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Abstract

A traffic flow allocation has been studied by many researches. This problem is treated by 
both urban planning research and game theoretical approaches. We stand on game theory 
to consider the traffic flow allocation problem by treating a class of congestion games on 
the network. The traffic flow allocation is called, in context the congestion game, a selfish 
routing game. In this game, our proposal is to find an equilibria of decision making of the 
players. The player’s decision is amounts of flows for each origin-destination path. It is 
known that the equilibrium searching problem as edge based modeling is able to compute 
easily by using Frank-Wolfe method, however, the edge based model has weak 
expressiveness. Thus we employ a path based modeling that can treat some complex 
phenomena. In this model, since we need to handle many paths in a network, it is known 
that the equilibrium searching problem is difficult.

In this paper, we study a solving method for a multi OD selfish routing game, and a 
method for solving standard routing games and its high speeding method. Our algorithm 
employs a replicator dynamics which is one of iterative optimization techniques. In the 
solution based on the replicator dynamics, the calculation time is very large, since the 
calculation is also performed for all paths. Therefore, as a preprocessing of solving by 
replicator dynamics, the policy of the proposed method is to make computation time faster 
by deleting unused paths. This paper evaluates the algorithm by numerical experiment.

Keywords: multi-od selfish routing, pruning method, replicator dynamics.

1 Introduction

Many events can be designed and analyzed by a mathematical model using a network in 
real world systems such as transportation networks and social networks. Particularly, a 
traffic flow allocation has been studied by many researches. This problem is studied by 
both urban planning research and game theoretical approaches. We stand on game theory 
to consider the traffic flow allocation problem by treating a class of congestion games on 
the network. The traffic flow allocation is called, in context the congestion game, a routing 
game.
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The congestion game can be viewed by one of allocation problem. In the congestion 
game, players choose a subset of resources. Each resource has a cost function which 
depends on a number of users. Our goal is to find an equilibria of choice of the players. In 
the routing game, resources are a set of path which is from origin to destination. The routing 
game is applied to data transportation in the computer network and a traffic volume control 
of automobiles, for example, the road pricing problem in London and Singapore[1][2]. In 
this example, the governments impose tolls on vehicles traveling in a certain section in 
order to eliminate traffic jams in the city center. The routing game is a valid theory when 
setting the charging section and the charge amount in these cases.

The routing game can be formulated as a class of potential games[3]. By the property of 
the potential game, we can compute an equilibria in the selfish routing game. A standard 
formulation of the selfish routing game is given by Roughgarden[4]. Now many studies 
have been proposed[5][6]. In the routing game, there are two types of models. One is a 
single OD model, the other is multi OD model. In the single OD model, each player has the 
same route can-didate, whereas in the multi OD model, the OD for each player is different, 
it is not a candidate for the same route. Since the strategy space is not symmetrical, the 
description of the model becomes complicated.

Our contribution of this study is the following

• To extend a replicator dynamics method for a single OD routing game to a multiple
OD routing game. This extension can treat a traffic control problem such as route
design of inside of station.

• To propose two pruning algorithms for high speeding calculation of a replicator
dynamics method for a multiple OD routing game.

The rest of the paper is organized as follows. Section 2 introduces a selfish routing 
game. In Section 3, we introduce some examples of the selfish routing game and the price 
of anarchy. In section 4, we propose a speed up method to compute an equilibrium flow in 
the selfish routing game. In Section 5, we evaluate our method by numerical experiments. 
After that we remark our research.

2    Selfish routing game

2.1 Model

The selfish routing game is a class of a non-cooperating game in which each player 
chooses some paths and its flows between a pair of vertices on the graph. Route selection 
games are classified into two types of games, nonatomic and atomic, depending on 
whether or not one player can divide the flow into a plurality of paths and form a flow. 
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fe(sss) = ∑
i∈N

∑
p∈Pi:e∈p

xi
p. (1)

From the above definition, a unit cost of the path p is denoted as

c̃p(sss) = ∑
e∈p

ce( fe(sss)). (2)

We can denote an average cost of the player i under the strategy sss as

Ci(sss) =
1
Xi

∑
p∈Pi

xi
pc̃p(sss). (3)

An equilibrium flow is a feasible flow sss satisfies all path cost cp is the same for any 
path p ∈ Pi of each player. In other words, the equilibrium flow is defined as follows.

Definition 1 (Chap.18, Def. 18.1 in [4]). Let sss be a feasible flow for the instance (G, N, 
OD, S , ccc), sss is an equilibrium flow if, for every player i ∈ N and every pair p, p̃ ∈ Pi with 
xi

p > 0,

cp(sss)≤ c p̃(sss). (4)

From a Wardrop’s two extremal principles[7], a path cost of each player is the same in 
the equilibrium flow. On the other hand, we can consider a minimum total cost flow called 
social optimum flow (system optimum assignment[8]). It is known the following property 
for the equilibria of the selfish routing game.

• Any instance (G,N,OD,S ,ccc) has at least one equilibrium flow.

• Suppose that sss and ss̃s are different equilibrium flow of (G,N,OD,S ,ccc). For any

edge e ∈ E , we have ce( fe) = ce( f̃e).

In this paper, we treat only nonatomic selfish routing game. In the following discussion, 
when describing it as a routing game, unless there is any special description, it means a 
nonatomic selfish routing game.

We define a selfish routing game Γ on a directed graph G = (V,E) where V is a set of 
vertices and E is a set of directed edges. Let N = {1, · · · ,n} be a set of players and OD = 
{(si, ti) ∈ V ×V | i ∈ N,si ̸= ti} be a set of OD pairs on the graph G. For each OD pair 
(si, ti), Pi ⊆ 2E is a set of si −ti paths. The player i ∈ N wish to pour the quantity of flow 
Xi ∈ R+ into the OD pair (si, ti). Let Si = {xxx ∈ R|Pi| | ∑p∈Pi xp = Xi} be a strategy set for
a player i, S = S1 ×S2 ×·· ·×Sn be a strategy space, and sss ∈ S be a strategy vector. A 
strategy vector sss consists of elements which represent how much flow should pour to 
each path. Also let ce : R+ → R+ be a cost function of each edge e ∈ E . The selfish 
routing game is denoted by Γ = (G,N,OD,S ,ccc), where ccc = (ce)e∈E .

Next we define a flow of the network. The flow of a path p ∈ Pi of the player i ∈ N is 
denoted as xi

p which is an element of the strategy set Si. Hence we denote a strategy vector 
as sss = (xxx1,xxx2 · · · ,xxxn) ∈ S . Moreover, a flow of an edge e ∈ E under the strategy sss is 
denoted as
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The selfish routing game Γ = (G,N,OD,S ,ccc) is characterized by a potential function 
which is a characteristic function[3]. The potential function of Γ is

Φ(sss) = ∑
e∈E

∫ fe(sss)

0
ce(y)dy. (5)

We can compute the equilibrium flow by solving the following an optimization problem.

min
sss∈S

Φ(sss)

(P) s.t. ∑
p∈Pi

xi
p = Xi, ∀i ∈ N

xi
p ≥ 0, ∀i ∈ N,∀p ∈ Pi.

(6)

Now we have a Lagrange relaxation of the optimization problem (6).

(LRP) min
sss∈S

Φ(sss)− ∑
i N

ϕi

(
∑
p Pi

xi
p −Xi

)
(7)

s.t.      xi
p ≥ 0, 

∈
∀i ∈ N,

∈
∀p ∈ Pi.

We consider a partial differential of the objective function of (7) with xi
p,

∂Φ(sss)
∂xi

p
−ϕi, ∀i ∈ N. (8)

Next, for each player i ∈ N, we have,

∂Φ(sss)
∂xi

p
= ∑

e∈p
ce( fe(sss))

(9)= c̃p(sss).

From the complementary condition of (7), we get(
∂Φ(sss)

∂xi
p

−ϕi

)
= 0, ∀i ∈ N. (10)

Moreover, we consider a dual problem of (7).

(LRD) max ϕi

s.t.
∂Φ(sss)

∂xi
p

−ϕi ≥ 0, ∀i ∈ N,∀p ∈ Pi.
(11)

From the above discussion, the following formula is held on the equilibrium flow for each 
player i ∈ N: 

∂Φ(sss∗)
∂xi

p
= ϕi (xi

p > 0),

∂Φ(sss∗)
∂xi

p
≥ ϕi (xi

p = 0).
(12)
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Figure 1: Pigou’s paradox

Now we consider an average cost of each player on the solution sss∗. If xi
p = 0, the average 

cost is

Ci(sss∗) =
1
Xi

∑
p∈Pi;xi

p>0

xi
pϕi

= ϕi, (13)

C(sss∗)
C(s̃ss)

. (14)

It is known the following property of the price of anarchy[9].

Property 2. When the edge cost is linear or constant, i.e. ce(x) = ax+b,(a,b ≥ 0),
the price of anarchy is at most 2

5 .

2.3    Example of the selfish routing game

We consider two examples of the selfish routing game, one is Pigou’s paradox and the 
other is Breass’s paradox.

We show a Pigou’s paradox in a figure 1. In this figure, there are two edges, e1 and e2. 
A cost of edge e1 is 1 and e2 has a linear cost function. We consider to pour a flow X = 1 
from s to t.

since xi
pc̃p(sss∗) = 0. Therefore c̃p(sss∗) = Ci(sss∗) is held on a path with xi

p > 0 in the 
equilibrium flow sss∗. The other, c̃p(sss∗) ≥ ϕ  i is hold on a path with xi

p = 0. Thus it shows 
that the equilibrium flow sss∗ satisfies the definition 1.

2.2 Price of Anarchy

There are two important flows in the selfish routing game, one is a social optimum flow 
and an equilibrium flow which establishes the same unit cost cp (∀p ∈ Pi) of the player i. 
The social optimum flow can be computed by transforming to a minimum cost multi-flow. 
For an instance (G,N,OD,S ,ccc), we consider an equilibrium flow sss∗ ∈ S and an optimal 
flow s̃ss ∈ S . The total cost of the instance of each flow holds C(sss∗) ≥ C(ss̃s). We define a 
price of anarchy as follows:
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Table 1: Flow and cost of equilibrium flow and optimum flow.

e1’s flow e1’s cost e2’s flow e2’s cost Total cost
Eq. flow 0 1 1 1 1
Opt. flow 0.5 1 0.5 0.5 0.75

Table 2: Comparison of each cost

Path cost Total cost Opt. total cost
Fig.2a 1.5 1.5 1.5
Fig.2b 2 2 1.5

From the table 1, we can see that each edge’s cost is same in the equilibrium flow. The 
total cost of the equilibrium flow is 1. On the other hand, each edge’s cost is not same in 
the optimum flow, however, the total cost is 0.75.

We consider the potential function of this example. Suppose that xi and ci (i = 1,2) are 
flow and cost, respectively.

Φ(sss) = ∑
e∈E

∫ xe

0
ce(y)dy

=
∫ x1

0
c1(y)dy+

∫ x2

0
c2(y)dy

=
∫ x1

0
dy+

∫ x2

0
ydy

= x1 +
1
2

x2
2. (15)

We compute a flow which minimizes this potential function. Since x1 + x2 = 1, we have

x1 +
1
2

x2
2 = (1− x2)+

1
2

x2
2

=
1
2
(x2 −1)2 +

1
2
. (16)

This result is the same as the equilibrium flow. Also a price of anarchy of this example is

C(sss∗)
C(s̃ss)

=
1

0.75
=

4
3
. (17)

The second example is Breass’s paradox (figure 2a and 2b). From the table 2, the 
equilibrium flow and optimum flow is same in the initial network. On the other hand, after 
the adding an edge (v,w), the three paths s → v → t, s → v → w → t, and s → w → t has 
the same path cost 2. From this fact, we can see this flow is the equilibrium flow. However, 
the total cost is increasing from the initial network. We consider the potential function. 
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(a) Initial network.

(b) After the adding an edge (v,w)

Figure 2: Breass’s paradox

Suppose that sss∗ is an equilibrium flow and s̃ss is an optimum flow. The values of potential 
functions are {

Φ(sss∗) = 1.3,
Φ(s̃ss) = 1. (18)

The potential function value of the equilibrium flow is smaller than the optimum flow’s. 
Also the price of anarchy is 1 in the initial network, but after the adding, the value is

C(sss∗) 2
1.5

=
4
3
. (19)

C(s̃ss) 
=

3 Replicator dynamics

In this research, we employ replicator dynamics method for equilibrium solution 
search[6]. The replicator dynamics is one of evolutionally computation methods[10][11] 
for solving a differential equation.

For the single OD model, speeding up method using replicator dynamics is already 
given[12]. Replicator dynamics is an iterative method that updates the flow rates in all 
conceivable routes until a condition of the equilibrium solution is satisfied by a defined 
equation. The detail of iteration is the follows. 
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(20)

In the k + 1 iterations, update the player i’s path p’s flow,

xi
p(k + 1) = xi

p(k) −α xi
p(k)(c̃p(sss(k)) −C(sss(k))), 

until the termination condition is held:

xi
p = 0,

c̃p(sss∗) = C(sss∗). (21)

In this method, it is required that an amount of flows on each OD pair satisfies a flow 
conservation law in each iteration of replicator dynamics. For example, we show a 
difference of flows between k th and k + 1 st iteration as follows:

∑
p∈Pi

xp(k+1)− xp(k)
α

= ∑
p∈Pi

{−xp(k)(c̃p(sss(k))−Ci(sss(k)))}

=− ∑
p∈P

xp(k)c̃p(sss(k))+ ∑
p∈P

xp(k)C(sss(k)

=−XC(sss(k))+XC(sss(k)
=0, (22)

where each path p ∈ Pi holds xp(0) > 0 in an initial solution. In an equilibrium solution, 
there are many paths such that the flow becomes zero. In the solution based on the 
replicator dynamics, the calculation time is very large, since the calculation is also 
performed for the route of the 0 flow every time. Therefore, as a preprocessing of solving 
by replicator dynamics, the policy of the proposed method is to make computation time 
faster by deleting unused paths. Yoshida et. al have been proposing a redundant path 
deletion method for searching an equilibrium flow in a single OD selfish routing game[12]. 
Our proposing method is an extension to multiple OD model.

3.1 Pruning method 1

To remove redundant paths in each path set Pi, we wish to set a criterion for path cost. This 
method accelerates an equilibrium search based on the replicator dynamics by removing 
some paths in Pi that satisfies the constant cost is greater than the criterion cost Ci

cut for 
each player i. We show a method 1 as algorithm 1.

We show that method 1 does not impair the completeness of the solution. It means that 
the algorithm does not delete paths with necessary to make an equilibrium flow.

Proposition 3. Path deletion based on a criterion cost Ci
cut does not impair the 

completeness of the solution.
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Algorithm 1 Path removing algorithm based on maximum flow on the network.

Require: A directed graph G = (V,E)，n OD pairs (s1, t1),(s2, t2), · · · ,(sn,sn),
flows of each OD pair X1,X2, · · · ,Xn, and each edge cost c.

Ensure: An equilibrium flow sss∗.
1: Using Dijkstra method for computing a minimum cost of each terminal ti from every 

 vertex when we consider the constant cost. The estimated cost, from a
vertex v to ti is denoted by Cv,t

min
i .

2:  Using Dijkstra method for computing a minimum cost when we pour ∑i∈N Xi to an
OD pair (si, ti). The estimated cost is denoted by Ci

cut .
3:  For each OD pair, decide a searching path by using depth first search (DFS). In the 

DFS, when there are multi edges between two vertices, simultaneous use within the 
same route is not permitted. When DFS reached from si to a vertexv ∈ V \{si}, 
denote the sum of constant cost as csi,v. If csi,v +Cv,t

min
i > Ci

cut holds, DFS will stop 
searching. If DFS reached to ti, add the si − ti path to a path set Pi

use.
4:  Let Pi

use be the set of routes giving the initial flow rate of each OD pair, search the
     equilibrium solution sss∗ by the replicator dynamics, and output the solution.

(23)c̃p(sss) ≤ c̃p(sŝsp)∀i ∈ N, p ∈ Pi,∀sss ∈ S .

Ci
cut = c̃p(ŝssp)≥ c̃p(sss∗)∀i ∈ N, p ∈ Pi,∀sss ∈ S . (24)

The criterion cost Ci
cut is always greater than the cost of the route used in the equi-

librium solution, and the path deleted with Ci
cut never is used in the equilibrium 

solution.

From the above it can be seen that the method of deleting a route using the 
deletion base cost Ci

cut does not impair the completeness of the solution.

3.2 Pruning method 2

In this method, in addition to the method 1, the route is deleted by considering the 
maximum flow rate of each edge. We show a method 2 as algorithm 2.

As same as method 1, we show that method 2 does not impair the completeness of the 
solution. It means that the algorithm does not delete paths with necessary to make an 
equilibrium flow.

Proposition 4. Path deletion based on a criterion cost Ci
cut does not impair the 

completeness of the solution.

Proof. Let sŝsp be a strategy vector that pour all flow, i.e. X = ∑i N Xi, to only the
path p. Since each edge cost function is monotone increasing, the

∈
strategy vector

sŝsp establish a maximum cost of a path p. Thus

Therefore, from a property of the equilibrium flow s*, the following is held:

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

48 G. Kofujita, S. Takahashi



Algorithm 2 Path removing algorithm based on maximum flow on each edge.

Require: A directed graph G = (V,E)，n OD pairs (s1, t1),(s2, t2), · · · ,(sn,sn),
flows of each OD pair X1,X2, · · · ,Xn, and each edge cost c.

Ensure: An equilibrium flow sss∗.
1: Using Dijkstra method for computing a minimum cost of each terminal ti from every 

 vertex when we consider the constant cost. The estimated cost, from a vertex v to
 ti is denoted by Cv,t

min
i .

2:  Using Dijkstra method for computing a minimum cost when we pour ∑i∈N Xi to an 
OD pair (si, ti). The estimated cost is denoted by Ci

cut .
3:  For each OD pair, decide a searching path by using depth first search (DFS). In the

DFS, when there are multi edges between two vertices, simultaneous use within the 
same route is not permitted. When DFS reached from si to a vertex v ∈ V \{si}, 
denote the sum of constant cost as csi,v. If csi,v +Cv,t

min
i > Ci

cut holds, DFS will stop 
searching. If DFS reached to ti, add the si − ti path to a path set Pi

use.
4:  Let Ne be a set of players that use an edge e ∈ E in the set of path Pi. For each edge 

e ∈ E , compute Xe = ∑i∈Ne Xi.
5:  For each path p ∈ Pi of the player i ∈ N, compute ce

p
max = ∑e∈p ce(Xe). And for each

p∈Pi
 player i ∈ N, compute Ci

cut = mince
p
max .

6: As same as step 3, make a path set Pi
use by using Ci

cut .
7:   Let Pi

use be the set of routes giving the initial flow rate of each OD pair, search the

      equilibrium solution sss∗ by the replicator dynamics, and output the solution.

cemax
p ≥ c̃p(sss) ∀i ∈ N, p ∈ Pi,sss ∈ Scut . (25)

Hence the equilibrium flow sss∗ satisfies

Ci
cut = min

p∈Puse
i

cemax
p ≥ c̃p(sss∗) ∀i ∈ N, p ∈ Pi. (26)

From the above, the route deleted using the deletion base cost Ci
cut never is used in the

equilibrium solution.

From the above it can be seen that the method of deleting a route using the 
deletion base cost Ci

cut does not impair the completeness of the solution.

3.3 Discussion

The Frank-Wolfe algorithm is another method of solving general form of the selfish 
routing game and common method in application research of that game. The computing

Proof. Suppose that Scut is a strategy space which contains only considering paths
in Pi

use for every player i ∈ N. Since players using each edge e ∈ E have already de-
cided, the flow does not exceed ∑i Ne Xi in the edge e. Therefore ce

p
max is a maximum

cost for each path after the first path
∈

deletion. Thus the following holds:
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time is mostly faster than our algorithm. However, the Frank-Wolfe algorithm use edges 
flow when solving. Because of using paths flow, our algorithm may solve some problems 
which cannot be solved existing algorithms like each edges have some kinds of costs.

4 Numerical experiment

We examine the equilibrium solution search method in the selfish routing game with 
multiple OD pairs using the proposed algorithm. In this experiment, we analyze the 
equilibrium solution search result in the grid network G. The cost function of each edge e 
∈ E is

ce(sss) = ccs
e + ccgt

e (sss),e ∈ E
ccs

e = a,0.5 ≤ a ≤ 1.0
ccgt

e = b× fe(sss),0.5 ≤ b ≤ 1.0,

where a,b is a random variable on the uniform distribution. Let P be a number of paths, P∗ 
be a number of paths after deletion, and Puse be a number of paths that there is a positive 
flow in the equilibrium flow. The experiment environment is follows; (1)CPU: 3.2 GHz 
Intel Core i5, (2)Memory: 16 GB 1867 MHz DDR3, and (3)OS: macOS 10.12.6. We 
implemented by python 3.6.3.

4.1 Experiment 1

Verify the solution in a small scale grid network. Investigate the calculation cost of the 
equilibrium solution search by the proposed method 1 and the proposed method 2 and 
verify the resultant solution.

Here we will use a 4 × 4 size grid network. The combination of the number of OD 
pairs and the starting and ending points of OD pairs was changed and each experiment 
was carried out. The combination of the start and end points was set to be two types of 
the shortest route on the network and the one not intersecting with each other without 
considering the cost. The number of OD pairs was set to 2.

Experiments were carried out for each of the intersecting ones where the shortest path 
between the ODs when the cost is not considered and the intersecting ones respectively. 
The experiments were conducted on the same network for Method 1 and Method 2. The 
cost was changed and the average of the 10 results was obtained and taken as the obtained 
value. We show the average of 10 instances in the table 3,4 and number of paths in search 
shows in the fig 3,4.

Comparing the number of route deletes, it is reduced regardless of whether OD 
crosses or not. However, it turns out that the reduced rate is higher when it is 
parallel. On the other hand, when we compare the computation time, we can see that in 
the case of parallel, the method 2 exceeds the method 1, whereas in the intersection 
the calculation time is shorter than the deletion rate of the route. This is considered to 
change depending on the ratio of the time required for route deletion to the solution 
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Table 3: Experiment Results of paralell OD pairs in grid graph.

Base Method Method 1 Method 1+2
Ccut - 6.426 6.426

C(sss∗) - 4.067 4.0
P 736 127.800 127.800

Ccut2 - - 4.527
P2 - - 87.500

Puse - 3.600 3.600
Comp. time(msec) - 6.108 2.727

Figure 3: Number of paths in each instances.

search time by replicator dynamics. That is, when the number of routes is small, 
the time required for route deletion exceeds the computation time of replicator 
dynamics, resulting in exceeding the total computation time of method 1. It is considered 
that it is necessary to properly use methods 1 and 2 properly according to the 
number of candidate routes obtained in the initial search.

As for the result obtained from the equilibrium solution, both the number of 
utilization routes and the average cost are considered to be within the range of the error 
occurred after obtaining almost equal answers.

4.2 Experiment 2

In the following, we verify the number of candidate paths deleted, which is the key to 
speeding up in method 2. Using the grid network of 5 × 5 size, in addition to the setting 
made in the experiment 1, experiments were conducted for the cases where the number of 
OD pairs was 2 and 4, respectively. Since the difference in method 2 is only deletion of the 
candidate route, in this experiment, the equilibrium solution itself is not searched. The cost 
was changed on the same network and the average of the 100 results was taken as the 
obtained value. The obtained results are shown in table 5.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

51Pruning Algorithms for A Replicator Dynamics Method in Multiple OD Selfish Routing Games



Table 4: Experiment Results of interest OD pairs in Grid Graph.

Base Method Method 1 Method 1+2
Ccut - 12.199 12.199

C(sss∗) - 6.634 6.634
P 736 734.600 734.600

Ccut2 - - 10.380
P2 - - 695

Puse - 31.300 31.300
Comp. time(msec) - 615.357 545.271

Figure 4: Number of paths in each instance. 

Table 5: Result of experiment 2

Parallel Intersect
# of ODs 2 4 2 4

P 534.650 45957.125 70893.835 290805.510
P∗ 390.380 45957.125 68982.980 289377.693

P−P∗ 144.27 0 1910.855 1427.817
P∗

P 0.730 1 0.973 0.995

In the 5 × 5 grid network it turned out that on average it cannot be deleted at all or that 
the deletion rate is small. When the OD which was able to delete was looking at the result 
of the intersect, it was found that the number of deletions greatly changed depending on 
the cost given. Moreover, even if the shape of the graph is the same, we also found that the 
result of route deletion greatly varies depending on cost. In future it is necessary to 
additionally verify in which case efficient path deletion is possible and what kind of 
properties exist depending on the shape of the graph.

.
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Table 6: Experiment Results of random graph.

Method Base Method Method 1 Method 1+2
Ccut - 10.815 10.815

C(sss∗) - 6.739 6.739
P 3622.600 562.400 562.400

Ccut2 - - 8.808
P2 - - 373.900

Puse - 5.600 5.600
Comp. time(msec) - 233.495 165.529

Figure 5: Number of paths in each instance.

4.3 Experiment 3

Next, we use another type of network. In this experiment, so many type of instances are 
applicated. We will use 10 random graphs made by 40 nodes and 0.05 density of edges. 
The setting of cost is same as before experiments. The difference of before experiments is 
the type of graph. In this experiment, topology of graphs are different. The average of 10 
instances are shown in table 6 and number of paths in search shows in figure 5. Here we 
will use a random graph. It made by 40 nodes and the density of edges is 0.05.

From table 6, method 1 and 2 have reduced redundant paths. However from figure 6, 
there are large differences between instances. In addition, it can be seen that there are 
multiple cases such as those in which there is almost no difference between Method 1 and 
1 + 2 and there is no difference between Base Method and Method 1. Since the difference 
for each instance is much larger than the result obtained in Experiment 1, it can be 
considered that the present method has a big difference depending on the nature of the 
instance.
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Table 7: Experiment Results of JPN25.

Method Base Method Method 1 Method 1+2
Ccut - 7.050 7.050

C(sss∗) - 4.242 4.242
P 12076.400 6003.500 6003.500

Ccut2 - - 5.607
P2 - - 1084.700

Puse - 31.300 31.300
Comp. time(msec) - 3672.217 382.704

Figure 6: Number of paths in each instance.

4.4 Experiment 4

Finally, we use JPN25(Japan Photonic Network) Model[13] like Japan’s backbone 
network made by 25 nodes. We made 10 network by different settings of each edge’s 
cost. In this experiment, the effects of algorithm in real network are shown. The average 
of 10 instances are in 7 and number of paths in search shows in 6. The table ref Exp6 
indicates the shortest path length as the number of edges of the OD pair used in each 
instance and whether each shortest path shares vertices.

Table ref Exp 5 shows that the number of reduction paths when applying each method 
is much larger than other experiments. JPN 25 handled this time has lower edge density 
than the instances dealt with in previous experiments and modeled Japanese cities, so it is 
because the reason is that the route between vertices is likely to be narrowed down when 
applying the method Conceivable. Looking at each instance, we can see that the shortest 
path length of both ODs is very short for 7 and 8 instances where the number of routes can 
be greatly reduced. On the other hand, it is considered that the influence of whether or not 
to share the vertex in the shortest route of the two OD pairs on reduction amount is not 
large.
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Table 8: Information of Instances’s shortest paths

1 2 3 4 5 6 7 8 9 10
Distances of shortest paths 3,4 3,6 4,4 4,6 7,4 2,8 2,4 3,2 7,4 3,5

Sharing nords in ODs Yes No No Yes Yes No No Yes No No

5 Conclusion

In this research, we dealt with speeding up of solution by replicator dynamics for general 
form of the selfish routing game. Although the effect of speeding up is recognized, it is 
effective depending on the problem given. We also found that it is different depending on 
the problem which of the two methods can be solved quickly. It cannot be said that we 
could sufficiently consider what kind of effect it is for what kind of problem in our 
experiments. It is thought that it is necessary to conduct experiments on more problems in 
the future.

We also want to investigate whether the model using replicator dynamics can solve a 
model that was difficult to obtain an equilibrium solution by the existing method.

Moreover, convexity is important property in the selfish routing games and traffic 
assignment problems[14][15]. In the traffic assignment problems, Frank-Wolfe 
method[16] is usually used to compute an equilibrium flow. In this algorithm, convexity is 
needed. Our algorithm also needs convexity for the cost function. This paper employs 
a linear cost function, however, our algorithm can be applied to general type convex 
function. This is our most interest future work.
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