
A Method to Adapt Storage Protocol Stack Using Custom File

Metadata to Commodity Linux Servers

Takayuki Fukatani
*
,

Atsushi Sutoh*, Takahiro Nakano*

Abstract

Storage vendors have had difficulty adapting their proprietary protocol stacks to com-

modity servers. Despite large development effort, many proprietary protocol stacks can

be used only on the specialized storage appliances because they depend on specialized

hardware or software. Most of these protocol stacks use original filesystems to store

custom file metadata that contain the protocol specific metadata to comply with the

protocol specifications. In this study, we propose a new metadata management module

named the protocol metadata module (PMM) that enables the custom file metadata to be

used on commodity Linux servers. The PMM uses a portable operating system inter-

face (POSIX)-based Linux interface to store the custom file metadata in Linux filesys-

tems so that the protocol stacks can use the custom file metadata without the specialized

hardware or software. The PMM enables the protocol stacks using the custom file

metadata to offer the protocol functions on commodity Linux servers. We applied our

developed PMM to the protocol stack of our storage appliance to verify its concept. Our

evaluation results show that the PMM increases the protocol function coverage from

75.0% to 96.7% on Linux servers while suppressing the access performance degradation

to at most 8% in the typical file server workloads.

Keywords: file server, POSIX, portability, Linux

1. Introduction

For many years, storage vendors have developed specialized storage appliances to

satisfy user demands for performance, functionality, and reliability [1][2].

Conventionally, software-based protocol stacks process client requests such as a net-

work file system (NFS), server message block (SMB), and Internet small computer in-

terface (iSCSI) on those appliances [3][4]. The vendors have made large effort to

incorporate frequent updates in the protocol specifications into their protocol stacks.

* Hitachi Ltd., Kanagawa, Japan

International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2018, Vol.2, No.1, P.23 - 42

However, the conventional storage vendors have struggled to adapt their protocol stacks

to the commodity servers. As interest in software-defined storage has increased [5][6],

users have demanded cheaper commodity servers for storage hardware for light-weight

workloads. To achieve this transition, some storage vendors use a hypervisor-based

virtual machine [2]. However, this approach is not applicable to the protocol stacks that

depend on specialized hardware.

Many storage appliances use their original filesystems to store user files and custom file

metadata that contain protocol specific metadata [1][2]. These original filesystems are

often implemented in specialized hardware or software. The custom file metadata enable

the protocol stacks to offer protocol functions in a protocol compliant manner. However,

the protocol stacks cannot be used on other filesystems because they depend on the

original filesystems.

The use of the standardized portable operating system interface (POSIX) filesystem

removes the dependency on the specialized hardware or software from the protocol

stacks [7]. The POSIX filesystem is used in a wide range of open-source software (OSS)

filesystems. Once the protocol stacks support the POSIX filesystem, they can be used on

the commodity servers on which OSS filesystems are deployable.

However, on the POSIX-based filesystems, the protocol stacks cannot offer protocol

functions that rely on the custom file metadata. The POSIX-based filesystems store the

file metadata in the POSIX compliant format that does not cover protocol specific

metadata. The protocol function coverage of the protocol stacks largely decreases on

Linux servers because of the lack of the custom file metadata.

In this study, we propose a protocol metadata module (PMM) that enables the custom

file metadata to be used on OSS Linux
i
 filesystems [8]. It utilizes a POSIX-based Linux

application programming interface (API) to store the custom file metadata in Linux

filesystems so that the protocol stacks can use the custom file metadata on Linux servers.

The PMM consists of two components: the metadata management that stores the custom

file metadata in Linux filesystems, and the journal management that ensures data

integrity of the custom file metadata [9]. These modules complement the differences

between the custom file metadata and the POSIX file metadata.

We applied our PMM to the protocol stack of our storage appliance named

High-performance Network Attached Storage (HNAS). The PMM enables the HNAS

protocol stack to offer protocol functions that rely on the custom file metadata on Linux

servers.

Our evaluations show that the PMM increases the functional coverage of the

HNAS protocol stack from 75.0% to 96.7% on Linux servers while

suppressing the performance degradation to at most 8% in the typical file server

workload. We found that the HNAS protocol stack with PMM achieves a file server

performance competitive against other OSS protocol stack implementations.

Also, we found that the journal management of the PMM ensures data integrity of

the custom file metadata by offering fast and scalable recovery processing upon a

system failure.

24

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

2. Background and Objective

2.1. HNAS Protocol Stack

Many proprietary protocol stacks use specialized hardware or software to store the

custom file metadata to comply with the protocol specifications. This hardware or

software usually has the original interface and functionality.

HNAS, which is the target storage appliance of this study, uses an original field-

programmable gate array (FPGA)-based filesystem [10]. Like many other

storage appliances, HNAS uses the original filesystem to store the custom file

metadata in a protocol compliant format. The software-based protocol stack pro-

cesses client requests that involve advanced file processing such as the security de-

scriptor, the named stream, Quota, and the virus scan [11]. The HNAS protocol

stack uses the custom file metadata to provide these capabilities. Figure 1 shows an

over-view of the HNAS architecture.

Figure 1 HNAS Overview

25

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

The HNAS protocol stack has a layered architecture that separates hardware de-

pendent modules from other modules. The architecture consists of the protocol

layer, the FileSystem Independent (FSI) layer, and the FileSystem Dependent

(FSD) layer. The protocol layer accommodates NFS, SMB, and iSCSI modules,

which interpret client requests. Underneath the protocol layer, the FSI layer offers

the aforemen-tioned advanced filesystem functions. The FSD layer encapsulates the

FPGA filesystem implementation from the upper layers.

Although a large part of the HNAS protocol stack is independent of the FPGA

filesystem, the protocol stack runs only on the HNAS appliance because it depends

on the FPGA filesystem in the FSD layer.

2.2. Objective

Despite the large development effort, the proprietary protocol stacks can be used only

on specialized appliances and not on other platforms because they depend on the

original filesystems. If the protocol stacks are enabled to run using alternative

filesystems, users will be able to choose a wider range of configurations on the basis

of workload requirements.

Use of the POSIX filesystem removes the dependency on the specialized appliance

from the protocol stacks. The POSIX filesystem is widely used in OSS filesystems

such as Ext4/XFS [12][13]. Once a protocol stack supports the POSIX filesystem, it

can be used on commodity Linux servers on which the OSS filesystem is commonly

used.

However, to comply with the protocol specifications, the protocol stacks need the

custom file metadata originally stored in the original filesystems. Without the

custom file metadata, the protocol stacks cannot offer the protocol functions that

require the protocol specific file metadata.

This study aims to adapt the protocol stacks using the custom file metadata to

commodity Linux servers. Our developed PMM enables the custom file metadata to

be used on Linux servers. We use the POSIX-based Linux API in the PMM so that

the protocol stacks can use the custom file metadata on Linux servers.

Our PMM aims to enable the protocol stacks to offer the protocol functions that

rely on the custom file metadata on Linux servers. Along with the higher protocol

func-tion coverage, the PMM aims to offer reasonable access performance and data

in-tegrity assurance. Our performance target is the HNAS protocol stack that

performs competitively against other OSS protocol stack implementations for a

typical file server workload. Also, the PMM aims to enable fast recovery

processing of data integrity of the custom file metadata upon a system failure.

3. Protocol Metadata Module

3.1. Challenges

26

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

Table 1 Linux File Metadata and Custom File Metadata

The PMM has to complement the differences between the POSIX-based Linux file

metadata and the custom file metadata to comply with the protocol specifications. The

PMM stores the user data and the file metadata in Linux filesystems. However, Linux

filesystems do not support the protocol specific file metadata whereas the custom file

metadata contain the metadata.

The differences between the Linux file metadata and the custom file metadata appear in

metadata types and data integrity assurance. The custom file metadata comply with the

NFS and SMB protocol specifications whereas the Linux file metadata comply with the

POSIX standard. Although a large part of the NFS requirements overlaps the POSIX

standard, SMB requires different types of file metadata from the POSIX standard be-

cause of the different operating system (OS) environment. Also, the protocol specifica-

tions require data integrity assurance on a per client request basis whereas POSIX en-

sures data integrity on a per system call basis [8].

Table 1 shows the differences between the Linux file metadata and the custom file

metadata of HNAS.

For the metadata types, the Linux file metadata use necessary file attributes and security

metadata for UNIX applications. Also, modern Linux file systems provide the extended

attributes to add small file attributes to user files [12][13], and most Linux filesystems

use original Quota databases to manage filesystem usage.

On the other hand, the HNAS custom file metadata comply with the SMB and NFS

specifications [3][4]. The HNAS custom file metadata use an additional set of file at-

tributes such as the file creation time or the archive attribute. The security metadata

contain the security descriptors of multiple owner files [11]. The named stream stores

arbitrarily sized named user data. The Quota database stores the Quota entries given by

the HNAS protocol stack.

For the data integrity assurance, modern Linux filesystems use the journaling systems to

ensure the data integrity. These journaling systems guarantee the data integrity on a per

system call basis, so they do not ensure the data integrity among multiple system calls

[14]. Therefore, if a system failure happens between a user file update and an update of

Items Linux File Metadata
Custom File Metadata

(HNAS)

Metadata

Types

File Attributes POSIX /

Extended Attributes

SMB / NFS

Security POSIX Permission /

ACL

SMB / NFS

Named Stream None SMB / NFSv4

Quota Filesystem Function Protocol Stack Function

Data Integrity Assurance Per System Call Per NFS / SMB Request

27

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

the custom file metadata stored in the extended attributes or system files, the data integ-

rity between the user file and the custom file metadata is not guaranteed. In contrast to

Linux metadata, HNAS guarantees the atomicity of all updates during processing of a

single client request. The above differences cause less protocol function coverage and a

lack of data integrity assurance when the protocol stacks using the custom file metadata

run on Linux filesystems.

The PMM needs to complement these differences to achieve the objectives. To offer

higher protocol function coverage, the PMM needs the metadata of the protocol func-

tions such as the SMB and NFS file attributes, the security descriptor, the named stream,

and Quota. The PMM also needs to assure the atomicity of updates of user data and

metadata during a single client request. And also, the performance is also a concern if the

PMM introduces new metadata or data integrity assurance method. These modifications

are usually accompanied by performance overhead such as additional metadata accesses

and the journal logging [18][19][25][26].

3.2. PMM Architecture

Our PMM introduces a new metadata management and the journal management to re-

alize the custom file metadata and the data integrity assurance on Linux filesystems. The

metadata management stores the custom file metadata in Linux file systems to enable

the custom file metadata to be used on Linux servers. The journal management records

the journal logs in the journal file to ensure the data integrity between user files and the

custom file metadata. In addition, performance optimization techniques are used in the

new modules to achieve the reasonable performance.

We implemented our PMM in the HNAS protocol stack. The PMM works as an internal

module in the new FSD module named Linux FSD. Linux FSD supports XFS and Ext4.

An interface called an FSD API clearly separates the FSD layer from the FSI layer in the

HNAS protocol stack. The compliance with the FSD API in Linux FSD enables the

protocol layer and the FSI layer to work on Linux servers. Figure 2 shows the PMM

overview.

Linux FSD maps an FSD API call to system calls for file operations. The file operations

in the FSD API are mostly compatible with Linux system calls including open, read,

write, and so on [8]. Therefore, the API mapping between the FSD API and system calls

for the file operations is straightforward.

Along with the file operations, the PMM issues system calls for the metadata

manage-ment and the journal management. In contrast to the file operations, the

metadata man-agement and the journal management are the original functions of

the PMM. These modules issue the system calls in the performance optimized way.

We describe the de-tails in the next section.

28

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

Figure 2 PMM Overview

4. Implementations

4.1. Metadata Management

The implementation of the metadata management consists of the namespace manage-

ment, the extended attributes, and the open_by_handle system call [15]. The PMM di-

vides the namespace of Linux filesystems into the system directory and the data direc-

tory. The PMM uses the extended attributes to store file attributes with a fixed size

and file handles of metadata files that contain arbitrarily sized metadata. The PMM

also uses the file handles and the open_by_handle system call to link the metadata

files to one or more user files. These data structures enable the custom file metadata

with an arbitrary size or multiple-owner files to be used in Linux filesystems.

Figure 3 shows the metadata layout in Linux filesystems.

29

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

The PMM offers three types of file metadata: composite attributes, linked metadata, and

system metadata. We explain these file metadata below.

4.1.1. Composite attributes

The PMM uses the composite attributes to offer predefined file attributes. The compo-

site attributes contain SMB/NFS compatible file attributes and application attributes

used in the HNAS protocol stack.

The storage of the composite attributes consists of the extended attributes and the

POSIX file attributes of user files. The PMM uses the extended attributes to store most

of the file attributes of the custom file metadata. Additionally, the PMM uses a small

part of the POSIX file attributes and converts them into a compatible format with the

custom file metadata. These POSIX file attributes include the access time, the modified

time, and the file length, which are updated during write system calls. The use of the

POSIX file attributes eliminates the disk access to the extended attributes in the write

request processing and improves write performance. We evaluate the performance im-

provement in the next section.

4.1.2. Linked metadata

The linked metadata store the custom file metadata that have arbitrary sizes and multi-

ple-owner files. The PMM uses the linked metadata to store the named stream without

Figure 3: Metadata layout in Linux filesystems

30

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

the size limitation. Also, the capability of the multiple-owner files reduces the storage

capacity of duplicated security descriptors like Windows NTFS [11].

The PMM creates metadata files or directories in the system directory for all linked

metadata. The PMM then records the file handles of the linked metadata files and di-

rectories to the extended attributes of owner files. It uses the file handles and the

open_by_handle system call to access the linked metadata. The PMM manages the ref-

erence count of the linked metadata in the extended attributes of the linked metadata file.

It then deletes the linked metadata file when the reference count becomes zero to prevent

a linked metadata file from becoming an orphan. In addition, the PMM creates a

metadata directory when the first named stream of a user file is created. The PMM stores

named streams of the user file to the same directory.

4.1.3. System metadata

The system metadata contain the filesystem metadata such as the Quota database and the

journal log, which is described in the next subsection. The system metadata are system

files with pre-defined pathnames in the system directory. The PMM provides an access

interface for the system metadata files to the FSI layer through the FSD API. The FSI

layer stores arbitrary contents to the system metadata.

4.2. Journal Management

The journal management of the PMM ensures data integrity between user files and the

custom file metadata. The PMM introduces user-space journaling to extend the scope of

data integrity assurance from a per system-call basis to a per client request basis.

The custom file metadata could be inconsistent with user files without the journal man-

agement. The PMM issues system calls to update user files and the custom file metadata

separately. Without any additional protections, the user files and the custom file

metadata could be inconsistent when a system failure happens between these system

calls. These inconsistencies include inconsistent file attributes, inconsistent security

descriptors or named stream handles, and inconsistent linked metadata reference count.

These inconsistencies could cause invalid file metadata, security violation, orphan

metadata files, or unexpected system behaviors.

To solve the above inconsistencies, the PMM offers journaling and replay processes. We

describe both processes below.

4.2.1. Journaling

The PMM manages a system file named the journal file to record all metadata

updates as journal logs. The PMM uses several types of journal logs

corresponding to the above inconsistencies. A journal log consists of the log header

and the updated metadata. A log header contains the necessary information for the

replay process such as the log type, the sequential number, the update time, the file

handle of a target user file, and request type. Figure 4 shows an example journal

log.

31

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

<<Log header>>

Log Type: Composite Attributes

Sequential Number: 0x001

Update Time: 2016-01-29 12:00:01

Request Type: Write

File handle: 0x00001

<<Log body>>

(Updated contents of the custom file metadata)

Figure 4: Example of Journal Log

For each client request, the PMM flushes journal logs to the journal file before issuing

any system calls that update the target user files. An internal service thread, which pro-

cesses client requests, adds the journal logs to a per-thread log buffer on memory. The

PMM merges the journal logs into a single disk write and flushes them to the journal file.

The PMM periodically restarts the journal file every few seconds so that the journal file

does not consume large disk capacity. Figure 5 shows the overview of the journaling

processing.

Figure 5: Journaling in PMM

32

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

The PMM uses an optimization named the direct commit to reduce the journaling

overhead. User-space journaling is known to cause a large delay due to the kernel jour-

naling during synchronous journal file updates [16]. To avoid the delay, the PMM

pre-allocates the disk blocks of the journal file. Also, the PMM uses Direct IO to update

the journal file to reduce the page cache overhead in the kernel space [8]. The PMM uses

a predefined journal file size that is calculated from the journal log size and the required

system throughput. If the total size of journal logs on the journal file exceeds the prede-

fined file size, the PMM appends the extra log items to the end of the journal file and

truncates the journal file to the predefined size when the PMM restarts the journal file.

4.2.2. Replay

When a system failure happens, the PMM starts the replay process in the next system

reboot. In the replay process, the PMM reads the journal logs on the journal file while

the log headers contain the continuous sequential numbers.

For each journal log, the PMM checks the existence and the modified time of the target

user file given in the file handle field of the log header. The PMM uses the

open_by_handle system call to find the target user file. If the target user file is created,

deleted, or modified after the update time in the log header, the PMM reflects the up-

dated metadata to the target metadata on the basis of the log type. Otherwise, the PMM

discards the journal log because the system calls that update the target user files do not

take effect during the system failure.

5. Evaluations

5.1. Protocol Function Coverage

We evaluated the protocol function coverage of the HNAS protocol stack on Linux

servers. We listed 60 HNAS protocol functions from SMB, NFS, and iSCSI specifica-

tions [3][4]. The SMB includes not only SMB specifications but also other specifica-

tions used in the SMB environment such as Volume Shadow Copy Service (VSS). Also,

NFS and iSCSI include other related specifications

We evaluated the protocol function coverage without and with the PMM (wo PMM and

w PMM). Table 2 shows the evaluation results.

The PMM improves the functional coverage from 75.0% to 96.7%. The security de-

scriptor enables the SMB security descriptor, NFSv4 ACL, and mixed mode security.

The named stream enables the SMB named stream, SMB2 symbolic link, SMB3 trans-

parent failover, and NFSv4 named attribute. The Quota database enables the NFSv3

rquota and NFSv4 quota. The composite attributes enable other improvements.

The PMM does not cover the SMB long file name or volume shadow copy because

of the lack of corresponding functions in Linux filesystems. The PMM is supposed

to be capable of these features if Linux filesystems or other modules provide the

correspond-ing functions.

33

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

Table 2: Protocol Function Coverage Without and With PMM

5.2. Access Performance

5.2.1. Measurement Environment

We used a commodity server (Dell
ii
 R610) as an NFS server in the following evalua-

tions. We used another server with the same configuration as an NFSv3 client. The client

accesses the server via a 10 Gbps network. We used a serial ATA (SATA) disk on the

server so that we can evaluate the impact of the metadata access increase of the PMM in

the disk bottleneck environment. Table 3 shows the evaluation configuration.

Table 3 Evaluation Configuration

Item Description

Hardware

(Server and

Client)

CPU Intel Xeon E5-2620
iii

(6 cores, 2.0 GHz)

RAM 12 GB

Storage Seagate Constellation.2 ST9500620NS SATA 6

Gb/s, 500 GB 7200 rpm

NIC Broadcom NetXtreme II, BCM57810 10 Gigabit

Ethernet

Software

(Server)

OS Debian Linux Wheezy (kernel 3.16.0)(kernel 3.16.0)

Filesystem XFS (inode size 512 bytes)

NFS server HNAS protocol stack with PMM, kernel nfs

daemon (knfsd), NFS ganesha v4.1

Software

(Client)

OS Debian Linux Wheezy (kernel 3.16.0)

Benchmark filebench v 1.4.9.1

34

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

5.2.2. Measurement Results

We used filebench [17] to measure the performance of the typical file server perfor-

mances including read, write, file server, and mail server performance. We used the

fivestreamwrite and fivestreamread workloads of filebench to measure the read and

write performance. We used the fileserver workload for the file server performance and

the varmail workload for the mail server performance. The fileserver workload consists

of create, write, open, append, read, close, delete, and stat to middle-sized files. The

varmail workload consists of create, write, fsync, read, open and close to small files. In

the measurements, the total file-set size is set at least two times larger than the server and

client memory to avoid cache effects.

First, we evaluated the performance overhead of our PMM. We evaluated the perfor-

mance of the HNAS protocol stack without the PMM (without PMM) and with it. In the

evaluations with the PMM, we measured the performance without any optimizations

(with PMM (No option)), with composite attribute optimization (with PMM (CA)), and

with direct commit (with PMM (CA + DC)). Figure 6 shows the measurement results.

The optimizations suppress the performance degradation of PMM from 32% to 0% in

the write performance, 16% to 7% in the file server performance, and 20% to 8% in the

mail server performance. For the read performance, no overhead was found because the

workload does not involve PMM overhead.

Figure 6: NFS Performance with and without optimizations

35

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

Table 4 Number of Disk Writes per Filebench Operation

As shown in Table 4, the decrease in the number of disk writes for a single filebench

operation explains why these performances improved. In the write workload, the com-

posite attribute optimization reduces the number of disk writes by over 75%. In the write

workload, filebench issues 1 MB write system calls, which are split into 64 KB NFS

write requests by the NFS client module. If the composite attribute optimization is not

applied, the PMM issues a disk write for updating the extended attributes in each 64 KB

NFS write request. The composite attribute optimization eliminates these disk accesses

during the NFS write request processing. In addition, 64 KB NFS write requests are

sequentially processed and merged into a single 128 KB disk write by Linux OS [8].

Theoretically, the composite attribute optimization decreases the number of disk writes

from 24 to 8 for a single 1 MB write operation.

Also, the direct commit reduces the number of disk writes in the file server workload

and the mail server workload by 2% and 5%, respectively, by eliminating the overhead

in the kernel journaling and the page cache management.

Second, we evaluated the performance of the HNAS protocol stack (Proposal) against

NFS-ganesha [18] (ganesha) and the kernel nfs daemon (knfsd). As we can see in Figure

7, the HNAS protocol stack has 10% and 20% better write and read performances than

OSSs, respectively.

The HNAS protocol stack issues disk IOs to a single file as continuously as possible to

make the disk IOs more sequential. This optimization is supposed to contribute to better

read and write performances than OSSs.

Even with the overhead of the PMM, the HNAS protocol stack performs equivalently to

OSSs in the file server evaluation. As the file server workload uses 128 KB files on av-

erage, the better write and read performances are thought to contribute to this result.

On the other hand, the HNAS protocol stack shows 20% lower performance in the mail

server evaluation that uses 16 KB file size. This result suggests that the HNAS protocol

stack performs worse than OSSs for the metadata intensive workload because of the

PMM overhead and its original performance characteristics.

As write, read, and file server workloads are the typical file server workloads, it can

be said that PMM performs competitively against OSSs in the HNAS protocol

stack.

Write File server Mail server

without PMM 8.51 0.82 0.91

with PMM (No opt.) 25.14 1.29 1.46

with PMM (CA) 8.16 1.05 1.13

with PMM (CA + DC) 8.30 1.02 1.08

36

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

Figure 7: Performance comparison with OSS Implementations

5.3. Recovery Performance

We evaluated the recovery performance of the PMM journal management upon a

system failure. In case of a system failure, the PMM recovers the data integrity of the

custom metadata when the HNAS protocol stack mounts the failed filesystem. We

evaluated the amount of time to mount the failed filesystem with and without the

PMM journal management. Also, we evaluated the performance of the exhaustive

check used in conventional filesystem utilities like fsck [9]. The exhaustive check

scans all files in the failed filesystem and recovers the consistency of metadata if

necessary.

In the evaluations, we intentionally caused system crashes while issuing file creation

and deletion requests to the HNAS protocol stack. The evaluations were carried out

with different numbers of stored files to see the scalability of the recovery methods.

Figure 8 shows the measurement results.

The mounting time with the PMM journal management was similar to that without it.

The mounting time is only about two seconds when the filesystem contains one

million files. The recovery process of PMM examines a small number of journal logs

regardless of the total number of files in the filesystem. Therefore, the recovery time

remains constant and short even if a filesystem contains a large number of files.

On the other hand, the mounting time of the exhaustive check increases in accord-

ance with the number of files. The mounting time reaches nearly 100 seconds at

one million files.

37

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

Figure 8: PMM Recovery Performance

These results show that the PMM journal management offers fast and scalable re-

covery upon a system failure.

6. Related Work

There have been a lot of studies to achieve higher protocol function coverage with

less performance overhead on commodity servers. Basically, these studies are cate-

gorized into two approaches; the POSIX based approach or the VM based approach.

For the POSIX based approach, the OSS community has developed protocol stack

implementations such as the kernel nfs daemon, NFS-ganesha, and samba [18][19].

Some of these implementations use the extended attributes and system files to store

the protocol compliant file attributes or the named stream in a similar way to our

proposed PMM. However, these OSSs do not ensure the data integrity of these

custom file metadata upon system failures whereas the PMM does. Richacl stores the

security descriptor to the extended attributes of each user file in Linux filesystems

like the PMM does [20]. However, this approach imposes larger storage consump-

tion of security descriptors than our multiple-owner metadata approach. Also, the

PMM allows the reuse of the proprietary protocol stacks with the multiple protocol

support and third-party vendor application support. These capabilities enable ad-

vanced protocol functions such as mixed mode security, the inter-protocol file lock,

and the certified proprietary virus scan support whereas OSSs do not support these

functions.

For the VM based approach, much research has focused on porting software of

purpose-built appliances to commodity servers. Burtsev et al. proposed an efficient

38

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

inter-VM communication for software of purpose-built NAS appliances running on

virtual machines (VMs) [21]. Also, NetApp
iv

 released the VM implementation of its
NAS appliance to deploy the virtual appliance to the software-defined storage [22].

These studies focus on the protocol stacks using a software-based filesystem in the

VM environment, so their methods are not applicable to the protocol stack using the

hardware-based filesystem like HNAS.

The data integrity assurance of filesystems and its performance optimizations have

long been studied [23][24]. For data integrity assurance in the kernel space, Verma et

al. showed that kernel modifications enable user-space applications to ensure data

integrity of application data [25]. However, these kernel changes can be done only in

their filesystems. The PMM is applicable for Linux filesystems that are widely used.

Moreover, user-space data integrity assurance has been widely studied in database

research [26][27][28]. This study focuses on the application of the user-space data

integrity assurance to the network storage protocol stack.

7. Conclusion

In this study, we proposed a method to adapt storage protocol stacks using the custom

file metadata to commodity Linux servers. We developed a new metadata management

module named the protocol metadata module (PMM), which enables the protocol stack

to use the custom file metadata on Linux servers. We implemented the PMM in the

protocol stack of our storage appliance, High-performance Network Attached Storage

(HNAS), to prove the concept of the PMM.

The PMM utilizes Linux application programming interfaces (APIs) such as the

namespace management, extended attributes, and open_by_handle system call to store

the custom file metadata in Linux filesystems. The PMM enables protocol stacks to

achieve higher protocol function coverage by using the custom file metadata on Linux

servers

The PMM consists of metadata management and journal management. These new

modules complement the differences between the custom file metadata and portable

operating system interface (POSIX) file metadata. Also, we introduced performance

optimizations to reduce the performance overhead of the PMM.

Our evaluations show that the PMM improves the coverage of the HNAS protocol

functions from 75.0% to 96.2% on Linux servers. Our performance optimizations sup-

press the performance degradation of the PMM to up to 8% in the typical file server

workloads. As a result, the HNAS protocol stack with the PMM performs competitively

against OSS protocol stack implementations. Also, we found that the PMM journal

management enables fast and scalable recovery processing for the data integrity

assurance of the custom file metadata.

The PMM enables the proprietary protocol stacks to achieve high protocol function

coverage while offering reasonable access performance and ensuring data integrity

on commodity Linux servers.

39

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

References

[1] Watson, P. Benn, “Multiprotocol data access: NFS CIFS and HTTP,” Technical

Report TR3014 Network Appliance, 1999.

[2] DELL EMC, “Dell EMC Isilon OneFS: A Technical Overview,” DELL EMC

White paper, 2016.

[3] The Internet Engineering Task Force; http://www.ietf.org/

[4] Microsoft Developer Network; https://msdn.microsoft.com/

[5] M. Carlson, A. Yoder, L Schoeb, D. Deel, C.Pratt, “Software-defined storage,”

Storage Networking Industry Association (SNIA), White paper, 2015.

[6] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor, S. Savage, et. al.

“scc: cluster storage provisioning informed by application characteristics and

SLAs.” Proc. 10th USENIX Conference on File and Storage Technologies

(FAST 2012), 2012.

[7] The Open Group. The Open Group Base Specifications Issue 7, 2013 Edition.

http://pubs.opengroup.org/onlinepubs/9699919799/.

[8] D. P. Bovet, and M Cesati, “Understanding the Linux kernel,” 3rd Edition.

O'Reilly Media, Inc., 2005.

[9] G. Sivathanu, CP. Wright, and E. Zadok, “Ensuring data integrity in storage:

Techniques and applications,” Proc 2005 ACM workshop on Storage security

and survivability, ACM, 2005.

[10] G. S. Barrall, T. Willis, S. Benham, M. Cooper, C. J. Aston, et al. “Apparatus

and method for hardware implementation or acceleration of operating system

functions,” U.S. Patent No 6,826,615, 2004.

[11] M. Russinovich, D, A. Solomon, and A. Ionescu, “Windows Internals (6th Edi-

tion),” Microsoft Press, 2012.

[12] xfs.org; http://xfs.org/.

[13] Ext4 Wiki; https://ext4.wiki.kernel.org/index.php/Main_Page.

[14] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A.C.

Arpaci-Dusseau, et al., “All file systems are not created equal: on the complexity

of crafting crash-consistent applications,” Proc. 11th Symposium on Operating

Systems Design and Implementation (OSDI'14), 2014.

[15] open_by_handle(3) - Linux man page;

https://linux.die.net/man/3/open_by_handle.

[16] W. Lee, K. Lee, and H Son. “Waldio: Eliminating the filesystem journaling in

resolving the journaling of journal anomaly,” Proc. USENIX Annual Technical

40

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

Conference 2015 (ATC 2015), pp 235-247, 2015.

[17] V. Tarasov, E. Zadok, and S. Shepler. “Filebench: A Flexible Framework for File

System Benchmarking,” article in ;login; magazine, Spring 2016, Vol. 41, No. 1

[18] P. Deniel, T. Leibovici, and J. C. Lafoucrière, “GANESHA, a multi-usage with

large cache NFSv4 server,” Linux Symposium, 2007.

[19] samba.org; https://www.samba.org/.

[20] Kumar K. V, A. Grünbacher, and G. Banks. "Implementing an advanced access

control model on Linux," Linux Symposium. 2010.

[21] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram, K. Voru-

ganti, et al., “Fido: Fast Inter-Virtual-Machine Communication for Enterprise

Appliances,” Proc. 2009 USENIX Annual Technical Conference (ATC 2009),

2009

[22] T. Pascu, “ONTAP Select Product Architecture and Best Practices,” NetApp

Technical Report 4517, NetApp. 2016.

[23] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy, E. Torlak et al., “Specifying

and Checking File System Crash-Consistency Models,” Proc. 21
st
 International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems 2016 (ASPLOS '16), 2016.

[24] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C.

Arpaci-Dusseau et al., “All file systems are not created equal: on the complexity

of crafting crash-consistent applications,” Proc. 11th USENIX conference on

Operating Systems Design and Implementation (OSDI'14), 2014.

[25] R. Verma, A. A. Mendez, S. Park, S. Mannarswamy, T. Kelly, et al., “Fail-

ure-atomic updates of application data in a linux file-system,” Proc. 13th

USENIX Conference on File and Storage Technologies (FAST'15) 2015, pp

203-211, 2015.

[26] Atomic Commit In SQLite; https://www.sqlite.org/atomiccommit.html.

[27] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge et al., “Torturing databases

for fun and profit,” Proc. 11th Symposium on Operating Systems Design and

Implementation (OSDI'14), pages 449–464, 2014.

[28] T. Q. Dam, S. Cheon and Y. Won. “On the IO characteristics of the SQLite

Transactions.” MOBILESoft 2016, 2016.

i
 Linux is a registered trademark of Linus Torvalds in the United States and other countries.

ii
 DELL is a trademark or a registered trademark of Dell EMC Corporation or its subsidiaries in

the United States and other countries.
iii

 Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its sub-
sidiaries in the United States and other countries.

41

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

A Method to Adapt Storage Protocol Stack Using Custom File Metadata to Commodity Linux Servers

iv
 NetApp is a trademark a trademark of NetApp, Inc.

42

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Fukatani, A. Sutoh and T. Nakano

