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Abstract 

Perception and localization are the keys in autonomous vehicle systems and driver assistance 

systems. The perception provides the information of environments around the vehicle, like other 

vehicles, pedestrians, and road signs. The localization provides the position and heading of vehi-

cle, which can be used for path planning, navigation. With perception and localization process, 

the safety of vehicle driving could be increased. In this paper, an image segmentation method 

called region growing, using threshold estimated from previous indicated road region, is pro-

posed to determine that the pixels in the image belong to road region or not. With a defined initial 

partial road region, the whole road region can be obtained. On the other hand, with a prior bird-

eye view map of the area where the vehicle drives, the contours of road region extracted from 

captured images are matching with the contour on the map by iterative closest point to obtain the 

vehicle position. In addition, in order to increase the precision of matching, the movements of 

camera are also estimated by matching the contour in consecutive frames. Furthermore, the po-

sition estimated from visual information integrated with the information from GPS to obtain more 

accurate position. Comparing with vision-based localization only, the integration with GPS re-

duces the weight and influence of bad matching results, which make the estimated position more 

accurate. The experimental results show that in structured road, with the localization by road 

signs, stop lines, and lane lines, the global positions of vehicle can be estimated while the relative 

movements are very close to GPS data. 

Keywords: Autonomous vehicle systems, monocular camera, road detection, localization, map 

matching, region growing, inverse perspective mapping (IPM), iterative closest point (ICP). 

1 Introduction 

Autonomous driving system is one of the most popular research in recent years. The system of 

autonomous driving includes environment perception, localization, planning, and control 
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 [10: Cheng. 2011]. For driving safety, perception and vehicle localization are the primary issues 

to consider. The common used sensors for environment perception of autonomous vehicle 

include cameras, lasers, radars, LiDAR, etc.  

Among all of the sensors, camera is the most available and low-cost sensor, and provides a 

lot of color information which is mainly used in human driving. There are many applications 

which are implemented with only cameras, including road detection, obstacle detection, and 

traffic sign recognition [2: Álvarez at el. 2013]. This shows that environment perception is 

achievable with only image sequence. 

For vehicle localization, the most common used way is Global Positioning System (GPS), 

and it might have drift and vulnerable in urban environment because of lack of local information. 

On the other hand, for human driving, the prediction of ego-vehicle position and drivable region 

detection are accomplished simultaneously by detecting the position of curbs or lane markings, 

which means the local information can be provided from the image captured from onboard 

cameras. By the road shape and features, the local position of vehicle can be found. Furthermore, 

in some scenes, the road markings are not fully captured by camera, the type of road markings 

are various. In such conditions, it is hard to use the road markings or lane lines for vehicle 

localization. So, the contour of asphalt road region is used, which is more general. Once the 

visible contour of road presents, such as “slow”, different type of arrows, and curve curbs, the 

vehicle localization process can be applied. Road region detection also ensures the extracted 

edges and boundaries are on the road surface, which is purer and more reliable because of the 

purpose of safety. Comparing with the features like scale-invariant feature transform (SIFT) and 

histogram of oriented gradient (HOG), localization based on road region contour is more 

instinctive to user. 

For vision-based road region detection, the main problem is classifying the image pixels into 

road and non-road pixels. One of the most popular methods is machine learning algorithm. By a 

classifier which can be trained by support vector machine (SVM) [2: Álvarez et al. 2013], or 

AdaBoost [3: Fritsch et al. 2014], the image pixels are classified into different classes. However, 

it needs large amount of database to get accurate results, and the performance is highly dependent 

on training images. But, it is not practical to train the classifiers for all of the scenes that vehicle 

might encounter. Another kind of road detection method is likelihood classification. There are 

generally two important parameters in this method, which are the initial seeds or region and 

restriction. The seeds and initial region can be determined based on previous frames [1: Hsu et 

al. 2009], [4: Siogkas and Dermatas 2013]. The restriction can be bounded by the upper and lower 

bounded of previous road region pixels [1: Hsu et al. 2009]. However, if the vehicle drives cross 

two areas whose colors are slightly different, this method would fail.  

The other issue in this thesis is localization of vehicles. Many researches on autonomous 

vehicle localization are based on the environment features observed by sensors. One of the typical 

methods for feature based localization is particle filter localization. Many researches have already 

shown that particle filter can be used for vehicle localization based on the observation from on-

board sensors without precise vehicle kinematic model [7: Hata and Wolf 2016], [8: Sivaraman 

and Trivedi 2013], [9: Cui et al. 2016]. However, if the number of feature points is very large, 

the running time might be extremely large. Another kind of method is matching the feature points 

by iterative closest point algorithm [6: Durrant-Whyte and Madhavan 2005]. The pose of sensor 

can be found by matching the observation to the map, the matching might fail if the features of 

observation and map are not exactly the same or the initial state is unknown. 
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There are mainly two problems to solve in this paper: road region detection and vehicle 

localization. The system flow chart is shown in Figure 1. The information used for vehicle 

localization process include the image captured from on-board camera, a large bird-eye view map, 

and GPS position and heading. The road region and its boundary are obtained from image and 

map, and matched with each other to obtain the vehicle position. On the other hand, GPS position 

and heading are used in vehicle localization stage to increase the accuracy of matching. 

In road region detection, a modified region growing algorithm is present. The growing is 

operated with square patch instead of a single pixel. It makes the algorithm be capable of tackling 

broken lane markings and low resolution. Furthermore, a threshold choosing method motivated 

by maximal stable external region (MSER) is proposed. The threshold is decided by the most 

stable region, so the restriction can be determined appropriately and based on previous results. 

The results show that in common vehicle driving environments with different road markings, 

such as, straight road, stop lines, and road signs, the accuracies of road region detection results 

are mostly over 90%. 

For vehicle localization, the Iterative Closest Point (ICP) algorithm is applied to match the 

observation to a pre-built map. To tackle the problem of lack of initial state before ICP, the 

movement between every consecutive frames and the state at previous time step are considered. 

By transforming the observation to the close position to the map feature, it provides nice 

prediction for initial state. Furthermore, with the integration with GPS, the weights and influences 

of bad matching results are reduced, which make the estimated position more accurate, and lateral 

and longitudinal movement can still be estimated even in straight road. The experimental results 

show that in structured road, with the localization by road markings, the global positions of 

vehicle can be estimated while the relative movements are very close to GPS data. 

Figure 1: The illustration of proposed contour-based localization. 
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2 The Proposed Algorithms 

2.1   Road Region Detection Based on Color Feature 

An image segmentation method called region growing algorithm is used to classify image 

pixels belongs to road appearance or not, and determine the drivable region. The growing process 

has two steps, patch-based and pixel-based. Patch-based region growing detect a rough range of 

drivable region, and pixel-based region growing is applied to obtain more precise region which 

is close to the boundary of the road. The threshold of region is defined with the threshold of 

previous frames, considering the spatial and temporal continuity. After the road region is obtained, 

the boundary of the region is extracted, and considered as the contour of road which is used for 

vehicle localization in following stage. The flow chart of road region detection is shown in Figure 

2. 

The images captured from on-board camera are taken as the input of region growing algorithm, 

which includes two steps, patch-based that extracts the rough road region and pixel-based that 

makes the boundary of region more close to edges of road markings. The chosen threshold in 

current frame is used to determine the threshold of next frame. After the road region is detected, 

the boundary points of road region are extracted and mapped into IPM coordinate. 

Figure 2: Road region detection system architecture. 

2.2   Region Growing Algorithm 

Methods of road detection using lane markings on the road surface, which is characteristic of 

a driving lane, extract the lane markings and define area between the road region as the road 

region [5: Alonso et al. 2012]. It highly depends on the existence and clearness of lane markings. 

In other words, when the lane markings do not exist or blur, this kind of road detection cannot 

distinguish the road region accurately.  
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Another method is using color features of road surface to distinguish the road region [3: 

Fritsch et al. 2014]. It does not have limitation of existence and clearness of lane markings. The 

method uses the characteristic that the color or material of drivable region are generally similar 

in a period of time. Machine learning algorithms classify the image pixels by trained classifier. 

However, machine learning algorithms need huge amount of training images to get more accurate 

results, and training the classifier for every different characteristic scenes is not practical. Another 

kind of road detection methods is likelihood-based classification. By finding the similar pixels to 

defined initial road pixels or seeds, a road region can be distinguished. A vision-based drivable 

region labeling method named region growing algorithm is also proposed [1: Hsu et al. 2009] 

which shows accurate results in various scenes.  

The proposed method is based on region growing algorithm to detect road region and extract 

the boundary of drivable region. By using patch-based region growing and pixel-based region 

growing in order, a more reliable drivable region extraction can be achieved. For road detection, 

first, patch-based region growing is applied. The patch-grown region would be bounded by the 

lane markings or road curbs, but not close enough to the road boundary. The patch-grown region 

would dilate by half of patch size L/2, and the dilated region is called bounded road region. Finally, 

the pixel-based region growing is applied within bounded road region, and the drivable road re-

gion can be extracted. In Figure 3, an example of road region detection is shown. Starting from 

the captured image, the patch-based region growing detects the road region as shown in Figure 

3(b) and (c). Then, the region dilates to include the boundary of road markings as shown in Figure 

3(d) and (e). Finally, the pixel-based region growing is applied with dilated region, and the more 

precise road region is obtained.  

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 3: Example of road region detection result. 

(a)Original image. (b) Binary image of patch-based grown result. (c) Patch-based grown 

result on original image. (d) Binary image of dilation of patch-based grown result.  

(e) Dilation region of patch-based grown result. (f) Apply pixel-based region growing on 

dilation region. 
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To extract precise road region, the threshold of region growing algorithm must be determined 

appropriately. The value of threshold T  is determined by its stability and previous chosen thresh-

old. The stability function ( )q i  of maximally stable extremal regions (MSER) is applied to  

choose the threshold of region growing, as shown in the following: 

 ( ) /i i iq i Q Q Q+ −= −  (1) 

where 
iQ  is the number of pixels in grown region at threshold i, and   is the interval of thresh-

old. According to experiment, the appropriate threshold usually lies between 0.1 to 0.3, so only 

stability of threshold within this range is calculated. The interval of threshold   is set as 0.1. 

Smaller interval can increase the precision, but it is not necessary and cost much more running 

time. The most appropriate threshold lies in threshold i where ( )q i is local minimum. 

The chosen threshold Tt of frame t is determined by threshold in previous frames, because 

in an area around a road marking, the difference between road marking and road surface is 

roughly the same. Tt is determined as the closest stable threshold t in frame i to the chosen thresh-

old Tt-d in previous frames. The stable region whose boundary is representative can be deter-

mined with threshold i where ( )q i  is local minimum. 

An example of threshold choosing is shown in Figure 4. The red area in Figure 4(b)-(e) is the 

detected road region with same initial seeds with local minimal stability. In Figure 4(f) and (g), 

the sizes of region area and the stabilities as vertical axis with different thresholds as horizontal 

axis are shown, where the local minimum is marked as red circle, local maximum is marked as 

blue star, and the chosen threshold is marked as magenta triangle. In this case, the previous 

chosen threshold is set as 0.16 which is the closest threshold with minimal stability to the thresh-

old of previous frame. 

 

 

 

 

 

 

 

 

 

 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

6 J. Lee, F. Lian, H. Lee



 
 
 
         

 

 

 

 
  

(a) (b) (c) 

  
(d) (e) 

 
 

(f) (g) 

Figure 4: Region growing results with different threshold 

    having local minimum stability in SL_1. 

(a) Seed position. (b) T = 0.13. (c) T = 0.16 (chosen threshold). (d) T = 0.24. (e) T = 0.26. 

(f) Relationship between region area and threshold. (g) Relationship between stability 

and threshold. 

 

2.3   Region Boundary Extraction 

Because the boundaries of road region must be the same in consecutive frames, they are ex-

tracted to localize the vehicle, and find the movement of vehicle between consecutive frames. To 

extract the boundaries of road region, Moore-Neighbor tracing algorithm is applied. However, 

there might be some very short boundaries because of the texture on the asphalt road, so the 

boundaries whose length are short than 10 pixels are neglected. In Figure 5, an example of bound-

ary extraction is shown, and the extracted boundaries is shown in Figure 5(c). Although the region 

boundaries are extracted, there are some points in the boundaries which are not very stable. In 

other word, these points are very sensitive to the threshold. If the threshold increases a little, these 

boundary points might disappear. So, the restriction of boundary is defined that the boundary 

pixels whose distance to road region is less than the next local maximum stability larger than 

chosen threshold are removed from boundaries. In Figure 5(d) and (e), the remaining boundary 
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points are shown as red plus marker, and in Figure 5(f), they are plotted on the original image, 

which shows that the boundary points are mostly the edges of road markings. 

.  

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 5: Example of road region boundary extraction. 

(a) Original image. (b) Road region detection result. (c) Boundary extraction of road re-

gion detection result. (d) Stable boundary extraction. (e) Comparison of stable and total 

boundary. (f) Stable boundary on original image. 

 

2.4   Localization based on Road Boundary Map Matching 

The flow chart of ICP localization process is shown in Figure 6. By matching the boundary 

of IPM images ct and road region map cmap, the vehicle can be localized. The estimated move-

ment between consecutive frames is used to make road boundary and road boundary map closer, 

and the process of map boundary extraction and kNN search make sure the clouds for matching 

indicate same objects. The ICP algorithm is applied to obtain a more precise position by matching 

the boundary point clouds. 
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Figure 6: Flow chart of ICP localization. 

The boundary points of bird-eye view map are also detected by road region detection with 

patch size 21, and threshold 0.18, which is determined by experiments. In addition, the seed of 

region growing algorithm is defined by the adjusted position of GPS data. The position of GPS 

data is adjusted as  
,t gpsp  by the previous estimated position, and represented as Eq. (2), where 

pt-1 is the estimated position in previous frame and 
,t gpsp   is the translation of GPS data. 

, 1 ,t gps t t gpsp p p−= +  (2) 

In the bird-eye view map, many markers for vehicle localization exist, which are shown within 

red circles in Figure 7, and their position on the map and the range of the local map surround each 

marker are recorded in the database. The position of marker m is represented as pm. 
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Figure 7: Road markings on the road. 
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When the vehicle drives close to the markers, the vehicle localization process starts, and the 

road region detection of local map is also operated. This condition can be represented as Eq. (3). 

,t gps m mp distp −   (3) 

Considering the limitation of field of view of camera, the distance distm  is determined as 3 

meters. When the camera is 3 meters close to markers, the vehicle localization, and the road 

region detection of local map starts. In Figure 8, an example of road marker, its local map, and 

the range to start vehicle localization are shown as red diamond, magenta rectangle, and red circle 

respectively. 

2.5   Boundary Matching by Iterative Closest Point 

By matching the boundaries with ICP, the position of vehicle can be determined. The trans-

formation matrix which maps the boundaries in current frame  tc  into the boundary map at each 

time step t is defined as 
map

tA . An example of boundary extraction result is shown in Figure 9. 

Figure 9(c) shows the extracted boundary  tc  in the IPM coordinate, where the origin is the 

position of camera. 

 

To use ICP matching for vehicle localization, the target and source point cloud must be very 

similar, and consist of same objects. However, the obtained point clouds are from different 

 
Figure 8: Road markings position, local road markings map, and range to start vehicle locali-

zation. 

  

 
(a) (b) (c) 

Figure 9: Extracted boundary ct in IPM coordinate. 

(a) Original image. (b) Detected road region. (c) Extracted boundary ct. 
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sources. The pre-transform boundary cloud is obtained from on-board camera, on the other hand, 

the boundary map is obtained from unmanned aerial vehicle. When some obstacles which are not 

captured in bird-eye view map show in the on-board camera, the matching results could be ex-

tremely terrible. In order to reduce the influence of present environment, the objects or boundaries 

which are not present in bird-eye view map and absence in boundary map must be removed from 

pre-transform boundary cloud. So, the k-nearest neighbor (kNN) algorithm is applied. In this case, 

the kNN search is also used for finding the nearest point in current transform boundary cloud   for 

each point in boundary map, so the parameter k is defined as 1. The point set which consists of 

the nearest points is defined. Because pre-transform boundary cloud is obtained by previous po-

sition, heading and relative movement estimation between current state and previous state, it must 

be close to its actual state. By removing the extra obstacles which is obtained from on-board 

camera and vulnerable to present environment, the result of the ICP matching with boundary map 

can be more accurate. The example of nearest boundary points to the map, and the boundary map 

in field of view at time t are shown in Figure 10.  

In order to matching the boundary accurately, ICP is applied again. After ICP, the rotation 

matrix and the translational vector can be obtained. The relationship is shown as follows: 

0 1 11

map map map map

t t tt R T cc     
=     
         

 (4) 

All the transformation matrix from IPM boundary at time t to matched boundary can be rep-

resented as follows: 

, ,

,
1 1 10 10 11

map map map map map
mapt t t t tt map mapt o t o
t t o t

c c cR TR Tc
A A A

           
= = =           

           

 (5) 

 

 

 

 

Figure 10: Nearest boundary points by the kNN search. 
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After the transformation matrix which transforms the IPM boundary from the IPM coordinate 

to the map coordinate is obtained, the position of camera, which is the origin (0, 0) in the IPM 

coordinate, is also transformed into the map coordinate. Then, the position of camera on the bird-

eye view map can be obtained as follows: 

, ,

, ,

0

0

11

x t icp

map

y t icp t

p

p A

   
   

=   
     

 (6) 

2.6   Integration with GPS Data 

Because the positions estimated by ICP matching might not be accurate and precise for every 

frame, the results of ICP localization are integrated with GPS data with different weights. Con-

sidering the relative translation of GPS data is comparatively accurate, the translations of ICP 

localization results are compared with GPS data to determine their accuracy. The relative differ-

ent ratio ri between translations of the ICP localization results  ,t icpp  and the translation of GPS 

data ,t gpsp   is defined as follows: 

, ,

,

t icp t gps

t

t gps

p p
r

p

 −
=


 (7) 

In addition, the qualities of ICP matching can be indicated by the root mean square errors ERt 

of ICP algorithm. Higher root mean square errors ERt is, t So, the weights of ICP position are 

defined with ERt and relative different ri, and represented as follows: 

, exp( )t icp t tER rw − =  (8) 

As a result, the weight of ICP results  ,t icpw  is higher to 1, when ERt and ri, are closer to 0, 

and the weights are close to 1, when ERt and ri are higher. On the other hand, the weight of GPS 

data ,t gpsw   is defined as follows to make the sum of weights be 1. 

, ,1t gps t icpw w= −  (9) 

The integrated position pt of GPS and ICP matching and ,t gpsp  are defined as follows: 

, , , ,t gps t gps t icp t icptp w p w p= +  (10) 

, 1 ,GPS i i GPS ip p p−= +
 

(11) 

 

3 Experimental Results 

The geometry of experimental vehicle, on-board camera, and GPS is shown in top of Figure 11. 

The camera is equipped in the front of the vehicle, where the height is 0.97-meter to the ground 

plane, and the pitch is 29.4°. There are two GPS sensors at the top central of the vehicle, where 
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the height is 2.06 meters, and the GPS data is obtained by combining the information from two 

sensors. The horizontal distance between camera and GPS is 1.96 meters. The entire system il-

lustration is shown in the bottom of Figure 11, where the system output is the estimated position 

by ICP. And, the following experiments are thus conducted. 

 

    

 

Figure 11: Experimental vehicle setup and system illustration. 

 

3.1   Boundary Points Extraction on Road Region Map 

Figure 12(a) shows an example of local marker map, and the position of seed, as blue star. 

Figure 12(b) and (c) show the result of road region detection as red region, and the extracted 

boundary as blue stars respectively. Finally, the extracted boundary is transformed into bird-eye 

view map and the boundary map surround marker is obtained as shown in Figure 12(d) as blue 

stars. 
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(a) (b) 

  
(c) (d) 

Figure 12: Local boundary map extraction. 

(a) Position of seed (camera position). (b) Detected road region. (c) Extracted boundary 

points (local road marking coordinate). (d) Extracted boundary points (global coordinate). 

 

3.2   Boundary Matching by Iterative Closest Point 

By matching the boundaries with ICP, the position of vehicle can be determined. The trans-

formation matrix maps the boundaries in current frame into the boundary map at each time step. 

An example of boundary extraction result is shown in Figure 13. Figure 14 shows the ICP 

matched boundary at different time, and the position of camera on the boundary map. Figure 11 

shows the results of the vehicle localization. In Figure 15(a), the trajectory of GPS data and ICP 

matching GPS data. In Figure 15(b)-(d), the differences ratio between ICP and GPS, the error of 

ICP matching GPS, and the weight of ICP position are shown respectively. Figure 15(d) shows 

the trajectory of integrated localization results. The integrated positions are closer to the ICP lo-

calization results when the differences ratio between ICP and GPS and the error of ICP matching 

are low, or the integrated positions reach the ICP localization results when the time is long enough.  
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(a) (b) (c) 

   

Figure 13: Local boundary map. 

(a) Local bird-eye view map. (b) Detected region. (c) Extracted local boundary map. 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

   

Figure 14: ICP matched boundary. 

(a) t = 1203. (b) t = 1209. (c) t = 1215. (d) t = 1221. (e) t = 1227. (f) t = 1233.  

(g) t = 1239. (h) t = 1245. (i) t = 1251. 
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(a) (b) (c) 

  
(d) (e) 

Figure 15: Integration of ICP localization and GPS. 

(a) Trajectory of ICP localization and GPS.  (b) Differences ratio between ICP and GPS. 

(c) Errors of ICP matching. (d) Weights of ICP position. (e) Integration result. 

 

3.3   Complete Test in Two Scenarios 

Figures 16 and 17 show the whole trajectory of contour-based localization, and original GPS 

trajectory in large scenes, B51 and B58, respectively in global coordinate. In Figure 16, the whole 

trajectory of the vehicle moves to right by contour-based localization comparing with GPS tra-

jectory. Furthermore, the drift of GPS on longitudinal direction of the road is about half of the 

width of the road, and with the localization process, the drift is adjusted. In Figure 17, the drift of 

GPS in this scene is large which makes the position of the vehicle is false when it drives into the 

court in front of the building. The localization process successfully estimates the actual position 

where the vehicle drives through, which can prevent from hitting the road curbs. 
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4 Concluding Remarks 

In this paper, a monocular vision-based drivable region detection method with region growing 

algorithm is proposed. The proposed method shows that it detects the road region and its contour 

precisely in various common ground vehicle driving scenes which include ‘stop lines,’ ‘road 

markings,’ ‘crosswalks,’ and ‘pure straight road,’ by choosing the threshold based on temporal 

continuity. Comparing with traditional region growing algorithm, with proposed patch-based re-

gion growing method, the leak of road region caused by broken road markings can be avoided. 

The experimental results show that the accuracies of road region detection results are over 95% 

in the scenes that are consistent in road surface color, and even when the road color changes. The 

average accuracies are still higher than 90% for whole image sequence in the scenes.  

After the road region is detected, the contour of the region is obtained by boundary points 

extraction, and only the robust boundary points remain in extraction, which ensure the contour is 

reliable for vehicle localization. Then, the vehicle position is estimated by a road contour-based 

 
Figure 16: The results of localization, and original GPS trajectory in large scene B51. 

 

Figure 17: The results of localization, and original GPS trajectory in large scene B58. 
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localization method with iterative closest point (ICP) algorithm. With a bird-eye view map which 

contains the scenes and their location that vehicle might drive through, the vehicle can be local-

ized by matching the contour of road region with the map. In addition, the observation is extracted 

by k-nearest neighbor (kNN) search algorithm to neglect the objects, which is not present in map 

building stage, in ICP matching step. With the help of kNN search and GPS, the input point clouds 

for ICP indicate possibly the same object, which ensures the system working even the image and 

bird-eye view have slight difference. To tackle with the uncertainty of matching result, it is inte-

grated with GPS data whose relative movement is very reliable. As a result, the vehicle can be 

localized by road markings and on the straight road which is lack of lateral information. The 

experimental results show that the position of vehicle can be estimated precisely with matching 

errors which are lower than 5 cm, in scenes with road markings that have simple contour. Even 

for the scenes with Mandarin road sign, whose contour is relatively complicated, the errors of 

matching are still lower than 10 cm. 
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