Enhanced Image Differencing for Precise Change Detection in Static Environments

  • Yohei Nishidate The University of Aizu
  • Yukihide Kohira The University of Aizu
  • Shigeo Takahashi The University of Aizu
  • Rentaro Yoshioka The University of Aizu
Keywords: Change detection, Low computational cost, Multi-temporal images, Remote surveillance

Abstract

This study addresses the challenge of detecting subtle changes in static environments, specifically focusing on images taken at different times in a museum. Typically, the method based on direct image differencing and thresholding for change detection encounters limitations due to high rates of false positives and difficulty in discerning subtle c hanges. To improve accuracy, we employed enhanced correlation coefficient (ECC) maximization with a perspective transformations model for image alignment. Also, we developed a color adjustment methodology combining Lab color scale conversion with CLAHE equalization in harmonizing color intensity under varied lighting conditions. Experiments conducted at the Fukushima Prefectural Museum with images from 11 locations demonstrated the effectiveness of our methods in detecting a range of changes, from object displacements to lighting variations. The study highlights the potential of these techniques in applications requiring precise change detection in static settings, with recommendations for future work aimed at refining these approaches for broader scenarios and challenging lighting conditions.

References

T. L. Sohl, “Change Analysis in the United Arab Emirates: An Investigation of Techniques,” Photogrammetric Engineering & Remote Sensing, vol. 65 no. 4, pp. 475-484, 1999. https://pubs.usgs.gov/publication/70186963

F. Yuan, K. E. Sawaya, B. C. Loeffelholz, and M. E. Bauer, “Land Cover Classification and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by Multitemporal Landsat Remote Sensing,” Remote Sensing of Environment, vol. 98, pp. 317-328, 2005. doi:10.1016/j.rse.2005.08.006

K. Sakurada and T. Okatani, “Change Detection from a Street Image Pair Using CNN Features and Superpixel Segmentation,” in Proceedings of the British Machine Vision Conference (BMVC), pp. 61.1-61.12, September 2015. doi:10.5244/C.29.61

M. A. Lebedev, Yu. V. Vizilter, O. V. Vygolov, V. A. Knyaz, and A. Yu. Rubis, “Change Detection in Remote Sensing Images Using Conditional Adversarial Networks,” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 42, no. 2, pp. 565-571, 2018. doi:10.5194/isprs-archives-XLII-2-565-2018

P. Coppin, I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin, “Digital Change Detection Methods in Ecosystem Monitoring: A Review,” International Journal of Remote Sensing, vol. 25, no. 9, pp. 1565-1596, 2004. doi:10.1080/0143116031000101675

C. Stauffer and W. E. L. Grimson, “Learning Patterns of Activity Using Real-Time Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747–757, August 2000. doi:10.1109/34.868677

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images,” IEEE Transactions on Medical Imaging, vol. 18, pp. 712-721, 1999. doi:10.1109/42.796284

P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, “User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” NeuroImage, vol. 31, no. 3, pp. 1116-1128, 2006. doi:10.1016/j.neuroimage.2006.01.015

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. S´anchez, “A Survey on Deep Learning in Medical Image Analysis,” Medical Image Analysis, vol. 42, pp. 60-88, 2017. doi:10.1016/j.media.2017.07.005

D. Lu, P. Mausel,E. Brond´ızio, and E. Moran, “Change Detection Techniques,” International Journal of Remote Sensing, vol. 25, no. 12, pp. 2365-2407, 2004. doi:10.1080/0143116031000139863

A. Singh, “Digital Change Detection Techniques Using Remotely-Sensed Data,” International Journal of Remote Sensing, vol. 10, no. 6, pp. 989-1003, 1989. doi:10.1080/01431168908903939

L. Khelifi and M. Mignotte. “Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis,” IEEE Access, vol. 8, pp.126385-126400, 2020. doi:10.1109/ACCESS.2020.3008036

C. Benedek and T. Szir´anyi, “Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 10, pp. 3416-3430, October 2009. doi:10.1109/TGRS.2009.2022633

B. S. Reddy and B. N. Chatterji, “An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Transactions on Image Processing, vol.5, no. 8, pp. 1266-1271, 1996. doi:10.1109/83.506761

G. D. Evangelidis and E. Z. Psarakis, “Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1858-1865, Oct. 2008. doi:10.1109/TPAMI.2008.113

E. Z. Psarakis and G. D. Evangelidis, “An Enhanced Correlation-Based Method for Stereo Correspondence with Subpixel Accuracy,” Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, Beijing, China, pp. 907-912, 2005. doi:10.1109/ICCV.2005.33

Radiocommunication Sector of International Telecommunication Union (ITU), “Studio Encoding Parameters of Digital Television for Standard 4:3 andWide-Screen 16:9 Aspect Ratios,” Recommendation ITU-R BT.601-7, 2011. https://www.itu.int/rec/R-REC-BT.601/

G. Buchsbaum, “A Spatial Processor Model for Object Colour Perception,” Journal of the Franklin Institute, vol. 310, pp. 1–26, 1980. doi:10.1016/0016-0032(80)90058-7

E. Land and J. McCann, “Lightness and Retinex Theory,” Journal of the Optical Society of America, vol. 61, pp. 1–11, 1971. doi:10.1364/JOSA.61.000001

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-Scale Retinex for Color Image Enhancement,” in Proceedings of 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996, pp. 1003-1006. doi:10.1109/ICIP.1996.560995

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes,” IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 965-976. doi:10.1109/83.597272

A. B. Petro, C. Sbert, and J.-M. Morel, “Multiscale Retinex,” Image Processing On Line, pp. 71–88, 2014. doi:10.5201/ipol.2014.107

J. Rosenman, C. A. Roe, R. Cromartie, K. E. Muller, and S. M. Pizer, “Portal Film Enhancement: Technique and Clinical Utility,” International Journal of Radiaton Oncology Biology Physics, vol. 25, no. 2, pp. 333-338, 1993. doi:10.1016/0360-3016(93)90357-2

K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” Graphics Gems IV, pp. 474-485, 1994. doi:10.1016/B978-0-12-336156-1.50061-6

Y. Nishidate, Y. Kohira, S. Takahashi, and R. Yoshioka, “Precise Detection of Changes in Relatively Static Environments for Single-Board Computers,” in Proceedings of the 14th International Congress on Advanced Applied Informatics (IIAI-AAI), Koriyama, Japan, 2023, pp. 57–62. (Present paper is the extended journal version of this document) doi:10.1109/IIAI-AAI59060.2023.00022

Published
2024-12-10
Section
Technical Papers (Advanced Applied Informatics)