
International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2019, Vol. 3, No. 2, 40 – 56

Guu Kofujita *, Satoshi Takahashi *

Abstract

A traffic flow allocation has been studied by many researches. This problem is treated by
both urban planning research and game theoretical approaches. We stand on game theory
to consider the traffic flow allocation problem by treating a class of congestion games on
the network. The traffic flow allocation is called, in context the congestion game, a selfish
routing game. In this game, our proposal is to find an equilibria of decision making of the
players. The player’s decision is amounts of flows for each origin-destination path. It is
known that the equilibrium searching problem as edge based modeling is able to compute
easily by using Frank-Wolfe method, however, the edge based model has weak
expressiveness. Thus we employ a path based modeling that can treat some complex
phenomena. In this model, since we need to handle many paths in a network, it is known
that the equilibrium searching problem is difficult.

In this paper, we study a solving method for a multi OD selfish routing game, and a
method for solving standard routing games and its high speeding method. Our algorithm
employs a replicator dynamics which is one of iterative optimization techniques. In the
solution based on the replicator dynamics, the calculation time is very large, since the
calculation is also performed for all paths. Therefore, as a preprocessing of solving by
replicator dynamics, the policy of the proposed method is to make computation time faster
by deleting unused paths. This paper evaluates the algorithm by numerical experiment.

Keywords: multi-od selfish routing, pruning method, replicator dynamics.

1 Introduction

Many events can be designed and analyzed by a mathematical model using a network in
real world systems such as transportation networks and social networks. Particularly, a
traffic flow allocation has been studied by many researches. This problem is studied by
both urban planning research and game theoretical approaches. We stand on game theory
to consider the traffic flow allocation problem by treating a class of congestion games on
the network. The traffic flow allocation is called, in context the congestion game, a routing
game.

∗ University of Electro-Communications, Tokyo, Japan

Pruning Algorithms for A Replicator Dynamics Method in
Multiple OD Selfish Routing Games

The congestion game can be viewed by one of allocation problem. In the congestion
game, players choose a subset of resources. Each resource has a cost function which
depends on a number of users. Our goal is to find an equilibria of choice of the players. In
the routing game, resources are a set of path which is from origin to destination. The routing
game is applied to data transportation in the computer network and a traffic volume control
of automobiles, for example, the road pricing problem in London and Singapore[1][2]. In
this example, the governments impose tolls on vehicles traveling in a certain section in
order to eliminate traffic jams in the city center. The routing game is a valid theory when
setting the charging section and the charge amount in these cases.

The routing game can be formulated as a class of potential games[3]. By the property of
the potential game, we can compute an equilibria in the selfish routing game. A standard
formulation of the selfish routing game is given by Roughgarden[4]. Now many studies
have been proposed[5][6]. In the routing game, there are two types of models. One is a
single OD model, the other is multi OD model. In the single OD model, each player has the
same route can-didate, whereas in the multi OD model, the OD for each player is different,
it is not a candidate for the same route. Since the strategy space is not symmetrical, the
description of the model becomes complicated.

Our contribution of this study is the following

• To extend a replicator dynamics method for a single OD routing game to a multiple
OD routing game. This extension can treat a traffic control problem such as route
design of inside of station.

• To propose two pruning algorithms for high speeding calculation of a replicator
dynamics method for a multiple OD routing game.

The rest of the paper is organized as follows. Section 2 introduces a selfish routing
game. In Section 3, we introduce some examples of the selfish routing game and the price
of anarchy. In section 4, we propose a speed up method to compute an equilibrium flow in
the selfish routing game. In Section 5, we evaluate our method by numerical experiments.
After that we remark our research.

2 Selfish routing game

2.1 Model

The selfish routing game is a class of a non-cooperating game in which each player
chooses some paths and its flows between a pair of vertices on the graph. Route selection
games are classified into two types of games, nonatomic and atomic, depending on
whether or not one player can divide the flow into a plurality of paths and form a flow.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

41Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

fe(sss) = ∑
i∈N

∑
p∈Pi:e∈p

xi
p. (1)

From the above definition, a unit cost of the path p is denoted as

c̃p(sss) = ∑
e∈p

ce(fe(sss)). (2)

We can denote an average cost of the player i under the strategy sss as

Ci(sss) =
1
Xi

∑
p∈Pi

xi
pc̃p(sss). (3)

An equilibrium flow is a feasible flow sss satisfies all path cost cp is the same for any
path p ∈ Pi of each player. In other words, the equilibrium flow is defined as follows.

Definition 1 (Chap.18, Def. 18.1 in [4]). Let sss be a feasible flow for the instance (G, N,
OD, S , ccc), sss is an equilibrium flow if, for every player i ∈ N and every pair p, p̃ ∈ Pi with
xi

p > 0,

cp(sss)≤ c p̃(sss). (4)

From a Wardrop’s two extremal principles[7], a path cost of each player is the same in
the equilibrium flow. On the other hand, we can consider a minimum total cost flow called
social optimum flow (system optimum assignment[8]). It is known the following property
for the equilibria of the selfish routing game.

• Any instance (G,N,OD,S ,ccc) has at least one equilibrium flow.

• Suppose that sss and ss̃s are different equilibrium flow of (G,N,OD,S ,ccc). For any

edge e ∈ E , we have ce(fe) = ce(f̃e).

In this paper, we treat only nonatomic selfish routing game. In the following discussion,
when describing it as a routing game, unless there is any special description, it means a
nonatomic selfish routing game.

We define a selfish routing game Γ on a directed graph G = (V,E) where V is a set of
vertices and E is a set of directed edges. Let N = {1, · · · ,n} be a set of players and OD =
{(si, ti) ∈ V ×V | i ∈ N,si ̸= ti} be a set of OD pairs on the graph G. For each OD pair
(si, ti), Pi ⊆ 2E is a set of si −ti paths. The player i ∈ N wish to pour the quantity of flow
Xi ∈ R+ into the OD pair (si, ti). Let Si = {xxx ∈ R|Pi| | ∑p∈Pi xp = Xi} be a strategy set for
a player i, S = S1 ×S2 ×·· ·×Sn be a strategy space, and sss ∈ S be a strategy vector. A
strategy vector sss consists of elements which represent how much flow should pour to
each path. Also let ce : R+ → R+ be a cost function of each edge e ∈ E . The selfish
routing game is denoted by Γ = (G,N,OD,S ,ccc), where ccc = (ce)e∈E .

Next we define a flow of the network. The flow of a path p ∈ Pi of the player i ∈ N is
denoted as xi

p which is an element of the strategy set Si. Hence we denote a strategy vector
as sss = (xxx1,xxx2 · · · ,xxxn) ∈ S . Moreover, a flow of an edge e ∈ E under the strategy sss is
denoted as

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

42 G. Kofujita, S. Takahashi

The selfish routing game Γ = (G,N,OD,S ,ccc) is characterized by a potential function
which is a characteristic function[3]. The potential function of Γ is

Φ(sss) = ∑
e∈E

∫ fe(sss)

0
ce(y)dy. (5)

We can compute the equilibrium flow by solving the following an optimization problem.

min
sss∈S

Φ(sss)

(P) s.t. ∑
p∈Pi

xi
p = Xi, ∀i ∈ N

xi
p ≥ 0, ∀i ∈ N,∀p ∈ Pi.

(6)

Now we have a Lagrange relaxation of the optimization problem (6).

(LRP) min
sss∈S

Φ(sss)− ∑
i N

ϕi

(
∑
p Pi

xi
p −Xi

)
(7)

s.t. xi
p ≥ 0,

∈
∀i ∈ N,

∈
∀p ∈ Pi.

We consider a partial differential of the objective function of (7) with xi
p,

∂Φ(sss)
∂xi

p
−ϕi, ∀i ∈ N. (8)

Next, for each player i ∈ N, we have,

∂Φ(sss)
∂xi

p
= ∑

e∈p
ce(fe(sss))

(9)= c̃p(sss).

From the complementary condition of (7), we get(
∂Φ(sss)

∂xi
p

−ϕi

)
= 0, ∀i ∈ N. (10)

Moreover, we consider a dual problem of (7).

(LRD) max ϕi

s.t.
∂Φ(sss)

∂xi
p

−ϕi ≥ 0, ∀i ∈ N,∀p ∈ Pi.
(11)

From the above discussion, the following formula is held on the equilibrium flow for each
player i ∈ N:

∂Φ(sss∗)
∂xi

p
= ϕi (xi

p > 0),

∂Φ(sss∗)
∂xi

p
≥ ϕi (xi

p = 0).
(12)

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

43Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

Figure 1: Pigou’s paradox

Now we consider an average cost of each player on the solution sss∗. If xi
p = 0, the average

cost is

Ci(sss∗) =
1
Xi

∑
p∈Pi;xi

p>0

xi
pϕi

= ϕi, (13)

C(sss∗)
C(s̃ss)

. (14)

It is known the following property of the price of anarchy[9].

Property 2. When the edge cost is linear or constant, i.e. ce(x) = ax+b,(a,b ≥ 0),
the price of anarchy is at most 2

5 .

2.3 Example of the selfish routing game

We consider two examples of the selfish routing game, one is Pigou’s paradox and the
other is Breass’s paradox.

We show a Pigou’s paradox in a figure 1. In this figure, there are two edges, e1 and e2.
A cost of edge e1 is 1 and e2 has a linear cost function. We consider to pour a flow X = 1
from s to t.

since xi
pc̃p(sss∗) = 0. Therefore c̃p(sss∗) = Ci(sss∗) is held on a path with xi

p > 0 in the
equilibrium flow sss∗. The other, c̃p(sss∗) ≥ ϕ i is hold on a path with xi

p = 0. Thus it shows
that the equilibrium flow sss∗ satisfies the definition 1.

2.2 Price of Anarchy

There are two important flows in the selfish routing game, one is a social optimum flow
and an equilibrium flow which establishes the same unit cost cp (∀p ∈ Pi) of the player i.
The social optimum flow can be computed by transforming to a minimum cost multi-flow.
For an instance (G,N,OD,S ,ccc), we consider an equilibrium flow sss∗ ∈ S and an optimal
flow s̃ss ∈ S . The total cost of the instance of each flow holds C(sss∗) ≥ C(ss̃s). We define a
price of anarchy as follows:

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

44 G. Kofujita, S. Takahashi

Table 1: Flow and cost of equilibrium flow and optimum flow.

e1’s flow e1’s cost e2’s flow e2’s cost Total cost
Eq. flow 0 1 1 1 1
Opt. flow 0.5 1 0.5 0.5 0.75

Table 2: Comparison of each cost

Path cost Total cost Opt. total cost
Fig.2a 1.5 1.5 1.5
Fig.2b 2 2 1.5

From the table 1, we can see that each edge’s cost is same in the equilibrium flow. The
total cost of the equilibrium flow is 1. On the other hand, each edge’s cost is not same in
the optimum flow, however, the total cost is 0.75.

We consider the potential function of this example. Suppose that xi and ci (i = 1,2) are
flow and cost, respectively.

Φ(sss) = ∑
e∈E

∫ xe

0
ce(y)dy

=
∫ x1

0
c1(y)dy+

∫ x2

0
c2(y)dy

=
∫ x1

0
dy+

∫ x2

0
ydy

= x1 +
1
2

x2
2. (15)

We compute a flow which minimizes this potential function. Since x1 + x2 = 1, we have

x1 +
1
2

x2
2 = (1− x2)+

1
2

x2
2

=
1
2
(x2 −1)2 +

1
2
. (16)

This result is the same as the equilibrium flow. Also a price of anarchy of this example is

C(sss∗)
C(s̃ss)

=
1

0.75
=

4
3
. (17)

The second example is Breass’s paradox (figure 2a and 2b). From the table 2, the
equilibrium flow and optimum flow is same in the initial network. On the other hand, after
the adding an edge (v,w), the three paths s → v → t, s → v → w → t, and s → w → t has
the same path cost 2. From this fact, we can see this flow is the equilibrium flow. However,
the total cost is increasing from the initial network. We consider the potential function.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

45Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

(a) Initial network.

(b) After the adding an edge (v,w)

Figure 2: Breass’s paradox

Suppose that sss∗ is an equilibrium flow and s̃ss is an optimum flow. The values of potential
functions are {

Φ(sss∗) = 1.3,
Φ(s̃ss) = 1. (18)

The potential function value of the equilibrium flow is smaller than the optimum flow’s.
Also the price of anarchy is 1 in the initial network, but after the adding, the value is

C(sss∗) 2
1.5

=
4
3
. (19)

C(s̃ss)
=

3 Replicator dynamics

In this research, we employ replicator dynamics method for equilibrium solution
search[6]. The replicator dynamics is one of evolutionally computation methods[10][11]
for solving a differential equation.

For the single OD model, speeding up method using replicator dynamics is already
given[12]. Replicator dynamics is an iterative method that updates the flow rates in all
conceivable routes until a condition of the equilibrium solution is satisfied by a defined
equation. The detail of iteration is the follows.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

46 G. Kofujita, S. Takahashi

(20)

In the k + 1 iterations, update the player i’s path p’s flow,

xi
p(k + 1) = xi

p(k) −α xi
p(k)(c̃p(sss(k)) −C(sss(k))),

until the termination condition is held:

xi
p = 0,

c̃p(sss∗) = C(sss∗). (21)

In this method, it is required that an amount of flows on each OD pair satisfies a flow
conservation law in each iteration of replicator dynamics. For example, we show a
difference of flows between k th and k + 1 st iteration as follows:

∑
p∈Pi

xp(k+1)− xp(k)
α

= ∑
p∈Pi

{−xp(k)(c̃p(sss(k))−Ci(sss(k)))}

=− ∑
p∈P

xp(k)c̃p(sss(k))+ ∑
p∈P

xp(k)C(sss(k)

=−XC(sss(k))+XC(sss(k)
=0, (22)

where each path p ∈ Pi holds xp(0) > 0 in an initial solution. In an equilibrium solution,
there are many paths such that the flow becomes zero. In the solution based on the
replicator dynamics, the calculation time is very large, since the calculation is also
performed for the route of the 0 flow every time. Therefore, as a preprocessing of solving
by replicator dynamics, the policy of the proposed method is to make computation time
faster by deleting unused paths. Yoshida et. al have been proposing a redundant path
deletion method for searching an equilibrium flow in a single OD selfish routing game[12].
Our proposing method is an extension to multiple OD model.

3.1 Pruning method 1

To remove redundant paths in each path set Pi, we wish to set a criterion for path cost. This
method accelerates an equilibrium search based on the replicator dynamics by removing
some paths in Pi that satisfies the constant cost is greater than the criterion cost Ci

cut for
each player i. We show a method 1 as algorithm 1.

We show that method 1 does not impair the completeness of the solution. It means that
the algorithm does not delete paths with necessary to make an equilibrium flow.

Proposition 3. Path deletion based on a criterion cost Ci
cut does not impair the

completeness of the solution.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

47Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

Algorithm 1 Path removing algorithm based on maximum flow on the network.

Require: A directed graph G = (V,E)，n OD pairs (s1, t1),(s2, t2), · · · ,(sn,sn),
flows of each OD pair X1,X2, · · · ,Xn, and each edge cost c.

Ensure: An equilibrium flow sss∗.
1: Using Dijkstra method for computing a minimum cost of each terminal ti from every

 vertex when we consider the constant cost. The estimated cost, from a
vertex v to ti is denoted by Cv,t

min
i .

2: Using Dijkstra method for computing a minimum cost when we pour ∑i∈N Xi to an
OD pair (si, ti). The estimated cost is denoted by Ci

cut .
3: For each OD pair, decide a searching path by using depth first search (DFS). In the

DFS, when there are multi edges between two vertices, simultaneous use within the
same route is not permitted. When DFS reached from si to a vertexv ∈ V \{si},
denote the sum of constant cost as csi,v. If csi,v +Cv,t

min
i > Ci

cut holds, DFS will stop
searching. If DFS reached to ti, add the si − ti path to a path set Pi

use.
4: Let Pi

use be the set of routes giving the initial flow rate of each OD pair, search the
 equilibrium solution sss∗ by the replicator dynamics, and output the solution.

(23)c̃p(sss) ≤ c̃p(sŝsp)∀i ∈ N, p ∈ Pi,∀sss ∈ S .

Ci
cut = c̃p(ŝssp)≥ c̃p(sss∗)∀i ∈ N, p ∈ Pi,∀sss ∈ S . (24)

The criterion cost Ci
cut is always greater than the cost of the route used in the equi-

librium solution, and the path deleted with Ci
cut never is used in the equilibrium

solution.

From the above it can be seen that the method of deleting a route using the
deletion base cost Ci

cut does not impair the completeness of the solution.

3.2 Pruning method 2

In this method, in addition to the method 1, the route is deleted by considering the
maximum flow rate of each edge. We show a method 2 as algorithm 2.

As same as method 1, we show that method 2 does not impair the completeness of the
solution. It means that the algorithm does not delete paths with necessary to make an
equilibrium flow.

Proposition 4. Path deletion based on a criterion cost Ci
cut does not impair the

completeness of the solution.

Proof. Let sŝsp be a strategy vector that pour all flow, i.e. X = ∑i N Xi, to only the
path p. Since each edge cost function is monotone increasing, the

∈
strategy vector

sŝsp establish a maximum cost of a path p. Thus

Therefore, from a property of the equilibrium flow s*, the following is held:

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

48 G. Kofujita, S. Takahashi

Algorithm 2 Path removing algorithm based on maximum flow on each edge.

Require: A directed graph G = (V,E)，n OD pairs (s1, t1),(s2, t2), · · · ,(sn,sn),
flows of each OD pair X1,X2, · · · ,Xn, and each edge cost c.

Ensure: An equilibrium flow sss∗.
1: Using Dijkstra method for computing a minimum cost of each terminal ti from every

 vertex when we consider the constant cost. The estimated cost, from a vertex v to
 ti is denoted by Cv,t

min
i .

2: Using Dijkstra method for computing a minimum cost when we pour ∑i∈N Xi to an
OD pair (si, ti). The estimated cost is denoted by Ci

cut .
3: For each OD pair, decide a searching path by using depth first search (DFS). In the

DFS, when there are multi edges between two vertices, simultaneous use within the
same route is not permitted. When DFS reached from si to a vertex v ∈ V \{si},
denote the sum of constant cost as csi,v. If csi,v +Cv,t

min
i > Ci

cut holds, DFS will stop
searching. If DFS reached to ti, add the si − ti path to a path set Pi

use.
4: Let Ne be a set of players that use an edge e ∈ E in the set of path Pi. For each edge

e ∈ E , compute Xe = ∑i∈Ne Xi.
5: For each path p ∈ Pi of the player i ∈ N, compute ce

p
max = ∑e∈p ce(Xe). And for each

p∈Pi
 player i ∈ N, compute Ci

cut = mince
p
max .

6: As same as step 3, make a path set Pi
use by using Ci

cut .
7: Let Pi

use be the set of routes giving the initial flow rate of each OD pair, search the

 equilibrium solution sss∗ by the replicator dynamics, and output the solution.

cemax
p ≥ c̃p(sss) ∀i ∈ N, p ∈ Pi,sss ∈ Scut . (25)

Hence the equilibrium flow sss∗ satisfies

Ci
cut = min

p∈Puse
i

cemax
p ≥ c̃p(sss∗) ∀i ∈ N, p ∈ Pi. (26)

From the above, the route deleted using the deletion base cost Ci
cut never is used in the

equilibrium solution.

From the above it can be seen that the method of deleting a route using the
deletion base cost Ci

cut does not impair the completeness of the solution.

3.3 Discussion

The Frank-Wolfe algorithm is another method of solving general form of the selfish
routing game and common method in application research of that game. The computing

Proof. Suppose that Scut is a strategy space which contains only considering paths
in Pi

use for every player i ∈ N. Since players using each edge e ∈ E have already de-
cided, the flow does not exceed ∑i Ne Xi in the edge e. Therefore ce

p
max is a maximum

cost for each path after the first path
∈

deletion. Thus the following holds:

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

49Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

time is mostly faster than our algorithm. However, the Frank-Wolfe algorithm use edges
flow when solving. Because of using paths flow, our algorithm may solve some problems
which cannot be solved existing algorithms like each edges have some kinds of costs.

4 Numerical experiment

We examine the equilibrium solution search method in the selfish routing game with
multiple OD pairs using the proposed algorithm. In this experiment, we analyze the
equilibrium solution search result in the grid network G. The cost function of each edge e
∈ E is

ce(sss) = ccs
e + ccgt

e (sss),e ∈ E
ccs

e = a,0.5 ≤ a ≤ 1.0
ccgt

e = b× fe(sss),0.5 ≤ b ≤ 1.0,

where a,b is a random variable on the uniform distribution. Let P be a number of paths, P∗
be a number of paths after deletion, and Puse be a number of paths that there is a positive
flow in the equilibrium flow. The experiment environment is follows; (1)CPU: 3.2 GHz
Intel Core i5, (2)Memory: 16 GB 1867 MHz DDR3, and (3)OS: macOS 10.12.6. We
implemented by python 3.6.3.

4.1 Experiment 1

Verify the solution in a small scale grid network. Investigate the calculation cost of the
equilibrium solution search by the proposed method 1 and the proposed method 2 and
verify the resultant solution.

Here we will use a 4 × 4 size grid network. The combination of the number of OD
pairs and the starting and ending points of OD pairs was changed and each experiment
was carried out. The combination of the start and end points was set to be two types of
the shortest route on the network and the one not intersecting with each other without
considering the cost. The number of OD pairs was set to 2.

Experiments were carried out for each of the intersecting ones where the shortest path
between the ODs when the cost is not considered and the intersecting ones respectively.
The experiments were conducted on the same network for Method 1 and Method 2. The
cost was changed and the average of the 10 results was obtained and taken as the obtained
value. We show the average of 10 instances in the table 3,4 and number of paths in search
shows in the fig 3,4.

Comparing the number of route deletes, it is reduced regardless of whether OD
crosses or not. However, it turns out that the reduced rate is higher when it is
parallel. On the other hand, when we compare the computation time, we can see that in
the case of parallel, the method 2 exceeds the method 1, whereas in the intersection
the calculation time is shorter than the deletion rate of the route. This is considered to
change depending on the ratio of the time required for route deletion to the solution

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

50 G. Kofujita, S. Takahashi

Table 3: Experiment Results of paralell OD pairs in grid graph.

Base Method Method 1 Method 1+2
Ccut - 6.426 6.426

C(sss∗) - 4.067 4.0
P 736 127.800 127.800

Ccut2 - - 4.527
P2 - - 87.500

Puse - 3.600 3.600
Comp. time(msec) - 6.108 2.727

Figure 3: Number of paths in each instances.

search time by replicator dynamics. That is, when the number of routes is small,
the time required for route deletion exceeds the computation time of replicator
dynamics, resulting in exceeding the total computation time of method 1. It is considered
that it is necessary to properly use methods 1 and 2 properly according to the
number of candidate routes obtained in the initial search.

As for the result obtained from the equilibrium solution, both the number of
utilization routes and the average cost are considered to be within the range of the error
occurred after obtaining almost equal answers.

4.2 Experiment 2

In the following, we verify the number of candidate paths deleted, which is the key to
speeding up in method 2. Using the grid network of 5 × 5 size, in addition to the setting
made in the experiment 1, experiments were conducted for the cases where the number of
OD pairs was 2 and 4, respectively. Since the difference in method 2 is only deletion of the
candidate route, in this experiment, the equilibrium solution itself is not searched. The cost
was changed on the same network and the average of the 100 results was taken as the
obtained value. The obtained results are shown in table 5.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

51Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

Table 4: Experiment Results of interest OD pairs in Grid Graph.

Base Method Method 1 Method 1+2
Ccut - 12.199 12.199

C(sss∗) - 6.634 6.634
P 736 734.600 734.600

Ccut2 - - 10.380
P2 - - 695

Puse - 31.300 31.300
Comp. time(msec) - 615.357 545.271

Figure 4: Number of paths in each instance.

Table 5: Result of experiment 2

Parallel Intersect
of ODs 2 4 2 4

P 534.650 45957.125 70893.835 290805.510
P∗ 390.380 45957.125 68982.980 289377.693

P−P∗ 144.27 0 1910.855 1427.817
P∗

P 0.730 1 0.973 0.995

In the 5 × 5 grid network it turned out that on average it cannot be deleted at all or that
the deletion rate is small. When the OD which was able to delete was looking at the result
of the intersect, it was found that the number of deletions greatly changed depending on
the cost given. Moreover, even if the shape of the graph is the same, we also found that the
result of route deletion greatly varies depending on cost. In future it is necessary to
additionally verify in which case efficient path deletion is possible and what kind of
properties exist depending on the shape of the graph.

.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

52 G. Kofujita, S. Takahashi

Table 6: Experiment Results of random graph.

Method Base Method Method 1 Method 1+2
Ccut - 10.815 10.815

C(sss∗) - 6.739 6.739
P 3622.600 562.400 562.400

Ccut2 - - 8.808
P2 - - 373.900

Puse - 5.600 5.600
Comp. time(msec) - 233.495 165.529

Figure 5: Number of paths in each instance.

4.3 Experiment 3

Next, we use another type of network. In this experiment, so many type of instances are
applicated. We will use 10 random graphs made by 40 nodes and 0.05 density of edges.
The setting of cost is same as before experiments. The difference of before experiments is
the type of graph. In this experiment, topology of graphs are different. The average of 10
instances are shown in table 6 and number of paths in search shows in figure 5. Here we
will use a random graph. It made by 40 nodes and the density of edges is 0.05.

From table 6, method 1 and 2 have reduced redundant paths. However from figure 6,
there are large differences between instances. In addition, it can be seen that there are
multiple cases such as those in which there is almost no difference between Method 1 and
1 + 2 and there is no difference between Base Method and Method 1. Since the difference
for each instance is much larger than the result obtained in Experiment 1, it can be
considered that the present method has a big difference depending on the nature of the
instance.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

53Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

Table 7: Experiment Results of JPN25.

Method Base Method Method 1 Method 1+2
Ccut - 7.050 7.050

C(sss∗) - 4.242 4.242
P 12076.400 6003.500 6003.500

Ccut2 - - 5.607
P2 - - 1084.700

Puse - 31.300 31.300
Comp. time(msec) - 3672.217 382.704

Figure 6: Number of paths in each instance.

4.4 Experiment 4

Finally, we use JPN25(Japan Photonic Network) Model[13] like Japan’s backbone
network made by 25 nodes. We made 10 network by different settings of each edge’s
cost. In this experiment, the effects of algorithm in real network are shown. The average
of 10 instances are in 7 and number of paths in search shows in 6. The table ref Exp6
indicates the shortest path length as the number of edges of the OD pair used in each
instance and whether each shortest path shares vertices.

Table ref Exp 5 shows that the number of reduction paths when applying each method
is much larger than other experiments. JPN 25 handled this time has lower edge density
than the instances dealt with in previous experiments and modeled Japanese cities, so it is
because the reason is that the route between vertices is likely to be narrowed down when
applying the method Conceivable. Looking at each instance, we can see that the shortest
path length of both ODs is very short for 7 and 8 instances where the number of routes can
be greatly reduced. On the other hand, it is considered that the influence of whether or not
to share the vertex in the shortest route of the two OD pairs on reduction amount is not
large.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

54 G. Kofujita, S. Takahashi

Table 8: Information of Instances’s shortest paths

1 2 3 4 5 6 7 8 9 10
Distances of shortest paths 3,4 3,6 4,4 4,6 7,4 2,8 2,4 3,2 7,4 3,5

Sharing nords in ODs Yes No No Yes Yes No No Yes No No

5 Conclusion

In this research, we dealt with speeding up of solution by replicator dynamics for general
form of the selfish routing game. Although the effect of speeding up is recognized, it is
effective depending on the problem given. We also found that it is different depending on
the problem which of the two methods can be solved quickly. It cannot be said that we
could sufficiently consider what kind of effect it is for what kind of problem in our
experiments. It is thought that it is necessary to conduct experiments on more problems in
the future.

We also want to investigate whether the model using replicator dynamics can solve a
model that was difficult to obtain an equilibrium solution by the existing method.

Moreover, convexity is important property in the selfish routing games and traffic
assignment problems[14][15]. In the traffic assignment problems, Frank-Wolfe
method[16] is usually used to compute an equilibrium flow. In this algorithm, convexity is
needed. Our algorithm also needs convexity for the cost function. This paper employs
a linear cost function, however, our algorithm can be applied to general type convex
function. This is our most interest future work.

Acknowledgment

This research was partially supported by Grants-in-Aid for Scientific Research (B)
15H02972 and (C) 26330025.

References

[1] J. Leape: The London Congestion Charge. Journal of Economic Perspectives,
20(4), (2006)157–176.

[2] K.A. Small, E.T. Verhoef, and R. Lindsey: The economics of ueban transporta-tion.
Routledge in Tayler & Francis, (2007).

[3] D. Monderer and L.S. Shapley: Potential Games. GAMES AND ECONOMIC
BEHAVIOR, 14, (1996)124-143.

[4] T. Roughgarden: Routing Games, Algorithmic Game Theory, Noan Nisan, Tim

Roughgarden, Eva Tardos, Cijay V. Vazirani,CAMBRIDGE UNIVERSITY
PRESS, (2007)461-484.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

55Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games

[5] K. Yoshida, T. Okamoto and S. Koakutsu: Equilibrium Solution Search on a
Selfish Routing Problem with Multiple Constraints using the Variable Metric Gradient
Projection Method. 2015 IEEE International Conference on Systems, Man, and
Cybernetics, (2015)3023–3029.

[6] S. Fischer and B. Vocking: On the Evolution of Selfish Routing. Algorithms ‒
 ESA 2004,(2004)323–334.

[7] M.J. Smith: The existence, uniqueness and stability of traffic equilibria. Transportation
 Research Part B: Methodological, 13(4), (1979)295–304.

[8] A.K. Ziliaskopoulos: A Liner Programming Model for the Single Destination

System Optimum Dynamic Traffic Assignment Problem. Presentation preprint,
Transportation Research Boarai, Washington, D. C., (1997).

[9] S. Suri, C.D. Toth, and Y. Zhou: Selfish Load Balancing and Atomic Congestion
 Games. Algorithmica,47(1), (2007)79–96.

[10] R. Cressman and Y. Tao: The replicator equation and other game dynamics.

Proceedings of the National Academy of Sciences of the United States of America,
111, (2014)10810–10817.

[11] P. Schuster and K. Sigmund: Replicator dynamics. Journal of Theoretical Biology,
100(3), (1983)533–538.

[12] K. Yoshida, T. Okamoto and S. Koakutsu: An Efficiency Improvement of the
Equilibrium Solution Search on the Selfish Routing Game by Removing Redundant
Paths. SICE Journal of Control, Measurement, and System Integration, 9,
(2016)234–241.

[13] JPN network. IEICE: PN Homepage,https://www.ieice.org/cs/pn/jpn/jpnm.html.
(2018/11/15 Accessed)

[14] A. Taguchi: TIME DEPENDENT TRAFFIC ASSIGNMENT MODEL FOR

COMMUTER TRAFFIC IN TOKYO METROPOLITAN RAILWAY NET-
WORK. Transactions of the Operations Research Society of Japan, 48,
(2005)85–108.

[15] T. Larsson and M. Patriksson: Simplicial Decomposition with Disaggregated
Representation for the Traffic Assignment Problem. Transportation Science, 26(1),
(1992)4–17.

[16] M. Jaggi: Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
Proceedings of the 30th International Conference on Machine Learning, PMLR,
28(1), (2013)427–435.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

56 G. Kofujita, S. Takahashi

