Information Engineering Express
International Institute of Applied Informatics
2026, Vol. 12, No. 1, IEE863

Adaptable Expression Search Framework with Customi-
zable Pattern Matching for Language Studies

Tatsuya Katsura *, Koichi Takeuchi *

Abstract

This study introduces a novel design for a pattern matching system capable of extracting select
words or phrases from texts. In the process of learning a foreign language, searching for in-
stances of usage or grammatical structures within texts is a common requirement. While nu-
merous systems, particularly concordancers, have been proposed in prior research, many of them
lacked flexibility and posed challenges when attempting to combine specific search patterns. To
address this limitation, we developed a new phrase search system that allows users to craft their
search patterns by merging basic search templates. This paper presents a system that leverages
Prolog predicates as a fundamental data structure, utilizing SWI-Prolog for processing. The
system is capable of performing searches that integrate regular expressions with other combined
patterns. Our performance test demonstrates the system can process 10,000 sentences without
errors. User evaluation employing system usability scale indicates that while the current usability
of our system requires enhancement, the feedback gathered from these evaluations not only
confirms the system’s robustness but also provides valuable insights for future improvements.

Keywords: pattern matching, concordance, browser-based pattern matcher, Prolog

1 Introduction

The extraction of phrases and expressions from texts is an essential function in language educa-
tion. For example, in the Japanese language, case markers between a predicate and its object
adhere to various rules and alterations. Language learners, therefore, need to search for predi-
cate-argument examples in Japanese texts. To aid in text searching, several concordancers have
been proposed. However, most of these concordancers have limitations in functionality. Take
Sketch Engine [1, 2]!, a wellknown concordancer, for instance. It offers Corpus Query Language
(CQL) [3, 4]%, which provides rich pattern matching templates for words and characters. Yet,
most of these templates are mainly effective for English and are implemented at the level of
regular expressions. Consequently, users can’t utilize patterns at the level of Context-Free
Grammar (CFG), which includes dependency parsing or predicateargument relations. From the
perspective of Natural Language Processing (NLP) research, while dependency parsers such as

* Okayama University, Okayama, Japan
! https://www.sketchengine.eu/
2 https://www.sketchengine.eu/documentation/corpus-querying/

T. Katsura, K. Takeuchi

KNP [5] 3, CaboCha [6]%, and GiINZA?® have been developed and are available, building a pattern
matching system from scratch using NLP tools is not straightforward.

Therefore, we propose a user-friendly environment where non-programmers can create and
combine patterns for searching phrases or expressions in texts. Our system allows users to merge
basic search templates connected to Prolog predicates containing all information about de-
pendency, parts of speech (POS), and lemmas from sentences analyzed by NLP tools. These
combined search templates are consistently structured, and the synthesized search pattern effec-
tively locates the desired phrases in texts, thanks to the Prolog inference engine. The system
features a browser-based interface built on Blockly®, enabling users to visually combine patterns.

This study makes the following contributes’: 1) we introduce a pattern matching system that
employs Prolog-based search templates for flexible pattern combinations, 2) the system can
match patterns by combining regular expressions with other type of patterns, and 3) we con-
ducted a user evaluation experiment to assess the effectiveness of the proposed system. This
paper primarily focuses on the Japanese pattern matching system, as most concordancers are
developed for English. The system is aimed not only at language learners but also at other NLP
related tasks, e.g., searching expressions in text mining tools.

In our performance test, we demonstrate that the proposed system can handle large-scale texts
(up to 10,000 sentences) and effectively apply combined patterns to these texts. User evaluation
employing system usability scale indicates that while the current usability of our system requires
enhancement, the feedback gathered from these evaluations provides valuable insights for future
improvements. We discuss the system architecture, the flexibility of pattern matching including
regular expressions, and evaluations of the system in this paper.

2 Related Works

Sketch Engine®, a well-known concordancer, offers an environment where users can search for
inflections, lemmas, words, part-of-speeches (POSes), and more using the Corpus Query Lan-
guage (CQL), which operates at the level of regular grammar. While Sketch Engine also supports
Japanese text searches’, the templates based on Japanese morphological analyzers are somewhat
basic and lack dependency parsing capabilities.

In addition to concordancers, there’s ChaKi.NET [8], a corpus management system specifi-
cally designed for Japanese dependency structure annotated corpora. ChaKi.NET offers several
search templates capable of capturing dependency structures, but its functionality is mainly
geared towards annotation tasks, lacking features like pattern combination.

3 https:/nlp.ist.i.kyoto-u.ac.jp/?KNP

4 https://taku910.github.io/cabocha/

3 https://megagonlabs.github.io/ginza/

6 https://developers.google.com/blockly?hl=ja

7 A preliminary version of this work was published as a conference paper [7].
8 https://www.sketchengine.eu/

? https://www.sketchengine.eu/documentation/corpus-querying/

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies

Another tool, NPCMJ Explorer'®, provides search capabilities for the NINJAL Parsed
Corpus of Modern Japanese (NPCMJ) [9, 10]'. Tt is built on Tregex [11], a tool that can
extract specific phrases or words from a parsed tree structure'2. While NPCMJ Explorer’s
search patterns are effective and allow for various combinations, users must construct search
formulas to find specific expressions.

In the field of NLP, StruAP [12] has been proposed as a pattern matching tool for parsed
trees. StruAP enables the complex combination of nodes in syntax trees and comes with a
web-based interface. However, patterns must be defined using a specific pattern language,
and it is not accessible for general use since StruAP is a commercial product that’s not pub-
licly available.

3 Framework for Pattern Matching System

Our system is architected into two primary modules: the front-end, which offers users an intui-
tive interface for tasks like file uploads, pattern modifications, and result validations; and the
back-end, which manages all textual operations, including storing files, processing them with
NLP technologies, and returning search outcomes based on front-end directives. The inde-
pendent nature of the back-end allows for seamless integration with multiple NLP resources,
accessible via the front-end. Thanks to the base function of Blockly, patterns composed by users
can be saved as an XML format file. This allows the other users to repurpose the patterns. This
paper elucidates the formulation of a matching framework specialized for Japanese textual con-
tent.

3.1 Overview of the Pattern Matching Framework
Front—end Back—-end

Uploaded texts / ® Store the results of \
Analyze texts corpus analysis

@ into Prolog with Prolog
predicates predicates

Show the analyzed
texts

Return analyzed

s —
Submit patterns ' E

Return results
obtained by

ith Prol
pattern matching th rolog /

Figure 1: Overview of the pattern matching framework.

Pattern building
by the user

Retrieve the
Prolog predicates

Pattern

matching

Show the results of
pattern matching

\
i)
W
i

10 https://npemj.ninjal.ac.jp/explorer/
! https://npcmj.ninjal.ac.jp/index.html
12 https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/trees/tregex/

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Katsura, K. Takeuchi

The pattern matching system depicted in Figure 1 is outlined, with numbered circles
highlighting its various components. The system’s back-end is structured into three key
modules: a Python-based NLP processing module, a Prolog processing module utilizing
SWI-Prolog [13]"3, and a database system developed with Elasticsearch. The process begins
with text uploads at the front-end, which are then subjected to morphological analysis'?,
dependency parsing'”, and argument structure analysis within the NLP module'® [14]. This
analysis breaks down the text into morphemes and chunks, each labeled with grammatical
and semantic tags. This information is forwarded to the Prolog module, transformed into
Prolog predicates, and stored in the database module.

Users input search patterns as queries in Prolog format through block-based JavaScript.
The system retrieves the corresponding Prolog predicates for each sentence from the data-
base and conducts pattern matching against the queries. The outcomes of this pattern
matching are relayed from the back-end to the front-end, where matched phrases are high-
lighted in red in the text'”. This highlight function can be built by recording the character
positions of the matched parts with Prolog predicates. For additional information on the
predicate format used in this system, we show two examples of pattern matching in Section
3.3.

3.2 Functionalities of Prolog-based Predicates

[Sentence]

HBETI000AHAR2ID o7

[Chunk] [Chunk] [Chunk]

HET 1000 #* Rohoat
[Morph] [Morph] [Morph] [Role] [Main] [Part]
1000 5] # e 1000A #
[Pos] [Pos] [Lemma) [Pos] [Pos] [Lemma] [Pos] [Pos] [Lemma]
£ 0] # 1000 E1 0] Bh#EA A BhEd L] ¢

Figure 2: Visualization of a Japanese sentence analysis (e.g. “¥= T 1000 23 7>
7> 727) using NLP tools (with English translation: “1000 yen bill was found in the
room”).

The anticipated requirements for textual searches encompass the extraction of chunks,
phrases, and individual words, all while adhering to constraints that define dependencies be-
tween subjects, predicates, particles, and POSes. In response to these needs, texts undergo seg-
mentation into morphemes, further characterized by lemmas and POSes through the use of a
morphological analyzer. These morphemes are then assembled into chunks, enriched with de-
pendency relationships generated by the dependency parser. After this assembly, the chunks are
subjected to an analysis of their predicate-argument relation types, leading to the assignment of
semantic roles'® to the arguments linked to the predicates.

13 https://www.swi-prolog.org/

14 https://taku910.github.io/mecab/

15 https://taku910.github.io/cabocha/

16 https://github.com/Takeuchi-Lab-LM/python_asa

17 The examples are shown in Figure 5.

18 We currently implemented extended thematic roles [14, 15] such as EifE=Z=(Agent), x4 (Theme), FKEfE]
(Goal) and so on. The details are in Predicate Thesaurus httos://th.cl.cs.okavamau.ac.io/.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies

To effectively harness this wealth of information for search endeavors, we establish predi-
cates that describes the interrelations among nodes. Figure 2 depicts a visual representation
of a sentence, analyzed and represented using NLP tools.

Table 1: Prolog Predicates.

Predicates Desecription
chunk(Sentence 1D, 0, Chunk_ID) chunk 1Ds
morph(Sentence ID, Chunk_ID, Morph_ID) morpheme 1Ds
main(Sentence 1D, Chunk ID, String) main morpheme in the chunk
part(Sentence 1D, Chunk 1D, String) particle in the chunk
role(Sentence 1D, Chunk 1D, String) semantic role in the chunk
semantic(Sentence 1D, Chunk 1D, String) sense of the predicate
surf(Sentence 1D, Node ID, String) surface string for the node 1D
surfBF(Sentence 1D, Morph 1D, String) base form or lemma
sloc(Sentence ID, Morph/Chunk 1D, Position) | position of the chunk
pos(Sentence 1D, Morph 1D, String) part of speech for the morpheme
dep(Sentence 1D, Chunk 1D, Chunk 1D) dependent relation between
chunks
rematch(Regex Pattern,String) regular expression pattern
matching

Building on this, we define specific Prolog predicates that encapsulate the tree configu-
ration of these analyzed outcomes, as shown in Table 1. Within this table, the Node ID pa-
rameter within the surf predicate signifies the morpheme ID, the chunk ID, and a “0”, which
corresponds to the sentence node. An intricate design ensures that morpheme IDs and chunk
IDs never coincide, ensuring their uniqueness upon them. The morpheme ID numbering
commences subsequent to the concluding chunk number, ensuring the “surf” predicate can
capture a surface string at any given node.

Navigating further into the sloc predicate, the Position argument represents a span, de-
marcated by start and end coordinates, indicative of the character count from the begin of
sentence. To illustrate, in Figure 2, the chunk “f%73” possesses a position of “0_1”. This
facilitates pinpointing the string’s exact position that aligns with the pattern. The predicate
re_match can further specify the string to be extracted in the regular expression. For exam-
ple, to specify the amount of money (yen) to be extracted from the variable YEN in the
4-digit number, you can define the predicate ‘re_match(“*[1-9][0-9]{3}”,YEN)’.

3.3 Example of Query

In the previous section, we established the predicates within the database to capture the tree
structure. Leveraging these previously specified predicates, users are able to construct search
queries. Each of these predicates is linked to the blocks found in Blockly, facilitating an
integrated query-building process. This section provides examples of two queries that can be
created with this system.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Katsura, K. Takeuchi

3.3.1 Query of extracting expressions containing case particles

Users can extract expressions from sentences by focusing on parts of speech and the semantic
roles of words. Figure 3 shows that an example of prolog-based query to extract predicates and
their arguments that have dependency relation with the case marker “3” (nominative case).

[4%+ 2050 Resi2 =) (e =N M Ga M Ga_sloc ¥ Verb [Verb_sloc DES
surf(SENTENCE_ID,)
Cand
part(SENTENCE_ID, L)
&
Sle g =\ BE=\ (6= Ga_chunk id B Ga_sloc B
" and
. morph(SENTENCE_ID, Verbichunk_id Verb_morBh_id I.
and
pos(SENTENCE_ID, EB))
" and
T T a s e Ol Verb_morph. id T Verb B)
" and
. stc(SENTENCE_ID, Verb__'chunk_id Verb_sloc Il
and
Idep(SENTENCE_ID, Ga_chunk_id [Verb_chunk_id b))

Figure 3: Example of a search query: to extract predicates and arguments that has a dependency
relation with the case marker “7)3” (nominative case).

In Figure 3, dark blue blocks represent Prolog predicates set in back-end. The purple block
represents a predicate defined by the user. Since all blocks conform to the Prolog format, the
user-defined building blocks can be used and interlinked to form complex patterns.

Each search result is stored in variables that begin with a capital letter. In the query shown in
Figure 3, the arguments Ga and Verb are used to extract the dependent source and its corre-
sponding verb, respectively. Ga_sloc and Verb_sloc provide the location information, and the
system highlights these sections when the user selects the slock variable. All predicates, in-
cluding pos, part, and morph, function as conjunctions. For example, the predicate
“part(SENTENCE ID, Ga chunk id, /%) means that pos has three arguments with the third
one specifically set to “73” (nominative case), which only aligns with instances where particle in
the chunk has the word “73”, and the variables “SENTENCE_ID” and “Verb_chunk id” are
used to store the IDs through a process of unification.

When it comes to result representation, the system has three display formats: table, high-
lighted, and keyword-in-context (KWIC). Figure 4 shows the chunk matches in a table formats.
Within this table, defined variables Ga and Ga_sloc are displayed independently. This feature
allows users to specify the words or chunks to highlight during highlight mode, as demonstrated
in Figure 5.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies

SENTENCE_ID Ga Ga_sloc verd Verb_sioc

0 0 ZEn 13_15 T3 1_12
1 0 Zgn 13_15 53 16_18
2 5 TARES 26 T3 711

3 6 TBAKSN 26 n3s _n

4 9 EEN 12_14 I3 15_22
& 9 e 12_14 ns 15_22
6 9 2EN 1214 wa 15 22

Figure 4: Displaying the results of pattern matching for all variables: the resulting table lists the
extracted variables, including the nominative argument “Ga”(e.g. ‘% H73”), the resulting
predicate “Verb” (e.g. “# %), and their corresponding character position markers
“Ga_sloc’(e.g. “13_15”) and “Verb_sloc’(e.g. “11_12”) which specify text spans in the source
sentences.

-0 F
- Ga_sloc -

OATRRENTELOHETR
BREEFEssF Iz I38ENGS.
BREEHEssF LIz I 38ENGS.
HARGEFREOEEFBLLTNE.
BUFRAERNREEERED.
BRI I— RIS CHRBICKS.
RFRETHR—ILZENNTTND.
BWEHLNT — LW FICANTHEEL F THA T,
BHRTAASH SN TER.
AEHBEENZTER.
ZOLAFS2OS— A FETHEERLL.
5 (FEEMRE T ERICT < OOEEE.
ZOEMECERERBS LLEETFB RSN TWS.
TOEMEICREBRS LWEEBNERTNTWS.
FTOEMEICGEBS LLWEEBNERENTWS.

Figure 5: Displaying the results of pattern matching: highlighting the text spans in the source
sentence that correspond to the variable “Ga_sloc”.

Figure 7 highlights the Ga_sloc segments within the text. Users also have the latitude to illu-
minate verb variables by selecting the Verb sloc, as showcased in Figure 6.

Such adaptability in the highlighting feature, allowing users to emphasize specific words or
chunks, is a variable tool for both text mining as well as language learning.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Katsura, K. Takeuchi

Tanaka has the habit of jogging every morning.
Tanaka has the habit of jogging every morning.

MTr Suzuki is in charge of mathematics classes.

She has recently started eating healthy.

Tokyo Tower shines beautifully at night.

The dog is chasing a ball in the park.

He got a new game and played until late at night.
There is a fireworks display tomorrow.

There is a fireworks display tomorrow.

The ramen at this restaurant is very delicious.

Their hobby is going to see English every week.
The art museum has wonderful paintings on display.
The art museum has wonderful paintings on display.
The art museum has wonderful paintings on display.

Figure 6: Displaying English translations of the texts shown in Figure 5: highlighting the

spans corresponding to “Ga_sloc” in translated texts.

DHEARTR SN OHERR
HREESET T I2T 2BENE3.
BRRESES3F IR TBEN G 3.
SRELEFHFOREEFELLTNS.
HRFREERNREEERIAI.
ERYT— R B CEEICHS.
RELETR—ILZBOMNTTNS.

HWEH LT — AEFICANTRELETEATLZ
BAREAASHEEENZFER.
HAREAASIBEENZTER.
ZOLAFS DT A FETERELL.

5 FEEREERICIT < oM,
ZOEMEEC(FRAS LLBENERSNTN S,
TOEMEE(CERBS LVERES B RS .
TOEGHECERBS LVSENERSNTLS.

Figure 7: Displaying the results of pattern matching: highlighting the text spans in the source

sentence that corresponds to the variable “Verb sloc”.

Tanaka has the habit of jogging every morning.
Tanaka has the habit of jogging every morning.

Mr Suzuki is in charge of mathematics classes.

She has recently started eating healthy.

Tokyo Tower shines beautifully at night.

The dog is chasing a ball in the park.

He got a new game and played until late at night.
There is a fireworks display tomorrow.

There is a fireworks display tomorrow.

The ramen at this restaurant is very delicious.

Their hobby is going to see English every week.
The art museum has wonderful paintings on display.
The art museum has wonderful paintings on display.
The art museumn has wonderful paintings on display.

Figure 8: Displaying English translations of the texts shown in figure 7: highlighting the spans

corresponding to “Verb_sloc” in translated texts.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies

This is especially useful in situations where understanding the full sentence, along with the
emphasized words, is important for grasping the context.

3.3.2 Query of extracting specific expressions containing units with regex expressions.

User can further specify the expressions to be extracted from the text using regular expressions.
Figure 9 shows that an example of prolog-based query that extracts expressions containing the
unit “M” (yen) for the amount of money to be extracted in a 4-digit range.

The query shown in Figure 9 defines the argument Yen and the argument Yen sloc that pro-
vides its location information. Yen sloc provides the location of expressions containing the unit
“MJ”(yen), and the system highlights these sections when the user selects the “ sloc” variable.

For example, “pos(SENTENCE ID,YEN MORPH_ID, Bj#4Gi)” means that “pos” has
three arguments with the third one specifically set to “B)#Ei” , which also only aligns with
instances where POSes are counters for various categories, and the variables “SENTENCE _ID”
and “YEN_MORPH_ID” are used to store the IDs through a process of unification. In addition,
Figure 9 shows the deep orange block containing ‘re_match(“*[1-9][0-9]{3} F1”,YEN)’, where
the second argument, YEN, is used to extract 4-digit numbers followed by the word “F”.

Examples of the search results are shown in Figures 10 and 11 below, in KWIC and table
formats, respectively.

E= e (SENTENCE_ID, .):-
chunk{SENTENCE_ID,0,)

and

eI = =N YEN CHUNK_ID M Yen B
é-nd

sloc(SENTENCE_ID, -)
and

il ET=0= e 8 ()8 YEN_CHUNK_ID YEM=MORPH_IDn
and

surf(SENTENCE_ID, [E))

énd

pos(SENTENCE_ID, .)
and

(=G el "~ [1-9][0-9]{3}F" |4 Yen B

Figure 9: Example of search query: extracting expressions containing the unit “[”(yen) for the
amount of money to be extracted in 4-digit numbers.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

10 T. Katsura, K. Takeuchi

F=JIL -
BEEREOETRIEEELET
SENTENCE_ID Yen Yen_sloc
0 1 1850 48
1 5 1000F3 49
2 7 1800/ 8 16

Figure 10: Example of search query: displaying the results of pattern matching for all variables.
The extracted monetary arguments Yen_sloc in the unit “F” (yen) (e.g., “1850 [”’) within
4-digit numbers and their corresponding character position markers “Yen sloc”(e.g. “4 8”)

which specify text spans in the source sentences.

===
""" Yen_sloc
=51l 1850/ rnELE.
iR 1000 %& £ Lz

1800M 72

BEOFw HZ

Jeo

Figure 11: Displaying the results of pattern matching: displaying the keyword “Yen sloc” in a
context.

Lunch cost 1850 yen.
| lost 1000 yen yesterday.
Tickets for the movie were 1800 yen.

Figure 12: Displaying English translations of the texts shown in Figure 11: highlighting the spans
corresponding to “Yen sloc” in translated texts.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies

4 Performance Test

All textual content within the system is archived in the Elasticsearch database. While the system
is designed to handle extensive volumes of text, its current operational speed is relatively show.
This is primarily because the present design prioritizes consistency and robustness rather than
fast response. To verfify its robusteness, we conducted an evaluation using a relatively large
input set of approximately 10,000 lines of text.

According to the test results, the system takes roughly six minutes to process this volume of
text. The upload process entails sending the text to servers, applying NLP tools for textual pro-
cessing, conveting the data into Prolog predicates, and subsequently storing them in the database.
Executing a pattern match on this text, the system takes about five minutes. This matching pro-
cess involves retrieving the specific predicates associated with each sentence, running the
Prolog-based pattern matching and sending the results from the back-end to the user interface. In
summary, while the system can handle 10,000 lines of text, the pattern matching step remains
relatively time-consuming.

5 User Evaluation

We conduct a user evaluation experiment within our laboratory to assess the effectiveness of our
system. Evaluators first receive explanations of the system through user manuals, instructional
videos, and have time for a question-and-answer session, so that they are well-prepared to en-
gage with the system effectively. The evaluators are then given a task searching for particular
expressions within a selected text corpus, utilizing the system’s capabilities to achieve this
searching task. This task is intended to simulate real-world applications of the system in lan-
guage education and text analysis. Finally, the evaluators are asked to complete a questionnaire
that contains holistic evaluation and system usability scale [16] regarding the use of the system.
The details are described in Section A. As results of the evaluation done by seven evaluators, the
holistic score is 3.9 and SUS is 49. According to the previous study in SUS', the average SUS
score from 500 studies is 68, and thus, the 49 is below the average. Although the usability of the
proposed system needs improvement, the holistic score is close to 4, which is not too low. Since
five of the seven evaluators have programming experience, it is conceivable that the score may
have been high.

Feedback from the evaluators reveals several key points for improving the system usability.
Notably, the operability and user interface of the system, particularly in relation to displaying
analysis results and search outcomes, are identified as areas needing enhancement.

For instance, evaluators suggest the integration of a feature that would allow for easier ac-
quisition of related blocks by simply clicking on elements within the analysis tree. Additionally,
there is need to simplify how variables are defined within Prolog blocks, as the current re-
quirement to explicitly specify elements like “_sloc” for highlighting is considered cumbersome.

19 httos://measurineu.com/sus/

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

11

12

T. Katsura, K. Takeuchi

Despite these challenges, the system’s overall functionality is highly commended. The ability
to combine patterns in a visual environment using Blockly-based interface and the flexibility
offered by Prolog-based search templates are particularly appreciated. The evaluators show sig-
nificant anticipation for future improvements in usability, which could further enhance the
overall effectiveness of the system.

6 Discussions and Conclusion

The proposed system is adapted for extracting specific phrases or words from texts, leveraging a
user-modifiable pattern matching framework. This system’s ability to cohesively combine pat-
terns is underpinned by the Prolog structure. Besides, thanks to SWI-Prolog, user can specify the
expressions to be extracted from the text using regular expressions combined with the other
patterns. Though this offers flexibility in pattern assembly, the Prolog format can pose challenges
for users unfamiliar with its intricacies.

As elaborated in Section 3, our system necessitates the use of unique variables with “ sloc”
that must be one of the reasons why the usability score is low. This design choice is a dou-
ble-edged sword. On one hand, it provides users with the flexibility to select which segments
should be highlighted. On the other side, this approach can introduce unnecessary complexity for
those who prefer a more streamlined experience. Therefore, it may be benefical to desing a
predicate that handles this positional variable.

As a future development, we improve the proposed system based on the suggested im-
provements. Additionally, we will enhance our user understanding by improving user manuals
and explanatory videos.

Acknowledgement

A part of this research is supported by JSPS KAKENHI (Grant Number 22K00530).

A System Evaluation Metrics

We employ two types of evaluation metrics, the first items are holistic evaluations, i.e., we ask
the evaluators to give scores regarding to the total goodness of the system®. By taking the av-
erage value, we use it as the user’s holistic evaluation value.

The other evaluation is system usability scale (SUS). We instruct the evaluators to give scores
from 1 (strongly disagree) to 5 (strongly agree) for 10 questions that consist of 5 positive and 5
negative ones. In terms of the 10 questions, we apply the standard version of the system usability
scale’!. The SUS for i-th question SUS; is calculated by the following equation.

SUS; = ((psi— 1) + (5 —nsy)) X 2.5 (1D

20 We use two questions: “the functionality of this system was what I expected” and “overall I am satisfied
with using this system”.
21 See https://en.wikipedia.org/wiki/System usability scale.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Adaptable Expression Search Framework with Customizable Pattern Matching for Language Studies

Where ps; and ns; denote scores of positive and negative i-th question, respectively. The SUS
is the total of 10 questions of SUS;. The perfect score is 100.

References

[1] Adam Kilgarriff and Pavel Rychly and Pavel Smrz and David Tugwell. The Sketch Engine.
In Proceedings of the Eleventh EURALEX, pages 105—-115, 2004.

[2] Adam Kilgarriff, Vit Baisa, Jan Busta, Milo§ Jakubicek, Vojtéch Kovat, Jan Michelfeit, Pavel
Rychly, and Vit Suchomel. The Sketch Engine: Ten Years On. Lexicography, 1:7-36, 2014.

[3] Oliver Christ and Bruno M Schulze. The IMS Corpus Workbench: Corpus Query Processor
(COP) User’s Manual, 1994.

[4] Jakubicek, Milos and Kilgarriff, Adam and McCarthy, Diana and Rychly, Pavel. Fast Syn-
tactic Searching in Very Large Corpora for Many Languages. In Proceedings of the 24th
Pacific Asia Conference on Language, Information and Computation, pages 741-747, 2010.

[5] Daisuke Kawahara and Sadao Kurohashi. A Fully-Lexicalized Probabilistic Model for Jap-
anese Syntactic and Case Structure Analysis. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference, pages 176—183, 2006.

[6] Taku Kudo and Yuji Matsumoto. Japanese Dependency Analysis using Cascaded Chunking.
In The 6th Conference on Natural Language Learning 2002 (CoNLL-2002), 2002.

[7] Tatsuya Katsura and Koichi Takeuchi. A platform for searching texts for desired expressions
in a user-editable pattern matching environment for language learning. In Proceeding of 2023
14th IIAI International Congress on Advanced Applied Informatics (I1AI-AAl), pages 146—
149, 2023.

[8] Masayuki Asahara, Yuji Matsumoto, and Toshio Morita. Demonstration of ChaKi.NET Be-
yond the Corpus Search System. In Proceedings of the 26th International Conference on
Computational Linguistics: System Demonstrations, pages 4953, 2016.

[9] National Institute of Japanese Language and Linguistics. NINJAL Parsed Corpus of Modern
Japanese, 2016.

[10] Stephen Wright Horn, Tku Nagasaki, Alastair Butler, and Kei Yoshimoto. Annotation
Manual for the NPCM.J. National Institute of Japanese Language and Linguistics, 2019.

[11] Roger Levy and Galen Andrew. Tregex and Tsurgeon: Tools for Querying and Manipulating
Tree Data Structures. In Proceedings of the fifih International Conference on Language Re-
sources and Evaluation (LREC 2006), pages 2231-2234, 2006.

[12] Kohsuke Yanai, Misa Sato, Toshihiko Yanase, Kenzo Kurotsuchi, Yuta Koreeda, and Yo-
shiki Niwa. StruAP: A Tool for Bundling Linguistic Trees through Structure-based Abstract
Pattern. In Proceedings of the 2017 EMNLP System Demonstrations, pages 31-36, 2017.

[13] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWIProlog. Theory

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

13

14 T. Katsura, K. Takeuchi

and Practice of Logic Programming, 12(1-2):67-96, 2012.

[14] Koichi Takeuchi, Suguru Tsuchiyama, Masato Moriya, Yuuki Moriyasu, and Koichi Satoh.
Verb Sense Disambiguation Based on Thesaurus of Predicate- Argument Structure. In Pro-
ceedings of the International Conference on Knowledge Engineering and Ontology Devel-
opment, pages 208-213, 2011.

[15] C. J. Fillmore. The Case for Case, pages 1-89. New York: Holt, Rinehart, and Winston,
1968.

[16] John Brooke. USU — A Quick and Dirty Usability Scale. In Usability Evaluation in Industry,
pages 189—194. Taylor and Francis, 1996.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

