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Abstract 

In this paper, we propose a new approach to significantly optimize some scheduling criteria, 
context switches and turnaround times in this context, when running multithreaded processes 
concurrently. Current proportional sharing schedulers allocate CPU time based on the weights of 
running threads in the system and don’t take into consideration the greedy behavior of multi-
threaded processes (processes with more threads receive more aggregate CPU time from the 
scheduler relative to processes with fewer threads). In order to minimize turnaround times and 
context switches of running multithreaded processes in simultaneous multithreaded (SMT) ar-
chitectures, we investigate the effect of adjusting the weights of running sibling threads (threads 
forked from the same process) using novel proportional sharing scheduler, Thread Weight Re-
adjustment Scheduler (TWRS), a proportional share CPU scheduler designed for multithreaded 
processes, which aims to reduce undesirable events (e.g. context switches) and turnaround times. 
TWRS provides a practical solution for multitasking operating systems because it operates in 
concert with existing kernels. We have implemented TWRS in Linux 2.6.24-1, which represents 
the most prevalent scheduler design (i.e. Completely Fair Scheduler (CFS)). Our evaluation 
shows that our scheduler minimizes context switches and turnaround time. 
Keywords:  Multithreaded processes, multitasking, CFS, fairness, turnaround time. 

1 Introduction 

A. General Overview 

Proportional Share Scheduler (PSS), also sometimes referred to as a fair-share scheduler might try 
to guarantee that each process obtains a certain percentage of CPU time. PSS is a type 
of scheduling which preallocates certain amount of CPU time to each process. PSS is based upon 
maintaining fairness between competing processes. PSSs are often primarily evaluated based on 
the level of fairness that they can provide [28]. Other evaluation criteria depend on what the 
scheduler is designed for.  

Cooperative multitasking and preemptive multitasking are two flavors in which multitasking 
operating systems come in. Linux, like all Unix variants and most modern operating systems, 
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implements preemptive multitasking. In preemptive multitasking, the scheduler decides when a 
process is to cease running and a new process is to begin running. The act of involuntarily sus-
pending a running process is called preemption. The time a process runs before it is preempted is 
usually predetermined, and it is called the timeslice of the process. The timeslice, in effect, gives 
each runnable process a slice of the processor’s time [4]. 

B. Scheduling and its Criteria 

The scheduling problem can be stated shortly as: which thread should be moved to where, when 
and for how long [4][6]. In computer science, a scheduling algorithm is the method by which 
threads, processes or data flows are given access to system resources (e.g. processor time). This is 
usually done to load balance a system effectively or achieve a target quality of service [5][6]. 
Software known as a scheduler and dispatcher carry out this assignment. 

Scheduling algorithms have been found to be NP-complete in general form (i.e., it is believed 
that there is no optimal polynomial-time algorithm for them [12][13]). The give-and-take situation 
comes from the many definitions of good scheduling performance, such that improving per-
formance in one sense hurts performance in another. Some improvements to the Linux scheduler 
help performance all-around, but such improvements are getting more and harder to come by [16]. 

Many criteria have been suggested for comparing CPU scheduling algorithms. Which charac-
teristics are used for comparison can make a substantial difference in which algorithm is judged to 
be best. The criteria include the following: CPU utilization, throughput, fairness, execution time, 
turnaround time, context switches, completion time, waiting time, and others [7][8][ 9]. 

Context switches and turnaround time are two of the most important criteria in designing any 
operating system scheduler. The context switches time is a pure overhead because the system does 
no useful work while switching. Reducing such overhead leads to minimizing turnaround time. 

C. Paper Organization 

The rest of this paper is structured as follows: section 2 discusses the contribution of this paper. 
Current Linux kernel scheduler, CFS, is discussed in section 3. Section 4 presents the problem 
statement. In section 5, we discuss the related research. Section 6 discusses TWRS. The experi-
mental setup and scheduling modes are given in section 7. Section 8 presents the evaluations. 

2 Research Contribution of this Paper 

In this paper, we proposed and evaluated TWRS, which is a proportional share CPU scheduling, 
intending to minimize the context switches and turnaround times of processes. In proportional 
share algorithm every thread has a weight, and thread receives a share of the available resources 
proportional to its weight [18]. 

In this work, a modification is implemented to CFS. This modification is based on changing 
threads’ weights of sibling threads created in the same process and assigning a specific time slice 
to each of these sibling threads. 

We have implemented our scheduler in the Linux kernel and experimentally demonstrated the 
improvement of our scheduler over the current scheduler, CFS, using multithreaded programs in 
Sysbench benchmark [27]. Our experimental results show that TWRS scheduler minimizes con-
text switches and turnaround times. 
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3 Linux Kernel Schedulers 

A. Completely Fair Scheduler 

Completely Fair Scheduler (CFS) is introduced by Ingo Molnár to replace the O(1) scheduler 
[17][18][19][20]. This scheduler was designed to provide good interactive performance while 
maximizing overall CPU utilization [21]. It also strives to provide fairness in every process 
without sacrificing the interactivity performance [22]. This is done by giving a fair amount of 
CPU time to each process proportional to its priority. This method is also called proportional share 
algorithm, where a share is allocated for each process, which is associated with the process’s 
weight. 

CFS is successor of the O(1) scheduler and one of the most distinct changes from previous 
scheduler is the policy of setting the priority for each thread. In CFS, the scheduler counts the 
execution time of each thread and calculates the priority as vruntime (virtual runtime). CFS sets 
the higher priority for the threads with less vruntime. The run queue of CFS is composed of 
Red-Black tree, where each node represents the thread and the value of each node represents the 
vruntime of each thread [14]. 

4 Problem Statement 

This section discusses the main problem the current scheduler faces. 

A. Overview 

Each process and thread is a task in the eyes of the Linux scheduler. CFS uses thread fair sched-
uling algorithm, which allocates CPU resources between running threads in the system not be-
tween the running processes. In the current scheduler, CFS, when a new process is created, it 
appears as a thread, where both PID (Process Identification) and TGID (Thread Group Identifi-
cation) are the same (new) number, although when a thread starts another thread, that new thread 
gets its own PID, so the scheduler can schedule it independently, and inherits its TGID from its 
parent as shown in Figure 1. 

Figure 1.  Identifications of process and thread created from parent process. 
Therefore, CFS scheduler does not distinguish between threads and processes, and that way, 

the kernel can happily schedule threads independent of which process they belong to. Each forked 
thread is assigned a weight which determines the share of CPU bandwidth that thread will receive. 
Greedy users could take advantage by spawning more additional threads in order to obtain larger 
CPU resources. 

In other words, we can summarize this statement as: the default Linux scheduler is proc-
ess-agnostic and allows for greedy behavior, where processes with more threads may receive 
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more aggregate CPU time from the scheduler relative to processes with fewer threads. That is, the 
scheduler schedules threads only and does not take process membership into account, or in-
ter-process fairness. 

From the point of view of users, one of the important criteria is how long scheduler takes to 
execute their process. Turnaround time, total time between submission of a process and its com-
pletion, is one of the scheduling criteria that the scheduler is concerned mainly with [16]. Turn-
around time depends on the size of the time slice allotted to running processes, and minimizing 
turnaround time is one of the objectives that the scheduler strives to achieve. Previous work fo-
cused on the fairness criterion, however, in our work we focus on turnaround time and context 
switches. 

5 Related Research 

Generalized Processor Sharing (GPS) [1][26] is an idealized scheduling algorithm that achieves 
perfect fairness, and all schedulers use it as a reference to measure fairness. A scheduler is per-
fectly fair if it allocates CPU time to threads in exact proportion to their weights.  

Chandra [2] presented Surplus Fair Scheduling (SFS), a proportional-share CPU scheduler 
designed for symmetric multiprocessors. Chandra first showed that the infeasibility of certain 
weight assignments in multiprocessor environments results in unfairness or starvation in many 
existing proportional-share schedulers. They presented a novel weight readjustment algorithm to 
translate infeasible weight assignments to a set of feasible weights. They showed that weight 
readjustment enables existing proportional-share schedulers to significantly reduce, but not 
eliminate, the unfairness in their allocations. 

Chee [10] proposed an algorithm based on weight readjustment of the threads created in the 
same process. This algorithm, Process Fair Scheduler (PFS), is proposed to reduce the unfair 
allocation of CPU resources in multithreaded environment. Chee assumed that the optimal num-
ber of threads, best number to create in a process in order to have the best performance in a 
muti-processing environment, equals to the number of available cores. PFS changes the weight of 
thread according to the equation: 

( )( ) weight processweight thread
α

=

where α equals the number of threads created in the process. 

A modification of PFS algorithm has been proposed to overcome the limitation of PFS by im-
plementing Thread Fair Preferential Scheduler (TFPS) [23]. TFPS shall give the greedy threaded 
process (i.e. process tries to dominate most CPU time) the same amount of CPU bandwidth as 
optimally threaded process, and both of their time slices are larger than the single-threaded proc-
ess.  

Inter-Core Time Aggregation Scheduler (IAS) [1]  executes two scheduling policies at the same 
time. The first scheduling policy is the Time Aggregation Scheduler (TAS) [3][11], which exe-
cutes sibling threads in a row on a single core. The second scheduling policy is the inter-core 
aggregation, which executes sibling threads on different cores at the same time by dividing each 
core into master and slave cores. IAS lets every core cooperatively aggregate sibling threads by 
making slave cores follow the aggregation on master core. The basic idea of TAS and IAS 
schedulers is to dynamically give a priority bonus to the sibling thread of the currently executed 
threads. The priority of a thread is higher when the vruntime of the thread is smaller. Therefore, 
the priority bonus for the scheduler works to reduce the vruntime of the sibling thread. 
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6 Thread Weight Readjustment Scheduler 
This section gives an overview of TWRS, and discusses its mechanism. 

A. Overview 

TWRS is a kernel-level thread scheduler to enhance system’s performance running multithreaded 
processes by  readjusting the weights of threads forked from the same process to significantly 
achieve better some scheduling criteria. TWRS works on top of an existing scheduler that uses run 
queues for per-CPU, such as Linux 2.6. As its name suggests, TWRS depends on proportionally 
distributed CPU time between threads by changing their weights. We will explain the policy of 
allocation CPU time to running threads in the next section. 

B. TWRS and Thread Allocation of CPU Time 

Each thread is assigned a weight which determines the share of CPU bandwidth that thread will 
receive [10]. The weight of thread i is given by, 

(nice){ 20 19: _ 0 _ .(1.25 )}iw nice NICE LOAD −= − ≤ ≤  

nice denotes the thread priority assigned by the user, and the value of ’nice’ lies within [-20,19]. 
The default value of ’nice’ is ’0’ in which case wi=NICE_0_LOAD, and its value is assumed to be 

1024.  

 The share in a time interval [t1, t2] of a runnable thread i is a ratio of its weight to the sum of 
weights of all active threads in the run queue. This is computed as: 

2 2 1(t , t ) (t t ). (1)i
i t

jj R

wShare
w

� ∈

= −
∑

 

R is the set of all runnable threads that are currently in run queue of a core. wi is the weight of the 
thread, it is mapped from its nice value in prio_to_weight[], (defined as a variable in ker-

nel/sched.c file) [24], and each nice value has its respective weight. 

The time-slice that a thread i should receive in a period of time is given by: 
(2)i islice share period= ×

where period is the time quantum the scheduler tries to execute all threads, by default this is set to 
20ms [15][25]. 
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sched_min_granularity_ns is a scheduler tuneable, this tuneable decides the minimum time a 
thread will be allowed to run on CPU before being preempted out. sched_latency_ns is a sched-

uler tuneable. sched_latency_ns and sched_min_granularity_ns decide the scheduler period. 

In our consideration, the scheduler counts the number of total threads in the CPU and the 
number of sibling threads. The weights of the threads will be changed according to the next 
equation; 

. . _ (3)thrd se load weight new weight− > =  

where new_weight is the new weight of the current thread and calculated from the equation: 
_ - . .

( _ _ _ ) (4)
new weight p se load weight
prcsr totl thrds curr proc nr thrds

= > ×
− > − − >

where p->se.load.weight is the weight of the current thread, prcsr->totl_thrds is the total number 
of threads in the current processor and curr_proc->nr_thrds is the number of threads in the 

current process. 

7 Experimental Setup 

A. Underlying Platform 

TWRS can be easily integrated with an existing scheduler based on per-CPU run queues. We 
implemented TWRS in Linux version 2.6.24-1 which based on CFS. The specification of our 
experimental platform is shown in Table I. 

TABLE I.  SPECIFICATION OF OUR EXPERIMENTAL PLATFORM 

H/W 
Processor Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 
CPU cores 8 
Memory 8186756 kb 

S/W 
Kernel name Linux 

Kernel version number 2.6.24 
Machine hardware name x86_64 (64 bit) 

version of Linux CentOS release 5.10 (Final) 

B. Scheduling Modes 

To assess the performance of the modified kernel, we evaluated using 2 multithreaded bench-
marks on a SMP system. The benchmarks run under two distinct scheduling modes: (1) The de-
fault scheduling in the Linux kernel and (2) The modified kernel.  
� In the default scheduling mode, the benchmarks run on the original operating system where

the scheduler is allowed to make scheduling decisions. No extra parameter is given to the 
scheduler to change its native scheduling algorithm. 

� The second mode is accomplished in the new modified kernel, where the scheduler operates
on the new scheduling policy to give new time slices to running threads. 

Because we need to benchmark the scheduler performance, we choose only two test modes, 
threads and cpu, amongst all test modes available in Sysbench. In threads test a scheduler has a 
large number of threads competing for some set of mutexes. 

In cpu test, each request consists in calculation of prime numbers up to a value specified by 
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the --cpu-max-primes option. 
We evaluated TWRS in two major scenarios, S0 and S1 in each mode as explained in Table II. 

The following test was conducted with no other computation intensive applications running. 
� In S0, we intended to show that two concurrently executing instances of the same pro-

gram, threads program in Sysbench, one instance with a fixed number of threads and the 
other variably from N to 64 threads, where N is greater than the number of threads in the 
fixed instance. Both programs were initiated at the same time and were initiated through 
a shell script where these two programs were executed with the same nice value 0. We 
repeat this simulation with a different number of threads in the fixed one. 

� In S1, we intended to show that two concurrently executing instances of different pro-
grams, threads and cpu programs in Sysbench, threads program run with a fixed number 
of threads and cpu program variably from N to 64 threads, where N is greater than the 
number of threads in the fixed instance. Both programs were initiated at the same time 
and were initiated through a shell script where these two programs were executed with 
the same nice value 0. We repeat this simulation with a different number in the fixed 
program (threads). 

TABLE II.  S0 AND S1 SCENARIOS 

S0 No. of 
threads 
in Fixed 
program 
“threads” 

No. of 
threads 
in Varied 
program 
“threads” 

S1 No. of 
threads 
in Fixed 
program 
“threads” 

No. of 
threads 
inVaried 
program 
“cpu” 

S0.1 2 4 S1.1 2 4 
8 8 
16 16 
32 32 
64 64 

S0.2 4 8 S1.2 4 8 
16 16 
32 32 
64 64 

S0.3 8 16 S1.3 8 16 
32 32 
64 64 

8 Experimental Results 

To demonstrate the effectiveness of TWRS, we present some experimental data quantitatively 
comparing TWRS performance against the popular scheduler CFS considered on different com-
binations of number of threads for each scenario. We repeated this simulation many times for each 
sub-scenario and show the result in terms of number of context switches and average turnaround 
time. Our results show a significant improvement in terms of minimizing turnaround time and 
context switches. We divided our results into six sub-scenarios according to the previous consid-
eration in Table II. For each sub-scenario, the two programs were run concurrently 20 times and 
the average values were taken. Figures 2 and 3 show the results of turnaround comparison in S0 
and S1 respectively, and figures 4 and 5 show the results of context switches comparison in S0 and 
S1 respectively. 

Concluding Remarks 
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In this paper a novel scheduler is proposed to distribute CPU time proportionally between threads 
according to their weights. We proposed TWRS which preallocates certain amount of CPU time 
to each thread of the multithreaded processes. We focused in this work on context switches and 
turnaround time. The scheduler was implemented and evaluated under specific hardware and 
software environment. We used Sysbench benchmark in our test and run under two distinct 
scheduling modes; the default scheduling in the Linux kernel and the modified kernel. Our results 
showed that the proposed scheduler achieves better results in minimizing turnaround time and 
context switches. 
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Figure 2.  Average turnaround comparison of 
fixed number of threads of “threads” program 

vs. N threads of “threads” program in each 
sub-scenario in S0. 

Figure 3.  Average turnaround 
comparison of fixed number of threads of 
“threads” program vs. N threads of “cpu” 

program in each sub-scenario in S1. 

Figure 4.  Context switches comparison of 
fixed number of threads of “threads” program 

vs. N threads of “threads” program in each 
sub-scenario in S0. 

Figure 5.  Context switches comparison 
of fixed number of threads of “threads” 
program vs. N threads of “cpu” program 

in each sub-scenario in S1. 
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