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Abstract 

Threshold networks are useful as a fundamental technology in the recent learning and AI 
domains. Reduction of data variables in threshold networks is an important issue and it is 
needed for the processing of higher dimensional data in the application domains and AI. 
Boolean and rough set is fundamental and useful to reduce higher dimensional data to lower one 
for the classification. We develop a reduction of data variables and classification method based 
on geometrical reasoning, which is characterized by nearest neighbor relations. In this paper, the 
nearest neighbor relations are shown to be useful for the reduction of variables and their classifi-
cation in threshold networks. The Boolean operation and convex cones generated by the nearest 
neighbor relations derive the reduced variables of data and the classifications using them. Then, 
the edges of convex cones are compared for the reduction of variables. Further, hyperplanes with 
reduced variables are generated on the same  convex cones for data classification.  

Keywords:  Nearest neighbor relation, Boolean operation, Convex cones, Reduction of variables 

1 Introduction 

By Pawlak’s rough set theory[1], a reduct is a minimal subset of features, which has the discern-
ibility power as using the entire features, which shows the dimensionality reduction of features. 
Skowlon[2,3] developed the reduct derivation by using the Boolean reasoning for the discerni-
bility of data, which is a computationally complex task using all the data. A new consistent 
method for the generation of reduced variables and their classification in threshold networks is 
expected from the point of the efficient processing of data. In this paper, we have developed a 
method of reduction of data variables and the classification using the nearest neighbor relations[9], 
which are proposed to be relations with minimal distance between different classes. First, it is 
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shown that the nearest neighbor relations are useful to derive minimal Boolean function in thresh-
old function[6,13,14]. Next, to derive the complete reducts, a geometric reasoning is developed , 
in which convex cones are generated based on the nearest neighbor relations in the linear sub-
spaces[10,11,15]. Then, the degenerate convex cones and their operations using nearest neighbor 
relation, are developed. The dependent relations and algebraic operations of the edges on the 
degenerate convex cones in the linear subspaces are derived for the reduction of variables. Finally, 
the classification using the reduced variables is performed correctly based on the same convex 
cones of nearest neighbor relations.  

2 Nearest Neighbor Relation in Threshold Function 

The nearest neighbor relation is also applicable to the generation of threshold fun ctions. The 
threshold function is a Boolean function based on the n-dimensional cube with n2  vertices 
of  n components of 1 or 0.  The function f is characterized by the hyperplane WX   with 
the weight vector 1 2( ( , ,..., ))nW w w w  and threshold  . The X   is a vertex of the cube n2 . 
In the following, the threshold function is assumed to be positive and canonical threshold 
function, in which the Boolean variables hold the partial order[14]. 

Definition 2.1 The nearest neighbor relation ( , )i jX X   on the threshold function is defined 
to be vertices satisfying the following equation, 

 {( , ) : ( ) ( ) | | ( 1)}i j i j i jX X f X f X X X            (1) 

, where  1   shows one bit difference between iX   and 
jX  in the Hamming distance (also 

in the Euclidean distance).  

   The boundary vertex near the hyperplane, which realizes its threshold  function as follows. 

Definition 2.2 The boundary vertex X  is defined to be the vertex which satisfies 

   | | | |WX WY       for the   )( nX Y 2                                               (2) 

Theorem 2.3  The boundary vertex X  becomes  an element of nearest neighbor relation in 
the threshold function. 

Theorem 2.4  The set of the element of the nearest neighbor relation is admissible set of 
threshold function. 

Theorem 2.5  The vertices 
iX  and 

jX   in the nearest neighbor relation ( , )i jX X  are the ad-
jacent vectors, each of which belongs to different class through the hyperplane. 

  This is proved, since the boundary vertex X  is the nearest neighbor data to the hyperplane, 
which divides the true  and the false data. This is shown in Figure 1. The nearest neighbor 
relation is not necessarily boundary vertex. Since the boundary vertices determine the hyper-
plane of the threshold function, the nearest neighbor relation also characterizes the threshold 
function. The data set is called to be admissible set of f  , if the set realizes a threshold 
function  f . 
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Nearest neighbor relations   

Boundary vertices 

           Figure 1:  Boundary vertices and nearest neighbor relations in threshold function 

Theorem 2.6  The  nearest neighbor relations {( , )}i jX X in a threshold function f  is 
unique in  f . 

This theorem shows the line between adjacent vectors iX  and 
jX  with one bit difference is 

crossed by the hyperplane. 

This is proved by the contradiction. Assume a threshold function has two nearest neighbor 
relations

ANNR and
BNNR ,in which ( , )iA jAX X    ( , )iB jBX X  holds. First, since iBX  is not 

as true vertex in the
ANNR , it exists as a false vertex. Then ( , )iB jBX X does not make nearest 

neighbor relation of f ,which contradicts the assertion. Second, when the partial ordering

iA iBX X  holds[14],
iBX  does not make nearest neighbor relation of  f with

jBX  in one bit 
distance. Thus, ( , )}{ i jX X is unique in the given threshold function  f . Generation of thresh-
old function is performed as follows. As an example, the three dimensional vertices are  given 
as follows. As true valued vertices,  (101), (110) and (111) are given. As false valued vertices, 
(000), (010), (100), (001), and (011) are given. Then, the 3-dimensional cube is shown 
in Fig.3, in which the black circle,   belongs to +1 class, while the white circle,   belongs 
to 0 class. The black circle vertices are  (101), (110) and (111), while the white circle 
vertices are  (000),(001), (010) ,(100) and (011). 

1(001)X

0 (000)X 2 (010)X

4 (100)X

5 (101)X

3(011)X

6 (110)X

7 (111)X

  Figure 2:  Example of a threshold function in 3-dimensional cube 
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Boolean reasoning of the nearest neighbor relations in threshold function are shown as fol-
lows. Directed arrow vector is introduced here for the nearest neighbor relations. In Figure 
2, the true vertex (101) has nearest neighbor relations as {(101), (001)} and {(101), (100)}, 
which are shown in Figure 3. Then, the directed arrow vector indicates the vector from the 
true vertex to the false one for the nearest neighbor relation, which is  shown as     101 , 001


. 

 Figure 3: Directed arrows for nearest neighbor relations 

Two directed arrow vectors,     101 , 001


and     101 , 100


 generate one plane. This 
plane is represented in the Boolean AND operation, which is shown in Figure 4. The directed 
arrow vector has the 3x  variable between the true vertex and the false one, which is different
between their vertices. Thus,     101 , 100


has 3x  variable, while ,     101 , 001


 has 1x

variable. By the AND   operation 1x and 3x   , the Boolean product 1 3x x   is generated.   
Similarly, different two directed arrow vectors,     110 , 100


and     110 , 010


 gener-

ates another plane, which is shown in Figure 4. From this plane, the Boolean product 1 2x x  
is generated. Since these two planes are orthogonal, the Boolean OR operation is used to 
connect these two planes. The remained directed arrow vector in Figure 4, is 

    111 , 011


,which is included either planes as the vector, since the vector is parallel to 
each plane. Thus, by OR connecting two perpendicular planes, the threshold function 

1 3 1 2x x x x   is obtained. 

                                       

      Figure  4:   Boolean operations for nearest neighbor relations 

(101) (110)   (111) 
● ● ●

         
                   

○ ○ ○ ○ ○
(100) (001) (010) (100) (011)

 
 

2x1x1x3x ANDAND

1(001)X

0 (000)X 2 (010)X

4 (100)X

5 (101)X

3(011)X

6 (110)X

7 (111)X

2.1  Logical Operation for Nearest Neighbor Relation 
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Table 4 : Discernibility matrix of Figure 2 data 

The Boolean product, called minterm 1 3x x  satisfies to be  1 for (101), while to be 0 for 
(001) and (100). Similarly, a true valued valued data (110) has nearest neighbor relations as
{(110),(100)} and {(110), (010)}. From  these relations, the Boolean miterm  is generated.
Finally, the minterm with one variable is generated from the relation {(111),(011)}. But, this
minterm is removed from the proposed indiscernibility matrix in Table  5, in which the suf-
ficiency condition of these minterms are checked for a threshold function by taking common
variables

     Table 5 : Indiscernbility matrix of Figure 2 data 

● (101) ● (110) ● (111)

○ (001)
1x   …   …

○ (100)
3x 2x   …

○ (010)    … 
3x   …

○ (011)    …  …
1x

● (101) ● (110) ● (111)

○ (001)
2 3x x … 

3x

○ (100)
1 2x x 1 3x x 1x

○ (010) … 
2 3x x 2x

○ (011)
3x 3x 2 3x x

2.2  Application of Logical Operation to Discernibility Matrix 

The logical operations for nearest neighbor relations is applied to the discernibility matrix 
[3,4]  to generate threshold function. The discernibility matrix of the nearest neighbor rela-
tion shows a necessary condition to be a threshold function. In Figure 2, a true valued vertex 
(101) has  nearest neighbor relations as {(101), (001)} and {(101), (100)}. The Boolean
reasoning in these relations becomes a Boolean product in Table 4. The Boolean product,
called minterm  satisfies to be  1 for (101), while to be 0 for (001) and (100). Similarly, a
true valued valued data (110) has nearest neighbor relations as {(110),(100)} and {(110),
(010)}. From  these relations, the Boolean miterm  is generated. Finally, the minterm with
one variable  is generated from the relation {(111),(011)}. The matrix shows different vari-
ables between adjacent vectors with different classes 1 or 0. The discernibility matrix of
nearest neighbor data in Fig.3 is shown in Table 4. In Figure 2, a true valued data (101) has
nearest neighbor relations as {(101), (001)} and {(101), (100)} as shown in shaded cells in

Table 4. In Table 4, the difference of variables between ●(101) and ○(001) is x1 . Similarly, the

difference between (101) and (100) is x3 . For the Boolean  realization of the difference of

these variables is performed by the Boolean product x1・ x3 .
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1 2

between true and false vertices The common variables  and  are taken as a Boolean product 
in the cell between ●(101) and    (001), which is not used for the difference (101)  and (001). 
But , the minterm derived in Table 4,  discriminates the true vector (101) and the false vector 
(001). Finally, the minterm  is generated from the relation {(111),(011)}in Table 4 in the 
shaded cell. The common variable  also exists in Table 5, between true vector (111) and false 
vertex (100). But, to realize the difference between (111) and (100), the minterms x  ⋅x1 3 or 
x  ⋅x is applicable to this cell. Thus, the minterm  derived in Table 4, which is only one 

common variable in Table 5 is removed by checking the discernibility and the indiscernibility 
matrices. Then, the minterm x1 is removed from the Boolean sum from Table 4. Thus, the 
Boolean function obtained is  

1 2 1 3f x x x x        (3) 

The Boolean function  f becomes a threshold function, since a hyperplane exists to satisfy
the equation (3). The Nearest neighbor relations in threshold function are minimal infor-
mation for the discrimination by the hyperplane. Generally, this is described in the following 
theorem. 

Theorem 2.7  Nearest neighbor relations in the threshold function are minimal information 
for generating the given threshold function in the Boolean logical form. 

Nearest neighbor relations are extended to the reduction of variables with general values for 
the classification in the threshold  networks in the next section. 

3 Extension to Threshold Networks Based on Nearest Neighbor 
Relations 

As the application stage from the threshold function, a nearest neighbor relation with mini-
mal distance is introduced here for the extension to threshold networks. The relation with 
minimal distance plays an important role for the reduction of variables for threshold networks. 

Definition 3.1 A nearest neighbor relation with minimal distance is a set of pair of instances, 
which are described in  

   {( , ) : ( ) ( ) | | }i j i j i jx x d x d x x x                 (4) 

  , where | |i jx x   shows the distance between ix  and jx .Further, ( )id x is a decision func-
tion and    is the minimal distance. Then, ix  and jx  in the equation (1) are called to be in 
the jx nearest neighbor relation with minimal distance  .   

Lemma 3.2 Respective Boolean term consisting of the set { }ijnn   becomes a necessary 
condition to be reducts in the Boolean expression.  

This is trivial, since the product of respective Boolean term becomes reducts in the Boolean 
expression. 
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Lemma 3.3  Boolean product of respective terms corresponding to the set { }ijnn  becomes a 
necessary condition to be reducts in the Boolean expression. 

Lemma 3. 4   Reducts in the Boolean expression are included in the Boolean term of Lemma 
3.2 and the Boolean product in Lemma 3.3. 

Figure 2 shows that nearest neighbor relation with classification is a necessary condition in 
the Boolean expression for  reducts, but not sufficient condition.  The distance of the near-
est neighbor relation in the equation (4)  is compared with the distance of the relation in 
the following theorem. 

Theorem 3.5  If the distance  is greater than the , i.e.,   in the equation (3) ,the 
Boolean expression of the case of  includes that of . 

This is by the reason that the Boolean expression of the nearest neighbor relation is consists 
of the Boolean product of variables of the relation. The number of variables in the 
distance  are less than that of . Thus, the nearest neighbor relation with distance 
includes the ellipse of  in Figure 5. 

 Figure 5:   Boolean condition of nearest neighbor relations and reducts 

To find minimal nearest neighbor relations, the divide and conquer algorithm is applied, 
which is well known to search the closest pair[7,12]. A schematic figure of the search for  
closest pair of the set(data)  is shown in Figure 6. The closest pair of points is derived as 
follows. Divide the set(data instances) into equal sized parts by the line l  and recursively 
compute the minimal distance in each part, where  d is the minimal of the two minimal dis-
tances[7]. Sort the remaining points according to their y  coordinates. Merge the two sorted 
lists into one sorted list. These dividing steps takes (logO n) . Eliminate the points that lie 
farther than  d  apart from l  and n is the total number of data. Thus, the divide and conquer 
algorithm derives O n( logn)  for the operations to search the nearest neighbor relations.The 
closest pair of points is derived as follows. Divide the set(data instances) into equal sized 
parts by the line l  and recursively compute the minimal distance in each part, where  d  is 
the minimal of the two minimal distances[7]. Sort the remaining points according to their y 
coordinates. Merge the two sorted lists into one sorted list. The divide and conquer algo-
rithm[7,12] derives  O n( log n)    for the operations to search the nearest neighbor relations. 


 

     
  

    


Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

N. Ishii, K. Iwata, K. Odagiri, T. Nakashima, T. Matsuo42



 Figure 6:  Search of nearest neighbor relations among data 

Theorem 3.6  When the number of the instances is n  , the number of the nearest neighbor 
relations  is estimated  to be ( )O n  and the operations finding the nearest neighbor relations 
are estimated to be  ( log )O n n   in the complexity order. 

4 Reduction of Variables in Threshold Networks  
As the dimensionality reduction, we adopt the reduct, which is developed from rough set 
theory. Decision table is necessary for the representation between data and its attributes. An 
example of the decision table is shown in Table 6. The left side data in the column in Table 
1 as shown in, is a set of instances, while the data  ,  ,  ,  a b c d  on the upper 
row, shows the set of attributes of the instance. The contents of each row in Table 6 shows 
numeral values of the corresponding instance. In case of instance 1x   in Table 6, the value 
of the attribute a, is a ( 1x )=1. That of the attribute b, is b( 1x  )=0. Since a( 1x )=1 and
a( 5x )=2, a( 1x ) a( 5x ) holds. In Table 6, Boolean variables of the nearest neighbor rela-
tions are shown in the gray elements, which are derived in Table 6. Linearly separated spaces 
play an important role for the dimensionality reduction for reducts.  

    Table 6: Decision table of data example( instances) 

First, the instance space is divided by piecewise linear classification subspaces. Their divided 
subspaces generate convex cones by their nearest neighbor relations. In Figure 7,  linearly 
separated classifications are shown for the data in Table 6. As the first step, One hyperplane

1A  divides the instances of data 3 5 7 4{ , , , }x x x x  shown with    from those of 2 6{ , }x x

1 2 3 7{ , , ,.. , }x x x x



 Attribute    class 
 1  0  2  1 + 1

 1  0  2  0 +1

 2  2  0  0 -1

 1  2  2  1 -1

 2  1  0  1 -1

 2  1  1  0 +1

 2  1  2  1 -1

a b c d

1x

2x

3x

4x

5x

6x

7x
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( ) (1 )i if x i pa³ £ £
             (5) 

,where ( ) 0f x =   is the hyperplane separating the divided instances.  By Key Fan’s theory[8], 
there exist  the following r  independent equations, whose solution satisfies the all the ine-
qualities (5).  

( ) (1 )k kf x k rn na= £ £   (6) 

,where 1 2, ,..., rf f fn n n   are independent equations, which are generated from the r  in-
dependent instances. The hyperplane 1A  in Figure 7 is computed from independent in-
stances of the nearest neighbor relations. Solution of the equation (6) becomes to be 

·
1x  

´ 4x ´ 7x ·
2x  

´ 3x

1A

2A

·
´

5x

 Figure 7:     Piecewise linear separated classification for data in Table 6 

   1 2 3 4(3 / 2) , 2 , 0, 2w w w w        .Thus the hyperplane 1A  separating the 

3 5 7 4{ , , , }x x x x and 2 6{ , }x x  becomes 

(3 / 2) 0a b c de e e e- ⋅ - ⋅ + ⋅ ⋅ - ⋅ =   (7) 

The hyperplane 1A   separates instances 3 5 7 4{ , , , }x x x x    and 2 6{ , }x x . Among these in-
stances, nearest neighbor relations 3 6 5 6 7 6{( , ), ( , ), ( , )}x x x x x x  hold. The hyperplane 2A

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

3 5 7 4 1shown with  •. But, it misclassifies the instance  x1{ }with • from  x{ , x x,  , x , x }    with
 . As the second step, another hyperplane A2  divides the instance 1 x{ }  with • from

3 5 7 4x{ , x x, , x }  with  . In the linearly separated subspaces, the divided instances are rep-
resented by the system of the linear inequality equations. Then, from Ky Fan’s inequality 
theory[5], the inequality system composed of some independent equations and all the other 
inequality equations[5] as follows. Let the divided instances be p  in the number and they 
are represented by the p   inequalities in the following equation, 
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separates the instances 3 5 7 4{ , , , }x x x x  and 1{ }x   as shown in Figure 7. Among these in-
stances, a nearest neighbor relation 1 7{( , )}x x   holds. From the hyperplane, 1A  the  nearest
neighbor relations 3 6{ , }x x  , 5 6{ , }x x and  6 7{ , }x x are made. The 3 6{ , }x x  shows different 
values in their { }b,c  components in Table 1. Similarly, 5 6{ , }x x  and  6 7{ , }x x  show those 
values in { }c,d  components. To make complete reducts, the processing steps by geometrical 
analysis  based on the nearest neighbor relations are shown in Figure 8. 

Processing steps for  the reduction of variables  are classified to the following three steps, 
which are shown in circles  ①  and ②  in Figure 8. 

Step  ①   Variables of  nearest neighbor relations  

Nearest neighbor relations generate convex cones, which are fundamental and reduced vari-
ables for the classification of instances. Each approximated reduct based on the convex cone 
is generated based on the nearest neighbor relation, in the step, ①   in Figure 8 . The obtained 
convex cone plays for the reduction of variables in steps ②  

        Figure 8:  Processing steps based on hyperplane derived from nearest neighbor relation 

Step ②  Removal of variables using nearest neighbor relations 

The convex cones based on the nearest neighbor relations are transformed to the reduced 
ones for the reduction of variables. Dependent relations and edge processing between the 
convex cones are applied for the complete reducts , which show the reduction of variables as 
the  step ②  in Figure 8. In the next section, the reduction of variables on the convex cones 
is shown in the next section 5, step (2.1) and step (2.2). 

5   Geometrical Analysis Using Convex Cones 
The geometrical reasoning approach for the generation of reducts is developed by generating 
convex cones [7,8] in the subspaces. 

Hyperplane
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As the linear classification, two hyperplanes are computed in Figure 7 for data in Table 6. 
The hyperplane 1A  separates the data 3 5 7 4{ , , , }x x x x  and 2 6{ , }x x .From these data, convex 
cone is generated , firstly. We use capital letter notations{ }iX  for convex cones instead of 
small letters{ }ix  for instances in Table 6. The triangular convex cone is made from the 
nearest neighbor relation data in Table 6 as shown in Figure 8. The reference data

6X  is as-
signed, which is the data in the class +1. 

The data { 3 5 7, ,X X X } with nearest neighbor relation in Table 6 generates a triangular 
convex cone in Figure 9. This is interpreted as follows. The data { 3 5 7, ,X X X }  exists in the 
class -1, while the data { 6X } is in the class +1 as the reference point. The vectors 3 5,X X

 

and 7X


 are generated as 3 3 6X X X= -


, 5 5 6X X X= -


and 7 7 6X X X= -


 in the affine sub-
space. Any inner vector Y


 in the triangular convex cone  is indicated as

 3 5 7Y X X X    
   

        (8) 

,where , , 0     hold by convex condition. In the vectors in equation (8),  By removing the 
reference point data, from vectors in equation (8), the following equation holds in the linear 
subspace, 

By applying the equation (8) removing reference point data, 4X  does not satisfy the equation 
(9) in the linear subspace, that is,

      Figure 9:  Convex cone by data              with nearest neighbor relation    
generated on the hyperplane 

4 3 5 7X X X X              (10) 

3 5 7Y X X X     (9) 

3 5 7{ , , }X X X

5.1   Generation of Convex Cone Based on Nearest Neighbor Relations 
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Then, the data 4X constructs other convex cone as in Figure 9. Next, the reference data in the 
class +1 is changed to the reference data 1X from that of

6X in Figure 9 . The Boolean varia-
bles derived from the nearest neighbor relations 6 3 6 5( , ),( , )X X X X   and 6 7( , )X X  on the tri-
angular convex cone in Figure 9 are given as Boolean variables  { , },{ , }b c c d and { , }a b , re-
spectively . Thus, the approximated reducts, { }bc,bd,ac are obtained. 

5.2   Data Chaining Degenerate of Nearest Neighbor Relations 

To derive complete reducts, a degenerate convex cone is defined by the nearest neighbor re-
lations. As shown in Figure 9, the convex is made of the reference data

6X  and data 3X , 5X , 

7X . From these edge data on the convex cone, the union of  Boolean variables { , }b c and 
{ , }c d  is made, which consists of three variables ( )b,c,d . Then, the degenerate convex cone 
is made from three variables ( )b,c,d , which is removed the variable ( )a  as shown in Figure 
10. Then, the degenerate convex cone in Figure 10 consists of 3 5 7, ,X X X¢ ¢ ¢ and 6X ¢ , which cor-
respond to Boolean variables ( )b,c,d . 

5.3   Dependent Relations on Degenerate Convex Cones, Step (2.1) 

Independent vectors of nearest neighbor relations, which consist of the degenerate convex in 
the affine subspaces, are useful for the operations of dimensional reduction. Independent 
vectors are derived in the affine subspaces[5,6,7] as follows. 

3 3 6X X X¢ ¢ ¢= -


,  
5 5 6X X X¢ ¢ ¢= -


 and 
7 7 6X X X¢ ¢ ¢= -


       (11) 

The vector 
iX ¢  is composed of components of attributes ( , , )b c d of nearest neighbor rela-

tions. The dependent relation of these independent vectors removes the corresponding item 
on the indiscernibility matrix. 

Since 6 (110)X ¢ = , 
3 (200)X ¢ = , 5 (101)X ¢ = , 7 (121)X ¢ =  and 

4 (221)X ¢ = , the following 
linear equation is checked whether the edge value 4 6( )X X ¢- is dependent or not to independ-
ent vectors 3X ¢


 , 5X ¢


and 7X ¢


.

3X ¢

  Fig. 5.  Degenerate convex cone  generated from 
3X ¢ , 

5X ¢ ,
7X ¢  and 

6X ¢

4X ¢

5X ¢

7X ¢

6X ¢
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4 6( )X X¢ ¢-    
3X ¢


    
5X ¢


       
7X ¢


   

  
1
1
1

         𝛼 
1
1

0
      𝛽 

0
1

1
      𝛾

0
1
1

      (12) 

Further, we assume the vector 
4 6( )X X¢¢ ¢¢- , which composes of components ( , )b c . 

   
1
1

           𝛼
1
1

   𝛾
0
1

        13    

,where  α =1 and  γ=2 hold. Thus , 4 6( )X X¢¢ ¢¢- is dependent to 3X ¢¢


and 7X ¢¢


. Similarly, 

4 6( )X X¢¢ ¢¢-  with components ( )c,d is dependent to 7X ¢¢


. Then, the corresponding Boolean 
term to 4 6( )X X¢¢ ¢¢-  is removed. Generally, the following theorem holds. 

Theorem 5.1    If a linear dependent equation of the vector value holds on the degenerate 
convex of the nearest neighbor relations, the corresponding Boolean term to the vector value 
is removed by the absorption of Boolean terms of the nearest neighbor relations. 

5.4    Chaining of Edges between Degenerate Convex Cones, Step (2.2) 

We can construct two degenerate convex cones as shown in Figure 11. The left side de de-
generate convex cone is made of the nearest neighbor relations which is from different clas-
ses data, while the right side one is made of the same class data. 

3X ¢   5X ¢      2X ¢

7X ¢     1X ¢  

6X ¢     6X ¢

      Figure 11:  Degenerate convex cones: the left cone is from the nearest neighbor relations  
and the right one is from the same class data 

The data difference equations except the nearest neighbor relations are shown in  (14) 

 ( ) 0i j kX X¢ ¢- ¹  for 3,4,5i =  , 1,2j =  and , ,k b c d=                  (14) 

3X ¢¢


7X ¢¢


4 6( )X X¢¢ ¢¢-
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If the equations (14) hold for both k b=  and k c= , the element ( , )i jx x in the discernibility ma-
trix[11], is removed by the equality equation of ,( )i j k b k cX X = == , since it is absorbed from the 
nearest neighbor relation { , }b c . Similarly, if the equations (14) holds for both k b=  and 
k c= , the element ( , )i jx x is removed, since it is absorbed from the nearest neighbor rela 

Figure 12:  Comparison of edges on degenerate convex cones in the affine subspaces 

tion { , }c d .This is interpreted in the following data  chaining of the nearest neighbor relations. 
The left side of the equation(14) is replaced to the following equation using the nearest neigh-
bor relation in Figure 12. 

  6 6( ) ( ) ( )i j k i k j kX X X X X X¢ ¢ ¢ ¢ ¢ ¢- = - - -    (14) 

From the equation (12), the equation (11) becomes 

 
6 6( ) ( )i k j kX X X X¢ ¢ ¢ ¢- ¹ -   (15) 

The upper cone is constructed from the different classes data, while the lower cone is con-
structed from the same class data. Thus, the algebraic operation in the equation (15) com-
pares the values between the upper convex cone and the lower one in Figure 12. 
The left side of the equation (15) is the difference data between data in the different classes 
of the nearest neighbor relations, while the right side of the equation (15) is the difference 
data between data in the same class. These algebraic operations are generally described as 
the following theorem. 
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i jTheorem 5.2 The element x ,x( ) with Boolean variables are removed by the nearest rela-
tions with reference data Xx¢  , where Xx¢  is in the class{ }( { })j i , if the following equations
hold in Figure 11

    ( ) ( )i k j kX X X Xx x¢ ¢ ¢ ¢- ¹ -   (16) 

 for  { }, { }i i j jÎ Î , i  and j are in the different class  and k is components in lX  . 
By Theorem 5.2, an example of 6X X   and 3 2( )X X¢ ¢- , which are in the case of 
3, 2i j= = , is developed as follows, 

  3 2 3 6 2 6( ) ( ) ( )X X X X X X¢ ¢ ¢ ¢ ¢ ¢- = - - -  (17) 

Since 3 6( ) 1bX X¢ ¢- =+  and 2 6( ) 1bX X¢ ¢- =-   hold, 3 6 2 6( ) ( )b bX X X X¢ ¢ ¢ ¢- ¹ - . 
Similarly, 3 6 2 6( ) ( )c cX X X X¢ ¢ ¢ ¢- ¹ -  holds. Thus, the element 3 2( , )x x  with Boolean
variables (b,c)  is removed. Thus, the Boolean variables of the element 

2( , ) ( )i j 3x x x ,xº  is removed by the absorption of the nearest neighbor relation. Simi-
larly, ( ) ( )i j 5 1x ,x x ,xº , ( ),( )3 2 5 2x ,x x ,x and ( )7 2x ,x  are removed. Similar opera-
tions 3,4,5i =  and 1,2j =  are carried out.  

Corollary 5.3 The element ( )i jx ,x with Boolean variables is not removed , if the equation 
(16) does not hold. Then, the Boolean sum of the variables in the ( )i jx ,x is multiplied  to
other  Boolean sum of variables of the nearest neighbor relations. 

Another approach can be adopted for the analysis in case of 1{ }x  . The hyperplane 2A in 
Figure 7 was computed for the separation of data 1{ }x  from 3 5 7 4{ , , , }x x x x . As in the
case of 1j = , 1X ¢ , a convex cone is generated on the relation 1 7( , )X X  in Figure 13.  

Figure 13:   Convex cone generated based on  hyperplane 2A

The Boolean variable ( )a,b is generated on the convex cone 1 7( , )X X in Fig.8 based on the 
hyperplane 2A .Degenerate convex cone 1 7( , )X X¢ ¢ is generated in Fig.8, in which the edge 
with components a and b . In Figure 12, based on the degenerate convex cone 

1 7( , )X X¢ ¢ , a 
dependent relation exist between 1 3( , )X X¢ ¢  and 1 7( , )X X¢ ¢ . Similarly, a dependent relation 

1X

7X

1X 

7X 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

N. Ishii, K. Iwata, K. Odagiri, T. Nakashima, T. Matsuo50



holds between 
1 5( , )X X¢ ¢  and 

1 7( , )X X¢ ¢ . But, the dependent relation does not hold between 

1 4( , )X X¢ ¢ and 1 7( , )X X¢ ¢ , in which only Boolean variable ( )b is derived in Figure 14. The 
Boolean variable ( )a,b  on the degenerate convex cone in Figure 12 removes 3 1( , )X X¢ ¢ and 

5 1( , )X X¢ ¢ . However, the variable ( )b in 4 1( , )X X¢ ¢  is remained.  

       
4

X ¢     
7

X ¢   

3
X ¢  

 Figure 14:   Dependent relations on degenerate convex cones   

 Thus, the variable ( )b  is selected by the hyperplane classification 2A . Boolean sum terms 
( )b c+ and ( )c + d are derived based on the hyperplane  1A   and  a term ( )b on the hyper-
plane 2A . By product terms, complete reducts  become{ , }bc bd .  

Theorem 5.4  Dimensionality reduction of variables for reducts is realized by convex cones 
on the nearest neighbor relations, which are generated by the linear subspaces. 

6 Classification of  Reduced Variables  in  Threshold Network 

The classification of instances  is realized using linear classifiers with reduced variables, 
which are derived based on the geometrical reasoning in the previous section 5. The reduced 
variables for reducts are obtained based on the convex cones of the ne 

 Figure 15:  Hyperplanes generated on convex cones with nearest neighbor relations 

est neighbor relations in Figure 9. Under the restricted conditions of inequalities with four 
variables of instances in Table 6, the relation of the hyperplane with the reduced variables 
are expected to be made clear. Introducing slack variables in the reduced ones of the inequal-
ities, we can derive the hyperplanes with reduced variables. In the section 5, the reduction of 
variables are carried out , based on the geometric reasoning on convex cones of nearest 
neighbor relations. As the reduced variables, a reduct bc{ }of variables b  and c  is obtained 

5
X ¢

1X 
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in the section 5.4. By using this reduct bc{ } , a classification of the reduced variables is 
performed as shown in Figure 15. In Figure 15, three  hyperplanes , 1{ } 2{ } 3{ }, ,bc bc bcH H H
are shown. The hyperplane 1A  in Figure 7 is shown in the equation (4), which is also in the 
degenerated convex in Figure 10. To compute the hyperplane 1{ }bcH with reduced  two vari-
ables b  and c , the hyperplane 1A  with four variables, , ,a b c  and d in the equation of the
hyper plane 1A   is started, 

1A :                                              

, where  =1 in the equation (7) is set. Since the reduced variables{ , }b c  consists of two var-
iables, three vertices 3 6 7, ,x x x on the convex in Figure 9 are taken on the convex in Figure 9 
as the first reduced hyperplane, 1{ }bcH .For the instance , 3x  , the following equation(19)
holds  using the hyperplane 1A .  Since 3 (2, 2,0,0)x  belongs to -1 class,

  1 2(3 / 2) 2 2(1 ) 2 0            (19) 

, where 1  and 2  are slack variables. From the equation  (19), we set 

14 1         (20) 

Similarly, since 
6 (2,1,1,0)x  belongs to +1 class, 

   1 2(3 / 2) 2 2(1 ) 1 1 2 0 0                                 (21) 

Then, we set 

1 22 1          (22) 

Similarly, since 
7 (2,1,2,1)x   belongs -1 class, 

 1 2(3 / 2) 2 2(1 ) 1 2 2 1 0                   (23) 

Then, we set 

1 22 2 0          (24) 

(3 / 2) 2 2 0a b d  
(18)
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From  equations (20), (22) and (24), 1 2( 3 / 2), 1       and 5    are obtained. 

Thus, from equations (19),(21) and (23), a hyperplane with reduced variables { , }b c  is given 

by coefficient products of each slack variables 

2 ( 3 / 2) 1 5 3 5 0b c b c                (25) 

The equation (25) of the hyperplane with reduced variables { , }b c , classifies to  the respective 
classes of 1 2 3 4 6, , , ,x x x x x  and 7x , but it does not satisfy the  class of 5x . Then, we need
another hyperplanes different from 1{ }bcH . From another three vertices 5 3 6, ,x x x on the 
convex in Figure 9 as the second reduced hyperplane, 2{ }bcH are computed, which classifies 
to the respective classes of 1 2 3 5, , ,x x x x  and 6x , but it does not satisfy the classes  of 4x
and 7x . Similarly, from another three vertices 5 3 7, ,x x x on the convex in Figure 9 as the
third reduced hyperplane, 3{ }bcH are computed, which classifies to the respective classes of 

3 4 5, ,x x x and 7x , but it does not satisfy the classes of 1 2,x x and 6x . All the correct clas-
sifications of the classes are carried out by majority voting using these three hyperplanes 
with reduced variables, 1{ } 2{ } 3{ }, ,bc bc bcH H H  in Figure 15. Then, all the instances are clas-
sified, correctly. Combining these three hyperplanes with reduced variables, another correct 
classification is also performed using the output selection by the comparison of their values. 

7 Conclusion 

In this paper, the reduction of data variables and the classification through the nearest neigh-
bor relations are proposed in the threshold networks. For the threshold function, the method 
of reduction of variables is characterized by the Boolean operations of vectors of the nearest 
neighbor relations. For the data with general values in threshold networks, reduction of var-
iables are realized based on convex cones made of the nearest neighbor relations in threshold 
networks. It is shown that the nearest neighbor relations derives approximated reducts of 
reduced variables. To derive complete reducts based on the approximated reducts, the de-
generate convex cones are generated in the linear subspaces based on the nearest neighbor 
relations. Then, the dependent relations and the algebraic operations of edges on the degen-
erate convex cones are developed in the linear subspaces. The classification using the re-
duced variables is realized in the threshold networks.   

 References 

[1] Z. Pawlak,  “Rough Sets,” International Journal of Computer and Information Science,
vol.11, 1982, pp.341-356.

[2] Z. Pawlak and R. Slowinski, “ Rough Set Approach to Multi-attribute Decision Analysis,”
European Journal of Operations Research 72, 1994, pp.443-459 .

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Reduction of Variables through Nearest Neighbor  Relations in Threshold Networks 53



[3] A. Skowron and C. Rauszer,  “The Discernibility Matrices and Functions in Information
Systems,”in Intelligent Decision Support- Handbook of Application and Advances of Rough
Sets Theory, pp.331-362, Kluwer Academic Publishers, Dordrecht, 1992

[4] A. Skowron and L. Polkowski,  “Decision Algorithms, A  Survey of Rough Set Theoretic
Methods,” Fundamenta Informatica, 30/3-4,pp. 1997, 345-358.

[5] Ky Fan: On Systems of Linear Inequalities, Linear Inequalities and Related Systems,

edited by H. W. Kuhn and A.W. Tucker, Princeton University Press, 99-156(1966)

[6] T. M. Cover and P.E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Transactions
on Information Theory, Vol.13, No.1, 1967, pp.21-27.

[7] F.P. Preparata and M.I. Shamos,  Computational Geometry, Springer Verlag, 1993

[8] W. Prenowitz and J.Jantosciak, Join Geometries, A Theory of Convex Sets and Linear
Geometry, Springer Verlag, 2013,

[9] N. Ishii, I. Torii, K. Iwata, K.Odagiri, T. Nakashima: Generation and Nonlinear Mapping
of Reducts-Nearest Neighbor Classification. Chapter 5 in Advances in Combining Intelligent
Methods, Springer Verlag, 93-108(2017)

[10] N. Ishii, I.Torii, K. Iwata, K. Odagiri, T. Nakashima: Generation of Reducts Based on
Nearest Neighbor Relations and Boolean Reasoning, HAIS2017, LNCS vol.10334, Springer,
391-401(2017)

[11] N. Ishii, I. Torii, N. Mukai, K. Iwata and T. Nakashima, “Generation of Reducts and
Threshold Function Using Discernibility and Indiscernibility Matrices”, Proc. ACIS-SERA
IEEE  Comp. Soc., 55-61(2017)

[12] A.V.Levitin, Introduction to the Design and Analysis of Algorithms, Addison Wesley,
2002

[13] A. De, I. Diakonikolas, V. Feldman, R.A. Servedio, “Nearly Optimal Solutiomns for
the Chow Parameters Problem and Low-weight Approximation of Halfspaces”, J.ACM,
Vol.61,No.2, 2014, pp.11:1-11:36.

[14] S.T.Hu, Threshold Logic , University of California Press,1965
[15] N. Ishii, I. Torii, N. Mukai, K. Iwata and T. Nakashima, “Incremental Reducts Based
on Nearest Neighbor Relations and Linear Classification”, Proc. IIAI-SCAI IEEE  Comp.
Soc., 528-533(2019)

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

N. Ishii, K. Iwata, K. Odagiri, T. Nakashima, T. Matsuo54




