
1 https://www.sketchengine.eu/
2 https://www.sketchengine.eu/documentation/corpus-querying/

Adaptable Expression Search Framework with Customi-

zable Pattern Matching for Language Studies

Tatsuya Katsura *, Koichi Takeuchi *

Abstract

This study introduces a novel design for a pattern matching system capable of extracting select

words or phrases from texts. In the process of learning a foreign language, searching for in-

stances of usage or grammatical structures within texts is a common requirement. While nu-

merous systems, particularly concordancers, have been proposed in prior research, many of them

lacked flexibility and posed challenges when attempting to combine specific search patterns. To

address this limitation, we developed a new phrase search system that allows users to craft their

search patterns by merging basic search templates. This paper presents a system that leverages

Prolog predicates as a fundamental data structure, utilizing SWI-Prolog for processing. The

system is capable of performing searches that integrate regular expressions with other combined

patterns. Our performance test demonstrates the system can process 10,000 sentences without

errors. User evaluation employing system usability scale indicates that while the current usability

of our system requires enhancement, the feedback gathered from these evaluations not only

confirms the system’s robustness but also provides valuable insights for future improvements.

Keywords: pattern matching, concordance, browser-based pattern matcher, Prolog

1 Introduction

The extraction of phrases and expressions from texts is an essential function in language educa-

tion. For example, in the Japanese language, case markers between a predicate and its object

adhere to various rules and alterations. Language learners, therefore, need to search for predi-

cate-argument examples in Japanese texts. To aid in text searching, several concordancers have

been proposed. However, most of these concordancers have limitations in functionality. Take

Sketch Engine [1, 2]1, a wellknown concordancer, for instance. It offers Corpus Query Language

(CQL) [3, 4]2, which provides rich pattern matching templates for words and characters. Yet,

most of these templates are mainly effective for English and are implemented at the level of

regular expressions. Consequently, users can’t utilize patterns at the level of Context-Free

Grammar (CFG), which includes dependency parsing or predicateargument relations. From the

perspective of Natural Language Processing (NLP) research, while dependency parsers such as

* Okayama University, Okayama, Japan

Information Engineering Express

International Institute of Applied Informatics

2026, Vol. 12, No. 1, IEE863

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

KNP [5] 3, CaboCha [6]4, and GiNZA5 have been developed and are available, building a pattern

matching system from scratch using NLP tools is not straightforward.

Therefore, we propose a user-friendly environment where non-programmers can create and

combine patterns for searching phrases or expressions in texts. Our system allows users to merge

basic search templates connected to Prolog predicates containing all information about de-

pendency, parts of speech (POS), and lemmas from sentences analyzed by NLP tools. These

combined search templates are consistently structured, and the synthesized search pattern effec-

tively locates the desired phrases in texts, thanks to the Prolog inference engine. The system

features a browser-based interface built on Blockly6, enabling users to visually combine patterns.

This study makes the following contributes7: 1) we introduce a pattern matching system that

employs Prolog-based search templates for flexible pattern combinations, 2) the system can

match patterns by combining regular expressions with other type of patterns, and 3) we con-

ducted a user evaluation experiment to assess the effectiveness of the proposed system. This

paper primarily focuses on the Japanese pattern matching system, as most concordancers are

developed for English. The system is aimed not only at language learners but also at other NLP

related tasks, e.g., searching expressions in text mining tools.

In our performance test, we demonstrate that the proposed system can handle large-scale texts

(up to 10,000 sentences) and effectively apply combined patterns to these texts. User evaluation

employing system usability scale indicates that while the current usability of our system requires

enhancement, the feedback gathered from these evaluations provides valuable insights for future

improvements. We discuss the system architecture, the flexibility of pattern matching including

regular expressions, and evaluations of the system in this paper.

2 Related Works

Sketch Engine8, a well-known concordancer, offers an environment where users can search for

inflections, lemmas, words, part-of-speeches (POSes), and more using the Corpus Query Lan-

guage (CQL), which operates at the level of regular grammar. While Sketch Engine also supports

Japanese text searches9, the templates based on Japanese morphological analyzers are somewhat

basic and lack dependency parsing capabilities.

In addition to concordancers, there’s ChaKi.NET [8], a corpus management system specifi-

cally designed for Japanese dependency structure annotated corpora. ChaKi.NET offers several

search templates capable of capturing dependency structures, but its functionality is mainly

geared towards annotation tasks, lacking features like pattern combination.

3 https://nlp.ist.i.kyoto-u.ac.jp/?KNP
4 https://taku910.github.io/cabocha/
5 https://megagonlabs.github.io/ginza/
6 https://developers.google.com/blockly?hl=ja
7 A preliminary version of this work was published as a conference paper [7].
8 https://www.sketchengine.eu/
9 https://www.sketchengine.eu/documentation/corpus-querying/

T. Katsura, K. Takeuchi2

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Another tool, NPCMJ Explorer10, provides search capabilities for the NINJAL Parsed

Corpus of Modern Japanese (NPCMJ) [9, 10]11. It is built on Tregex [11], a tool that can

extract specific phrases or words from a parsed tree structure12. While NPCMJ Explorer’s

search patterns are effective and allow for various combinations, users must construct search

formulas to find specific expressions.

In the field of NLP, StruAP [12] has been proposed as a pattern matching tool for parsed

trees. StruAP enables the complex combination of nodes in syntax trees and comes with a

web-based interface. However, patterns must be defined using a specific pattern language,

and it is not accessible for general use since StruAP is a commercial product that’s not pub-

licly available.

3 Framework for Pattern Matching System

Our system is architected into two primary modules: the front-end, which offers users an intui-

tive interface for tasks like file uploads, pattern modifications, and result validations; and the

back-end, which manages all textual operations, including storing files, processing them with

NLP technologies, and returning search outcomes based on front-end directives. The inde-

pendent nature of the back-end allows for seamless integration with multiple NLP resources,

accessible via the front-end. Thanks to the base function of Blockly, patterns composed by users

can be saved as an XML format file. This allows the other users to repurpose the patterns. This

paper elucidates the formulation of a matching framework specialized for Japanese textual con-

tent.

3.1 Overview of the Pattern Matching Framework

Figure 1: Overview of the pattern matching framework.

10 https://npcmj.ninjal.ac.jp/explorer/
11 https://npcmj.ninjal.ac.jp/index.html
12 https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/trees/tregex/

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies 3

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

The pattern matching system depicted in Figure 1 is outlined, with numbered circles

highlighting its various components. The system’s back-end is structured into three key

modules: a Python-based NLP processing module, a Prolog processing module utilizing

SWI-Prolog [13]13, and a database system developed with Elasticsearch. The process begins

with text uploads at the front-end, which are then subjected to morphological analysis14,

dependency parsing15, and argument structure analysis within the NLP module16 [14]. This

analysis breaks down the text into morphemes and chunks, each labeled with grammatical

and semantic tags. This information is forwarded to the Prolog module, transformed into

Prolog predicates, and stored in the database module.

Users input search patterns as queries in Prolog format through block-based JavaScript.

The system retrieves the corresponding Prolog predicates for each sentence from the data-

base and conducts pattern matching against the queries. The outcomes of this pattern

matching are relayed from the back-end to the front-end, where matched phrases are high-

lighted in red in the text17. This highlight function can be built by recording the character

positions of the matched parts with Prolog predicates. For additional information on the

predicate format used in this system, we show two examples of pattern matching in Section

3.3.

3.2 Functionalities of Prolog-based Predicates

Figure 2: Visualization of a Japanese sentence analysis (e.g. “部屋で 1000 円が見つ

かった”) using NLP tools (with English translation: “1000 yen bill was found in the

room”).

The anticipated requirements for textual searches encompass the extraction of chunks,

phrases, and individual words, all while adhering to constraints that define dependencies be-

tween subjects, predicates, particles, and POSes. In response to these needs, texts undergo seg-

mentation into morphemes, further characterized by lemmas and POSes through the use of a

morphological analyzer. These morphemes are then assembled into chunks, enriched with de-

pendency relationships generated by the dependency parser. After this assembly, the chunks are

subjected to an analysis of their predicate-argument relation types, leading to the assignment of

semantic roles18 to the arguments linked to the predicates.

 13 https://www.swi-prolog.org/
14 https://taku910.github.io/mecab/
15 https://taku910.github.io/cabocha/
16 https://github.com/Takeuchi-Lab-LM/python_asa
17 The examples are shown in Figure 5.
18 We currently implemented extended thematic roles [14, 15] such as 動作主(Agent), 対象 (Theme), 時間

(Goal) and so on. The details are in Predicate Thesaurus https://pth.cl.cs.okayamau.ac.jp/.

T. Katsura, K. Takeuchi4

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

To effectively harness this wealth of information for search endeavors, we establish predi-

cates that describes the interrelations among nodes. Figure 2 depicts a visual representation

of a sentence, analyzed and represented using NLP tools.

Table 1: Prolog Predicates.

Building on this, we define specific Prolog predicates that encapsulate the tree configu-

ration of these analyzed outcomes, as shown in Table 1. Within this table, the Node_ID pa-

rameter within the surf predicate signifies the morpheme ID, the chunk ID, and a “0”, which

corresponds to the sentence node. An intricate design ensures that morpheme IDs and chunk

IDs never coincide, ensuring their uniqueness upon them. The morpheme ID numbering

commences subsequent to the concluding chunk number, ensuring the “surf” predicate can

capture a surface string at any given node.

Navigating further into the sloc predicate, the Position argument represents a span, de-

marcated by start and end coordinates, indicative of the character count from the begin of

sentence. To illustrate, in Figure 2, the chunk “彼が” possesses a position of “0_1”. This

facilitates pinpointing the string’s exact position that aligns with the pattern. The predicate

re_match can further specify the string to be extracted in the regular expression. For exam-

ple, to specify the amount of money (yen) to be extracted from the variable YEN in the

4-digit number, you can define the predicate ‘re_match(“^[1-9][0-9]{3}”,YEN)’.

3.3 Example of Query

In the previous section, we established the predicates within the database to capture the tree

structure. Leveraging these previously specified predicates, users are able to construct search

queries. Each of these predicates is linked to the blocks found in Blockly, facilitating an

integrated query-building process. This section provides examples of two queries that can be

created with this system.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies 5

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

3.3.1 Query of extracting expressions containing case particles

Users can extract expressions from sentences by focusing on parts of speech and the semantic

roles of words. Figure 3 shows that an example of prolog-based query to extract predicates and

their arguments that have dependency relation with the case marker “が” (nominative case).

Figure 3: Example of a search query: to extract predicates and arguments that has a dependency

relation with the case marker “が” (nominative case).

In Figure 3, dark blue blocks represent Prolog predicates set in back-end. The purple block

represents a predicate defined by the user. Since all blocks conform to the Prolog format, the

user-defined building blocks can be used and interlinked to form complex patterns.

Each search result is stored in variables that begin with a capital letter. In the query shown in

Figure 3, the arguments Ga and Verb are used to extract the dependent source and its corre-

sponding verb, respectively. Ga_sloc and Verb_sloc provide the location information, and the

system highlights these sections when the user selects the _slock variable. All predicates, in-

cluding pos, part, and morph, function as conjunctions. For example, the predicate

“part(SENTENCE_ID, Ga_chunk_id, が)” means that pos has three arguments with the third

one specifically set to “が” (nominative case), which only aligns with instances where particle in

the chunk has the word “が”, and the variables “SENTENCE_ID” and “Verb_chunk_id” are

used to store the IDs through a process of unification.

When it comes to result representation, the system has three display formats: table, high-

lighted, and keyword-in-context (KWIC). Figure 4 shows the chunk matches in a table formats.

Within this table, defined variables Ga and Ga_sloc are displayed independently. This feature

allows users to specify the words or chunks to highlight during highlight mode, as demonstrated

in Figure 5.

T. Katsura, K. Takeuchi6

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

 Figure 4: Displaying the results of pattern matching for all variables: the resulting table lists the

extracted variables, including the nominative argument “Ga”(e.g. “習 慣が”), the resulting

predicate “Verb” (e.g. “ある”), and their corresponding character position markers

“Ga_sloc”(e.g. “13_15”) and “Verb_sloc”(e.g. “11_12”) which specify text spans in the source

sentences.

Figure 5: Displaying the results of pattern matching: highlighting the text spans in the source

sentence that correspond to the variable “Ga_sloc”.

Figure 7 highlights the Ga_sloc segments within the text. Users also have the latitude to illu-

minate verb variables by selecting the Verb_sloc, as showcased in Figure 6.

Such adaptability in the highlighting feature, allowing users to emphasize specific words or

chunks, is a variable tool for both text mining as well as language learning.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies 7

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 6: Displaying English translations of the texts shown in Figure 5: highlighting the

spans corresponding to “Ga_sloc” in translated texts.

Figure 7: Displaying the results of pattern matching: highlighting the text spans in the source

sentence that corresponds to the variable “Verb_sloc”.

Figure 8: Displaying English translations of the texts shown in figure 7: highlighting the spans

corresponding to “Verb_sloc” in translated texts.

T. Katsura, K. Takeuchi8

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

This is especially useful in situations where understanding the full sentence, along with the

emphasized words, is important for grasping the context.

3.3.2 Query of extracting specific expressions containing units with regex expressions.

User can further specify the expressions to be extracted from the text using regular expressions．

Figure 9 shows that an example of prolog-based query that extracts expressions containing the

unit “円” (yen) for the amount of money to be extracted in a 4-digit range.

The query shown in Figure 9 defines the argument Yen and the argument Yen_sloc that pro-

vides its location information. Yen_sloc provides the location of expressions containing the unit

“円”(yen), and the system highlights these sections when the user selects the “_sloc” variable.

For example, “pos(SENTENCE_ID,YEN_MORPH_ID, 助数詞)” means that “pos” has

three arguments with the third one specifically set to “助数詞” ，which also only aligns with

instances where POSes are counters for various categories, and the variables “SENTENCE_ID”

and “YEN_MORPH_ID” are used to store the IDs through a process of unification. In addition,

Figure 9 shows the deep orange block containing ‘re_match(“^[1-9][0-9]{3}円”,YEN)’, where

the second argument, YEN, is used to extract 4-digit numbers followed by the word “円”.

Examples of the search results are shown in Figures 10 and 11 below, in KWIC and table

formats, respectively.

Figure 9: Example of search query: extracting expressions containing the unit “円”(yen) for the

amount of money to be extracted in 4-digit numbers.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies 9

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 10: Example of search query: displaying the results of pattern matching for all variables.

The extracted monetary arguments Yen_sloc in the unit “円” (yen) (e.g., “1850 円”) within

4-digit numbers and their corresponding character position markers “Yen_sloc”(e.g. “4_8”)

which specify text spans in the source sentences.

Figure 11: Displaying the results of pattern matching: displaying the keyword “Yen_sloc” in a

context.

Figure 12: Displaying English translations of the texts shown in Figure 11: highlighting the spans

corresponding to “Yen_sloc” in translated texts.

T. Katsura, K. Takeuchi10

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

4 Performance Test

All textual content within the system is archived in the Elasticsearch database. While the system

is designed to handle extensive volumes of text, its current operational speed is relatively show.

This is primarily because the present design prioritizes consistency and robustness rather than

fast response. To verfify its robusteness, we conducted an evaluation using a relatively large

input set of approximately 10,000 lines of text.

According to the test results, the system takes roughly six minutes to process this volume of

text. The upload process entails sending the text to servers, applying NLP tools for textual pro-

cessing, conveting the data into Prolog predicates, and subsequently storing them in the database.

Executing a pattern match on this text, the system takes about five minutes. This matching pro-

cess involves retrieving the specific predicates associated with each sentence, running the

Prolog-based pattern matching and sending the results from the back-end to the user interface. In

summary, while the system can handle 10,000 lines of text, the pattern matching step remains

relatively time-consuming.

5 User Evaluation

We conduct a user evaluation experiment within our laboratory to assess the effectiveness of our

system. Evaluators first receive explanations of the system through user manuals, instructional

videos, and have time for a question-and-answer session, so that they are well-prepared to en-

gage with the system effectively. The evaluators are then given a task searching for particular

expressions within a selected text corpus, utilizing the system’s capabilities to achieve this

searching task. This task is intended to simulate real-world applications of the system in lan-

guage education and text analysis. Finally, the evaluators are asked to complete a questionnaire

that contains holistic evaluation and system usability scale [16] regarding the use of the system.

The details are described in Section A. As results of the evaluation done by seven evaluators, the

holistic score is 3.9 and SUS is 49. According to the previous study in SUS19, the average SUS

score from 500 studies is 68, and thus, the 49 is below the average. Although the usability of the

proposed system needs improvement, the holistic score is close to 4, which is not too low. Since

five of the seven evaluators have programming experience, it is conceivable that the score may

have been high.

Feedback from the evaluators reveals several key points for improving the system usability.

Notably, the operability and user interface of the system, particularly in relation to displaying

analysis results and search outcomes, are identified as areas needing enhancement.

For instance, evaluators suggest the integration of a feature that would allow for easier ac-

quisition of related blocks by simply clicking on elements within the analysis tree. Additionally,

there is need to simplify how variables are defined within Prolog blocks, as the current re-

quirement to explicitly specify elements like “_sloc” for highlighting is considered cumbersome.

19 https://measuringu.com/sus/

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies 11

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Despite these challenges, the system’s overall functionality is highly commended. The ability

to combine patterns in a visual environment using Blockly-based interface and the flexibility

offered by Prolog-based search templates are particularly appreciated. The evaluators show sig-

nificant anticipation for future improvements in usability, which could further enhance the

overall effectiveness of the system.

6 Discussions and Conclusion

The proposed system is adapted for extracting specific phrases or words from texts, leveraging a

user-modifiable pattern matching framework. This system’s ability to cohesively combine pat-

terns is underpinned by the Prolog structure. Besides, thanks to SWI-Prolog, user can specify the

expressions to be extracted from the text using regular expressions combined with the other

patterns. Though this offers flexibility in pattern assembly, the Prolog format can pose challenges

for users unfamiliar with its intricacies.

As elaborated in Section 3, our system necessitates the use of unique variables with “_sloc”

that must be one of the reasons why the usability score is low. This design choice is a dou-

ble-edged sword. On one hand, it provides users with the flexibility to select which segments

should be highlighted. On the other side, this approach can introduce unnecessary complexity for

those who prefer a more streamlined experience. Therefore, it may be benefical to desing a

predicate that handles this positional variable.

As a future development, we improve the proposed system based on the suggested im-

provements. Additionally, we will enhance our user understanding by improving user manuals

and explanatory videos.

Acknowledgement

A part of this research is supported by JSPS KAKENHI (Grant Number 22K00530).

A System Evaluation Metrics

We employ two types of evaluation metrics, the first items are holistic evaluations, i.e., we ask

the evaluators to give scores regarding to the total goodness of the system20. By taking the av-

erage value, we use it as the user’s holistic evaluation value.

The other evaluation is system usability scale (SUS). We instruct the evaluators to give scores

from 1 (strongly disagree) to 5 (strongly agree) for 10 questions that consist of 5 positive and 5

negative ones. In terms of the 10 questions, we apply the standard version of the system usability

scale21. The SUS for i-th question SUSi is calculated by the following equation.

𝑆𝑈𝑆𝑖 = ((𝑝𝑠𝑖 − 1) + (5 − 𝑛𝑠𝑖)) × 2.5 (1)

20 We use two questions: “the functionality of this system was what I expected” and “overall I am satisfied

with using this system”.
21 See https://en.wikipedia.org/wiki/System_usability_scale.

T. Katsura, K. Takeuchi12

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Where psi and nsi denote scores of positive and negative i-th question, respectively. The SUS

is the total of 10 questions of SUSi. The perfect score is 100.

References

[1] Adam Kilgarriff and Pavel Rychly and Pavel Smrz and David Tugwell. The Sketch Engine.

In Proceedings of the Eleventh EURALEX, pages 105–115, 2004.

[2] Adam Kilgarriff, Vít Baisa, Jan Bušta, Miloš Jakubíček, Vojtěch Kovář, Jan Michelfeit, Pavel

Rychlý, and Vít Suchomel. The Sketch Engine: Ten Years On. Lexicography, 1:7–36, 2014.

[3] Oliver Christ and Bruno M Schulze. The IMS Corpus Workbench: Corpus Query Processor

(CQP) User’ s Manual, 1994.

[4] Jakubíček, Miloš and Kilgarriff, Adam and McCarthy, Diana and Rychlý, Pavel. Fast Syn-

tactic Searching in Very Large Corpora for Many Languages. In Proceedings of the 24th

Pacific Asia Conference on Language, Information and Computation, pages 741–747, 2010.

[5] Daisuke Kawahara and Sadao Kurohashi. A Fully-Lexicalized Probabilistic Model for Jap-

anese Syntactic and Case Structure Analysis. In Proceedings of the Human Language Tech-

nology Conference of the NAACL, Main Conference, pages 176–183, 2006.

[6] Taku Kudo and Yuji Matsumoto. Japanese Dependency Analysis using Cascaded Chunking.

In The 6th Conference on Natural Language Learning 2002 (CoNLL-2002), 2002.

[7] Tatsuya Katsura and Koichi Takeuchi. A platform for searching texts for desired expressions

in a user-editable pattern matching environment for language learning. In Proceeding of 2023

14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pages 146–

149, 2023.

[8] Masayuki Asahara, Yuji Matsumoto, and Toshio Morita. Demonstration of ChaKi.NET Be-

yond the Corpus Search System. In Proceedings of the 26th International Conference on

Computational Linguistics: System Demonstrations, pages 49–53, 2016.

[9] National Institute of Japanese Language and Linguistics. NINJAL Parsed Corpus of Modern

Japanese, 2016.

[10] Stephen Wright Horn, Iku Nagasaki, Alastair Butler, and Kei Yoshimoto. Annotation

Manual for the NPCMJ. National Institute of Japanese Language and Linguistics, 2019.

[11] Roger Levy and Galen Andrew. Tregex and Tsurgeon: Tools for Querying and Manipulating

Tree Data Structures. In Proceedings of the fifth International Conference on Language Re-

sources and Evaluation (LREC 2006), pages 2231–2234, 2006.

[12] Kohsuke Yanai, Misa Sato, Toshihiko Yanase, Kenzo Kurotsuchi, Yuta Koreeda, and Yo-

shiki Niwa. StruAP: A Tool for Bundling Linguistic Trees through Structure-based Abstract

Pattern. In Proceedings of the 2017 EMNLP System Demonstrations, pages 31–36, 2017.

[13] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWIProlog. Theory

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies 13

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

and Practice of Logic Programming, 12(1-2):67–96, 2012.

[14] Koichi Takeuchi, Suguru Tsuchiyama, Masato Moriya, Yuuki Moriyasu, and Koichi Satoh.

Verb Sense Disambiguation Based on Thesaurus of Predicate- Argument Structure. In Pro-

ceedings of the International Conference on Knowledge Engineering and Ontology Devel-

opment, pages 208–213, 2011.

[15] C. J. Fillmore. The Case for Case, pages 1–89. New York: Holt, Rinehart, and Winston,

1968.

[16] John Brooke. USU – A Quick and Dirty Usability Scale. In Usability Evaluation in Industry,

pages 189–194. Taylor and Francis, 1996.

T. Katsura, K. Takeuchi14

