiplying the values of the data
segment with a random number coming from a normal distribution with a mean of 1 and
standard deviation of 0.1, noise addition is done by adding Gaussian noise with a mean
of 0 and standard deviation of -0.05 to the values of the data segment, negate is done by
inverting the values of the data segment which is multiplying with -1, time-flip is done by
horizontal-flip, i.e., by reversing the time axis of the data segment, channel shuffle is done
by permuting the channels of the data segment, permutation is done by applying permu-
tation along the time axis of the data segment, and time-warp is done by stretching and
warping the data segment along the time axis.

The encoder network consists of CNN layers. We employ four 1D convolutional layers
with the number of filters of 16, 32, 64, and 96, respectively, with kernel sizes of 32, 24,
16, and 8, respectively. We add a dropout layer after each convolutional layer and a Global
max-pooling layer after the last dropout layer. The projection network consists of three
fully-connected layers that carry 128, 64, and 32 units, respectively. We employ Adam and
relu for the optimization and activation, respectively. In Figure 1, we have shown the same
encoder and projection networks twice for easy understanding, but both share the same
network parameters.

3.2 Target Task Training

After SimCLR pre-training, we conduct the target task training, as shown in the lower
section of Figure 1 employing the segmented labeled EOG data. We fine-tune the pre-
trained encoder and re-train it by replacing the projection head with a classifier network
consisting of a fully-connected layer carrying 4 units with linear activation. We use the
same hyperparameters as used for the SimCLR pre-training.
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Figure 1: The SimCLR method which consists of two steps, the pre-training and target task 
training, where the pre-training comprises four basic elements; data augmentation, encoder, 

projection head, and agreement maximization based on contrastive loss.

4 Datasets

Two main organs that we use while reading are the eye and brain. The human eyes are the 
main organ that we use to acquire information while we read and the brain process it to 
extract the meaning of it. We, therefore, can capture reading behavior by measuring eye 
movements. In addition to the eye reading behavior is slightly described by head and body 
movement.

In this study, we employ data describing eye movements recorded using J!NS-MEME 
glasses, an eye-wear device shown in Figure 2, with a sampling frequency of 100 Hz. The 
J!NS-MEME carries three sensors; EOG, gyroscope, and accelerometer. The EOG mea-
sures potential generated due to the eye movements, whereas the gyroscope and accelerom-
eter measure head and body movements. Although J!NS-MEME carries three sensors, we 
used data coming only from the EOG sensor. This is because a previous study [36] shows 
that only EOG data describing eye movements are sufficient t o d escribe r eading behav-
ior. The EOG data is recorded as two channels describing the horizontal and vertical eye 
movements. We use two datasets, an unlabeled EOG dataset and a labeled EOG dataset.

The labeled EOG dataset was recorded and reported by Ishimaru et al. [37]. This dataset 
has also been used by Islam et al. [23]. The labeled EOG dataset is recorded employing ten 
native Japanese university students as the user. The data is recorded for two days and each 
user wore the J!NS-MEME glasses for 12 hours per day. The users read ENG, JV, and JH 
texts each for one hour per day, and did not read anything for the remaining period of the 
day. The users also wore the Narrative Clip that brings a camera to take frontal images. 
These images are used for labeling data. We first p re-processed t he r ecorded E OG data 
and then divided it into short segments of 30 seconds with an overlap of 15 seconds. Each 
segment contains 3000 time steps with the dimension of 3000 × 2. There exist noise in 
some data segments due to poor skin-electrode contact. We removed noisy data segments 
using noise judgment criteria [23]. After discarding noisy segments, the number of data
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Figure 2: JINS-MEME glasses carry an EOG sensor consisting of left, right, and bridge 
electrodes that used for data recording.

segments for ENG, JV, JH, and NR is 5340, 5798, 5792, and 32708, respectively.
The unlabeled EOG dataset employed in this study is recorded and reported by Islam 

et al. [23]. This dataset was also recorded in the same way described for the labeled EOG 
dataset except for the collection of the data labels. A total of 52 users were employed for 
recording the data. We pre-possessed, segmented, and discarded noisy data segments in an 
above-mentioned way. The total number of unlabeled EOG data segments is 177,921.

Both datasets were recorded without imposing any restrictions and conditions except 
for the guidelines to obtain data that perfectly reflects natural b ehavior. The users behaved 
as needed and maintained a convenient distance from the texts. Therefore these datasets 
are considered “in-the-wild.” This accumulated naturalistic data enables us a more realistic 
evaluation of methods to validate their applicability in real environments.

5 Evaluation and Results

5.1 Experimental Protocols

The aim of the experiment is to evaluate the performance of the SimCLR method that 
includes SimCLR pre-training and then target task training. We conducted the SimCLR 
pre-training using the unlabeled EOG data. In SimCLR pre-training, we made a 7 × 7 
matrix of possible signal transformation pairs using seven signal transformations as we 
explained in Section 3. We conducted experiments for all 49 signal transformation pairs. 
For each pair of signal transformations, we applied two transformations sequentially, one 
after another, to the values of the data segment except for the case where the same signal 
transformation (diagonal) creates the transformation pair by repeating it and, in this case, 
we applied the transformation to the value of data segment only once. After the SimCLR 
pre-training for each pair of signal transformations, we generated the target task model by 
re-training it employing labeled EOG data.

We use SSL and supervised methods as a baseline to measure the proficiency of the Sim-
CLR method. In the case of SSL, we adopted the method described in [23] and reproduced 
results employing the same unlabeled and labeled EOG datasets and signal transformations
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negate 59.70 59.01 57.16 57.14 57.43 57.69 58.69
time-flip 58.37 59.44 55.83 58.24 56.68 57.73 59.23
channel
shuffle

57.85 56.86 56.01 59.66 57.57 58.64 59.48

permute 58.59 57.67 57.81 57.47 58.73 58.56 57.45
time-warp 59.02 57.84 58.11 57.47 57.24 58.13 58.43

(b) 50% training samples
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n scale 56.51 57.82 56.26 57.54 58.14 57.72 59.10
noise 57.97 58.26 57.77 57.65 57.45 58.48 58.70

negate 58.18 58.22 56.76 56.63 57.74 58.22 58.48
time-flip 58.64 57.99 57.57 58.41 58.30 57.97 58.25
channel
shuffle

57.00 57.32 56.60 57.69 58.33 58.47 58.45

permute 58.22 57.58 58.59 57.91 58.57 58.10 57.76
time-warp 57.79 58.85 57.73 57.74 58.88 57.97 57.52

(c) 20% training samples
2nd transformation
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n scale 54.45 56.14 54.94 54.91 55.15 55.13 57.03
noise 55.62 55.64 56.00 55.16 55.99 56.83 56.07

negate 55.03 54.67 54.34 54.69 54.64 55.46 56.28
time-flip 54.44 55.96 53.08 55.71 53.80 56.03 55.75
channel
shuffle

55.35 55.00 55.10 54.84 55.22 56.82 55.36

permute 57.29 55.72 56.07 56.42 56.89 55.99 55.26
time-warp 55.68 55.71 56.73 55.53 56.68 56.55 56.24

(d) 0.1% training samples
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n scale 27.60 28.67 29.44 27.82 29.57 28.49 29.62
noise 30.56 29.21 28.19 29.56 27.48 30.16 28.23

negate 29.00 28.50 28.92 27.59 28.32 30.43 28.73
time-flip 28.25 27.90 28.89 27.60 27.92 28.90 28.39
channel
shuffle

30.97 27.86 27.72 28.82 27.78 29.47 31.34

permute 28.09 28.83 32.35 29.34 29.89 29.68 29.44
time-warp 30.07 29.58 29.52 28.04 30.74 29.16 28.43

Table 2: Prediction accuracy (in percentage) for baselines, SSL and supervised, with 
Sim-CLR (max accuracy) method.

Method
Training samples

100% 50% 20% 0.1%
SimCLR (max accuracy) 60.38 59.10 57.29 32.35

SSL 57.36 57.06 55.28 40.57
Supervised 56.42 55.77 53.51 28.46
Chance rate 25.00 25.00 25.00 25.00

used in the SimCLR method. We generated a classification task by applying all signal trans-
formations to the unlabeled EOG data. After that, we pre-trained the model by solving a
classification task of predicting the applied transformation to the data segment whereas the
SimCLR method optimized the contrastive objective. After pre-training, same as SimCLR,
we fine-tuned the network and re-trained it using the labeled EOG data. For the supervised
method, we used the model with the same architecture described for the SSL method and
trained it for the target task employing the same labeled EOG dataset without pre-training.

There exist class imbalance, as we discussed in Section 4, in the labeled EOG dataset,
and we removed it by down-sampling the majority classes to 5,340 samples, which is the
smallest number, by random selection. Therefore, the chance rate for a four-class classifica-
tion target task is 25%. We evaluated the performance of all methods employing the labeled
training data segments of 100% (all available), 50%, 20%, and 0.1% training samples for
the target task training. This allows us to evaluate performance for a wide range of available
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Figure 3: Comparison between SimCLR and baseline methods.

data. The model was trained using data coming from nine out of ten users and tested on
the data coming from the remaining one that evaluated methods in a user-independent way.
The prediction accuracy is used as the evaluation metric.

5.2 SimCLR Outcomes

We reported the obtained results in accuracy for the SimCLR method in Table 1 for a batch
size of 32 and a learning rate of 0.003 where Table 1(a)-(d) report the results for 100%,
50%, 20%, and 0.1% training samples, respectively. In addition, we reported the results of
baseline methods, SSL and supervised, along with obtained maximum SimCLR outputs in
Table 2. The orange (italic) and violet (bold) texts in Table 1 represent that the SimCLR
method outperforms only the supervised baseline and both baselines, SSL and supervised,
respectively. The results show that the SimCLR method outperforms baseline methods for a
wide range of 100%, 50%, and 20% training samples for a vast majority of signal transfor-
mation pairs employed in SimCLR pre-training for data augmentation. On the other hand,
for training samples around 0.1%, the SSL method performed well compared to the Sim-
CLR method, although the SimCLR outperformed the supervised method for a significant
number of signal transformation pairs.

The performance of the SimCLR method varies based on the signal transformation
pairs and the number of training samples employed for data augmentation in SimCLR pre-
training and target task training, respectively. The noise addition, permutation, and time-
warp signal transformations along with other signal transformations performed well for
100%, 50%, and 20% training samples counting the number of outperforms. On the other
hand, the permutation along with other signal transformations performed well for 0.1%
training samples. Another important point is that the signal transformation pairs (diagonal)
created using the same transformation performed quite well although the best performance
is obtained for the signal transformation pair of different transformations.
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Table 3: The SimCLR method’s performance gain that is calculated based on Table 2.

(a) For both SimCLR and baseline methods are
trained for an equal number of training sam-
ples.

Training samples used
for both SimCLR and baseline

B
as

el
in

es 100% 50% 20% 0.1%
SSL 3.02 2.04 2.01 -8.22

Supervised 3.96 3.33 3.78 3.89

(b) For SimCLR and baseline methods are
trained for different numbers of training samples
and only 100% training samples, respectively.

SimCLR
(training samples used)

B
as

el
in

es
(s

am
pl

es
us

ed
) 100% 50% 20% 0.1%

SSL
100%

3.02 1.74 –0.07 –25.01

Supervised
100%

3.96 2.68 0.87 –24.07

Finally, we show a comparison between SimCLR and baseline methods as shown in
Figure 3 generated based on Table 2. The SimCLR and SSL methods, which belong to
self-supervised learning, are never inferior compared to the supervised method. On the
other hand, for enough labeled training samples, the SimCLR is superior to SSL although
for small-sized labeled data the SSL is superior to SimCLR. Therefore, with respect to the
data-hungry, SSL is least hungry than SimCLR. On the other hand, if we are not intending
to get a relatively good performance only with a very small number of samples, it is always
better to use SimCLR. Another advantage is that SimCLR is also better than supervised with
enough amount of labeled data. The results show a path for researchers to select the best
model depending on the signal transformation pairs and available labeled training samples.

5.3 Study of Performance Gain and Data Efficiency

We also explored the SimCLR method by analyzing the performance gain and data effi-
ciency. We calculated performance gain as the difference between the outputs (accuracy)
for the SimCLR and baseline methods. Besides, the data efficiency represents whether or
not the SimCLR method performs well with fewer training samples compared to the base-
line methods and is measured by taking performance gain as a parameter.

Table 3 reports the performance gain that we calculated based on Table 2. We measured
the performance gain for two cases. In the first case, we employed an equal number of data
for training both methods, SimCLR and baseline, and Table 3(a) reports the results. The
results show that we obtained a maximum performance gain of 3.02 and 3.96 percentage
points compared to the SSL and supervised baselines, respectively. In the second case,
we employed 100%, 50%, 20%, and 0.1% training sample cases for the SimCLR method,
whereas 100% training samples for the baseline methods and Table 3(b) reports the results.
The results show that an almost equal performance is obtained when the SSL and SimCLR
methods are trained by employing 100% and 20% training samples, respectively. There-
fore, the SimCLR method is data-efficient by about 80%. On the other hand, when the
supervised and SimCLR methods are trained by employing 100% and 20% training sam-
ples, respectively, a performance gain of 0.87 is obtained. Therefore, a data efficiency of
more than 80% is obtained for the SimCLR method.

The obtained performance gain and data efficiency show that the SimCLR pre-training
help in learning discriminative features that, in turn, help to achieve superior performance
in the target task by improving class-level prediction.
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Table 4: Dependency of outcomes on batch size and learning rate, here #Outperform 
de-notes the total number of signal transformation pairs for which the SimCLR method 

out-performs two baselines; SSL and supervised.

(a) Dependency on batch size

Data
size

Parameter
Batch size

16 24 32 64 128

100%
#Outperform 27 34 40 37 29
Max accuracy 58.88 59.90 60.38 59.73 59.27

50%
#Outperform 22 39 43 40 17
Max accuracy 58.48 58.91 59.10 58.77 58.15

20%
#Outperform 25 38 30 28 11
Max accuracy 57.00 56.76 57.29 57.16 56.09

0.1%
#Outperform 0 0 0 0 0
Max accuracy 33.08 32.74 32.35 30.78 30.78

(b) Dependency on the learning rate

Data
size

Parameter
Learning rate

0.0001 0.0005 0.001 0.002 0.003

100%
#Outperform 0 3 18 45 40
Max accuracy 57.13 58.09 58.42 59.85 60.38

50%
#Outperform 0 4 10 40 43
Max accuracy 55.91 57.42 57.49 58.83 59.10

20%
#Outperform 0 3 8 23 30
Max accuracy 53.22 56.27 56.19 56.65 57.29

0.1%
#Outperform 0 0 0 0 0
Max accuracy 27.25 28.57 29.42 31.15 32.35

5.4 Study of Outcomes’ Dependency on Batch Size and Learning Rate

We also studied the dependency of the performance of the SimCLR method upon two hy-
perparameters, batch size and learning rate. To explore the dependency, we trained the
SimCLR model for the target task with 100%, 50%, 20%, and 0.1% training samples for
different batch sizes for the learning rate of 0.003 and learning rates for the batch size of
32. We set the following two criteria to explore the performance of the SimCLR method;
the number of signal transformation pairs for which the SimCLR method outperformed the
baseline methods, and the obtained maximum accuracy among all employed signal trans-
formation pairs. We reported the obtained results in Tables 4(a) and 4(b). The obtained
results report that the SimCLR method is robust for a wider range of smaller batch sizes,
although the best result is obtained for a batch size of 32. On the other hand, in the case of
the learning rate, the SimCLR method’s worst performance is obtained for the low learning
rate and improves with increasing it and produces the best performance for the learning
rate of 0.003. Therefore, in general, for smaller batch sizes and larger learning rates, the
SimCLR method performs best.
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(a) For 100% training samples
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(b) For 50% training samples
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(c) For 20% training samples
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(d) For 0.1% training samples

Figure 4: Results of the study of outcomes’ sensitivity to users’ behavior.

5.5 Study of Outcomes’ Sensitivity to Users’ Behavior

We also take a closer look at the performance of each method for individual users which
helps to investigate the effect of users’ reading behavior on the model’s performance. We
conducted a user-independent evaluation, therefore, this study carries important insight.
The results, in Figure 4, show that the performance, across users, is highly imbalanced for
100%, 50%, and 20% training sample cases, although it is relatively balanced for 0.1%
training sample case. Moreover, the advantage of the SimCLR method over baselines de-
pends on the user’s reading behavior. The test accuracy for all methods is quite insufficient
for some users which may happen because of the following possible reasons. Firstly, for
some users, the reading behavior may be quite different. Our analysis shows that the type
of data segments for different classes for some users are quite different from other users.
Therefore, the model failed to learn compelling features in training it using data from other
users. Secondly, in-the-wild nature of the dataset may affect the model performance. The
reading detection dataset has been recorded for in-the-wild condition. Our analysis shows
that some not reading behavior is misclassified into reading. This is because users may
make some unintentional mistakes, such as reading something unintentionally while data
is being recorded for not reading class because we do not impose any restrictions on their
behavior and act on their necessity in daily life. Thirdly, noisy data segments may affect the
model performance. We further analyzed the nature of data that affects the classification
performance of the model. The analysis shows that the dataset contains many noisy data
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segments because of the poor electrode contact with the skin. Although we discarded these
noisy segments as discussed in Section 4, it is not possible to discard all of these noisy
segments considering the size of the dataset. The data segment that contains noise and can-
not be removed by the noise judgment used in this study is mostly, because of this noise
pattern, judged in a different class. Altogether the task is quite difficult in these cases, and
test accuracy is terrible, which significantly affected the average performance we reported
in this study, although test accuracy is verily good for many users.

5.6 Discussion

In the current era, deep learning is the key machine-learning tool that belongs to a variety
of deep-learning techniques. So researchers are always wondering about which technique
they should select for the dataset of their problem. One of the most promising deep learn-
ing techniques is self-supervised learning. In this paper, we explored the SimCLR, one of
the contrastive self-supervised learning techniques, for a cognitive activity recognition task
of reading detection by comparing the results with the SSL, another self-supervised learn-
ing technique, taking supervised learning as the baseline. The results of our experiments
show that self-supervised learning is absolutely superior for any number of data samples
compared to supervised learning. This superior performance of self-supervised learning
is due to the ability of this technique to extract useful features in pre-training using the
unlabeled data samples which are abundant. This in turn enhances the efficiency and the
generalization capability of the self-supervised learning model. On the other hand, none
of the two self-supervised learning techniques, SimCLR and SSL, are absolutely superior
for any number of data samples with respect to one another. For a large number of data
samples, SimCLR is superior and the opposite is true for a small number of data samples.
So the size of the data samples is the most significant factor in achieving the best results
using self-supervised learning. We also explored the SimCLR technique by measuring the
data efficiency. The outcomes of the experiment show that the SimCLR is about 80% and
more than 80% data efficient compared to the SSL and supervised learning techniques, re-
spectively. To validate the effectiveness of the SimCLR for large data samples and SSL
for small data samples, we also explored the SimCLR technique from the point of view of
the dependency of outcomes on the signal transformations applied for self-supervision pur-
poses, data efficiency, batch size, and user reading behavior. The results of all these factors
validate the performance dependency on the size of data samples.

6 Conclusion

The self-supervised learning devised to tackle the lack of large-sized labeled data is con-
ducted in two ways SSL and contrastive learning. The SimCLR method, a contrastive
learning technique, reports an excellent performance in recent studies in handling the lack
of labeled and large-sized data issues. This method has been evaluated in many research ar-
eas, including physical activity detection. Our study is one of the pioneers in exploring the
SimCLR method for cognitive activity recognition like reading detection. We explored the
SimCLR method for reading detection employing a large number of signal transformation
pairs and compared it against the SSL and supervised baselines. The results show that for
a vast majority of signal transformation pairs and a wide range of available labeled train-
ing data, the SimCLR method outperforms baseline methods with excellent data efficiency
and performance gain. The detailed analysis shows that the SimCLR method is superior
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for only large-sized labeled data and needs more computations (49 times compared to the
SSL in this study). On the other hand, SSL is superior for small-sized labeled data and
needs fewer computations. The obtained results and analysis carried out in this study show
a path to achieve peak performance by applying self-supervised learning regardless of the
available training data.

Future work includes studies to verify the effectiveness and suitability of signal trans-
formations in pre-training employing different combination sizes such as three and also
exploring the SimCLR method for other reading analysis tasks such as confidence and cor-
rectness estimation of tasks performed via reading.
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