
New Applications of the Monte-Carlo Tree Search to
Computer Daihinmin

Seiya Okubo *, Mitsuo Wakatsuki †, Tasuku Mitsuishi †,
Yasuki Dobashi †, Tetsuro Nishino †

Abstract

The Monte Carlo tree search is popular in computer programs that play games. In this study,
we present two new applications of the Monte Carlo method for the card game Daihinmin:
as a method for setting good evaluation values in repeated plays, and as a method for in-
creasing or decreasing the score of a target player.

Keywords: Computer Daihinmin, Game Informatics, Monte Carlo Method

1 Introduction

A game is said to have perfect information if each player is perfectly informed of all pre-
vious events. Examples of such games include Shogi and Go. In contrast, in some card
games, a player’s cards are hidden from the other players (e.g., poker, Daihinmin). Such
games are characterized as having imperfect information.

The Monte Carlo tree search is popular in computer programs that play games. This
method analyzes the most promising moves, and expands the search tree based on a random
sampling of the search space. The method is applied based on many playouts. In each
playout, the game is played to its conclusion by selecting moves at random. Then, the final
result is evaluated and used to weight the nodes in the game tree, such that better nodes are
more likely to be chosen in future playouts. The Monte Carlo method is expected to have
many future additional applications.

In this paper, we present two new applications of the Monte Carlo method for Daihin-
min, as a method for setting good evaluation values in repeated card plays, and as a method
for increasing or decreasing the score of a target player. Furthermore, we conduct several
experiments to show the effectiveness of our proposed methods.

∗ University of Shizuoka,Shizuoka, Japan
† The University of Electro-Communications, Tokyo, Japan

International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2020, Vol. 4, No. 1, 18 – 35

2 Preliminaries

2.1 Computer Daihinmin

Daihinmin is a card game played mainly in Japan, but similar games are played around the
world. It is a multiplayer game of imperfect information that has been studied extensively
in recent years [1][2][3] . Computer Daihinmin refers to playing the game on a computer.
The UEC Computer Daihinmin Convention (UECda) is an annual competition for com-
puter Daihinmin programs, in which several thousand games are played by computers with
extreme computational capabilities. The competing algorithms seek to win over the course
of many games, without the influence of an initial hand.

In this study, we adopt the framework utilized by the UECda [4]. Although there are
numerous examples of localized Daihinmin rules, the UECda implements the specific rules
outlined below.

Game Procedure:
The game is played by five players and uses a total of 53 cards: 13 (ace-king) hearts,
clubs, spades, and diamonds; as well as a joker. The cards are ranked in the following:
3, 4, 5,· · · , 10, jack, queen, king, ace, 2; where 3 has the lowest value and 2 has the
highest value. At the start of each game, each player is dealt 10 or 11 cards. Players
take turns in clockwise order to discard (play) the cards in their hands. The first
player to get rid of all their cards is the winner.

Start of the Game:
The game starts with the player who has the 3 of diamonds. The player either plays
(discards) his/her card(s), or passes the turn. This process is repeated for each player.
If there are no cards on the table (“ the field is lead”), a player may play any type
of card in turn (a single, pair, or kaidan [sequence]). If a previous play is on the table
(“ the field is follow”), the current player can play card(s) to defeat the previous play.

To Close a Round:
When all players have played their respective turns, the round ends. The last player
to play a hand begins the next round without any cards on the board.

Pass:
A player may pass a turn if he/she has no card(s) to play, or would simply prefer to
pass. Once a player passes a turn, that player does not have another turn until the
round ends.

Eight-ender (8 Rule, 8 Giri):
A round ends when a player plays a hand containing an 8.

3 of Spades:
When the joker is played as a single card, a player may end the round by playing the
3 of spades.

Revolution (Kakumei):
When a player plays a set (pair) of four or more cards with the same number, or a
sequence of five or more cards, a revolution occurs and the strengths of all cards are
reversed until the end of the game.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 19

Lock (Tight, Shibari):
When a player follows the same suit as the play on the board, the round is tightened
by the suit and all players must follow the same suit until the round ends.

Special Titles (Rank, Mibun):
The first player with no cards left is the Daifugo, the second is the Fugo, the third is
the Heimin, the fourth is the Hinmin, and the last is the Daihinmin.

Card Change (Card Trade, Despotism):
The Daifugo hands two cards to the Daihinmin and the Fugo hands one card to the
Hinmin. The choice of cards to be handed to another player is arbitrary. However, the
Daihinmin must yield two of his/her strongest cards to the Daifugo, and the Hinmin
must give his/her strongest card to the Fugo.

“Special Titles” and “Card Change” are distinctive rules. are distinctive rules. Accord-
ing to the above rules, the result of one game affects a player’s advantages and disadvantages
in the next game. This is not found in other imperfect information games, such as mahjong,
and results in the game having unique strategies and features.

The UECda framework is used in many studies on Daihinmin, including those that use
analytical methods to determine the characteristics of the computer game [5], propose rating
algorithms for imperfect information games [3], and study society of mind theory [6].

2.2 Monte Carlo Method

The Monte Carlo method finds approximate solutions by performing many playouts. Here,
a playout is a random simulation of a game. In game informatics, playouts are used to
evaluate and assign a value to each play. The naive Monte Carlo method is performed as
follows:

1. List all card(s) that can be played in a phase.

2. Randomly select one or more cards from the list. Let i represent the selected card(s).

3. From the next phase, which plays cards i, until the end, perform random simulations

4. Evaluate i from the final rank, and update the value Xi .

5. Repeat steps 2-4 multiple times, playing the card(s) with the highest evaluation value
each time.

Here, Xi is determined as follows:

Xi ← Xi +V

ni ← ni +1

Xi ← Xi/ni

where ni is the number of times i is selected, V is the evaluation value in each playout, and
Xi is the total evaluation value.

As the number of playouts increases, the evaluations become increasingly accurate.
However, because time is limited, a good playout assignment is required. The assignment
problem is formulated as a multi-arm bandit problem. Several algorithms have been pro-
posed to solve this problem efficiently. Programs participating in the UECda that use the
Monte Carlo method often use UCB1-Tuned [7] [8].

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino20

2.3 Daihinmin Program

The many studies on Daihinmin have resulted in the creation of strong programs. Typical
programs include the following:

Default
Default performs only standard operations, and the algorithm is simple. The program
was used in UECda-2015. It is a heuristic program that plays the weakest card that
can be played

Snowl
Snowl, a winning program at UECda-2010 and developed by Mr. Fumiya Suto, was
an indiscriminate standard program at UECda-2015. Snowl is a typical example
of a program that uses the Monte Carlo method in its implementation of Computer
Daihinmin[9]. Because it has been the subject of many studies, its behavior has now
become evident and, thus, predictable. As it has been a subject of many studies, its
behavior has now become evident and, thus, predictable.

MSM04
MSM04 was developed by Mr. Kiyono and Mr. Watabe. The program does not use
special parameters and uses the naive Monte Carlo method.

Wisteria
Wisteria was a winning program in the indiscriminate class of UECda-2015, and was
developed by Mr. Katsuki Ohto [10]. This program uses policy gradients and Monte
Carlo methods.

Blauweregen(Blau)
Blau was a winning program in the indiscriminate class of UECda-2016, and was
developed by Mr. Katsuki Ohto. This is an improved version of Wisteria.

Kou2
Kou2 was a winning program in the lightweight class of UECda-2015, and was de-
veloped by Mr. Kozou Tagashira [11][12]. This program use evaluation methods
based on human knowledge.

3 Method1: Determining the optimal evaluation value

3.1 Proposed Method

The Monte Carlo method hinges on being able to determine the evaluation value. In this
section, we discuss some of the better methods available.

In the naive method, the evaluation value is the score obtained in each game. That is,
the evaluation values are 5, 4, 3, 2, 1 in order from the top (hereinafter, this is denoted as
(5,4,3,2,1)). However, in Daihinmin, the higher ranks are advantageous in the subsequent
game. Therefore, higher ranks are expected to yield more points and, thus, be more valu-
able. For example, Snowl uses the values (25, 16, 9, 4, 1), that is, the squares of the scores,
although the reason for this choice is not described in [9].

Another method obtains a transition matrix between ranks using a computer experiment,
and determines a future expectation value from the transition matrix. Wisteria and Blau

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 21

use this method. The expected score after n games for each rank is calculated using the
transition matrix R, as follows:

En = Rn×
(

5 4 3 2 1
)T (1)

That is, the expected value Pn of the score after n games is given by the following formula:

Pn =
n

∑
i=0

Ei (2)

where the parameter n indicates the number of games to consider. Wisteria uses n = 14.

3.2 Computer Experiment

In this study, we evaluate game values using computer experiments based on MSM04,
Snowl, and Wisteria. Specifically, we changed the evaluation value in each program and
made it play against the original program. The evaluation values obtained from seven meth-
ods are as follows:

f0: The evaluation values are (5,4,3,2,1), which are the scores.

sq: The evaluation values are (25,16,9,4,1), which are the squares of the score.

sq-: The evaluation values are (20.75,16,9,4,1), which are obtained by adjusting sq to ne-
glect the Daihugo.

sq+: The evaluation values are (29.50,16,9,4,1), which are obtained by adjusting sq to
emphasize the Daihugo.

f1: The evaluation values are P1.

f2: The evaluation values are P2.

f5: The evaluation values are P5.

f15: The evaluation values are P15.

An outline of each evaluation value is shown in Figure1.
Because the value of Pn differs depending on the program, we obtained it in advance

using a computer experiment. Tables 1 and 2 show the transition matrices, and Tables 3, 4,
and 5 show the values of pn. Here, Wisteria’s pn values appear in the original program.

A match consists of 12 sets, with 10000 games in each set. The average score was
30000. The combination for the match is each fixed program × 1, and the f0 program × 4.
The evaluation value is obtained by comparing the program scores.

The experimental results are shown in Figures 2, 3, and 4, where the error bars represent
standard deviations. There are no significant differences between many of the patterns. The
series sq tends to have a higher score than the series f. In particular, in the case of Snowl
and MSM04, sq+ is significantly different from f0. However, Wisteria shows almost no
differences between the evaluation values. This change may not be suitable for Wisteria,
and may result in unsuccessful playout assignments.

Because it takes time to determine the value of each f, it is appropriate that we use sq+.
Note that the opponent is different in each experiment, which may affect the results. Thus,
additional experiments are required, which is left to future research.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino22

Current
game

Next

game

Next

game

Next

game

Next

game
…

Current game only
[f0] (5,4,3,2,1)

Square
[sq] (25,16,9,4,1)

Adjustment of difference
[sq-] (20.75,16,9,4,1)
[sq+] (29.50,16,9,4,1)

Next

game

Future expectations depending on title.
[f2] Rate for 2 games

[f5] Rate for 5 games
[f15(f14)] Rate for 15(14) games

Next

game

[f2]
[f1]

[f5]
[f15]

Figure 1: Estimate Values

Table 1: Transition matrix of MSM04

Daihugo Hugo Heimin Hinmin Daihinmin
Daihugo 0.467 0.273 0.136 0.064 0.060

Hugo 0.301 0.309 0.198 0.107 0.085
Heimin 0.124 0.200 0.265 0.226 0.187
Hinmin 0.061 0.128 0.228 0.303 0.279

Daihinmin 0.046 0.093 0.173 0.299 0.389

3.3 Comparison of Evaluation Values

In this section, we compare the evaluation values obtained by the computer experiments.
Note that the program values have different ranges (e.g., Snowl squares the evaluation val-
ues), making a comparison difficult.

However, in the Monte Carlo method, the evaluation values assigned to each rank (mi-
bun) are not as important as the ratios of the values between ranks. For example, the evalu-
ation values (5, 4, 3, 2, 1) from a higher rank have the same meaning as (10, 8, 6, 4, 2) and
(7, 6, 5, 4, 3). That is, the ratio of the values between adjacent ranks is important. In this
example, the differences between the evaluation values of adjacent ranks are (1, 1, 1, 1), (2,
2, 2, 2), and (1, 1, 1, 1); hence, the ratios are the same. Therefore, in this subsection, we
consider the characteristics of the values by comparing the ratios of the differences between

Table 2: Transition matrix of Snowl

Daihugo Hugo Heimin Hinmin Daihinmin
Daihugo 0.530 0.267 0.117 0.055 0.031

Hugo 0.295 0.353 0.189 0.104 0.060
Heimin 0.103 0.191 0.290 0.233 0.183
Hinmin 0.040 0.128 0.231 0.331 0.290

Daihinmin 0.031 0.082 0.172 0.279 0.437

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 23

Table 3: Value of Pn of MSM04

n Daihugo Hugo Heimin Hinmin Daihinmin
0 5.000 4.000 3.000 2.000 1.000
1 9.024 7.636 5.846 4.388 3.106
2 12.563 10.970 8.753 7.062 5.654
3 15.845 14.145 11.703 9.891 8.420
4 18.993 17.236 14.677 12.802 11.298
5 22.070 20.284 17.663 15.756 14.234
6 25.111 23.309 20.656 18.732 17.201
7 28.132 26.323 23.653 21.719 20.184
8 31.144 29.331 26.652 24.713 23.176
9 34.150 32.335 32.651 27.710 26.172

10 37.154 35.338 32.651 33.709 29.170
11 40.156 38.340 35.652 33.709 32.169
12 43.158 41.342 38.652 36.709 35.169
13 46.160 44.343 41.653 39.710 38.170
14 49.161 47.345 44.654 42.711 41.170
15 52.162 50.346 47.655 45.711 44.171

the values of adjacent ranks.
We calculated the differences between the evaluation values of adjacent ranks, and nor-

malized the results.
Table 6 shows the results for Snowl (original), and Tables 7,8 and 9 show the results for

Snowl, MSM04, and Wisteria for p1 to p15.
When n = 1, all values are (0.25,0.25,0.25,0.25), and the program values vary as n

increases. However, they do not differ greatly, and show the same tendency. Specifically, as
n increases, the difference between Fugo and Heimin increases, and the difference between
Hinmin and Daihinmin decreases. On the other hand, the differences between Daifugo and
Fugo and between Heimin and Hinmin remain almost unchanged. The evaluation value
can be interpreted as emphasizing the ranking above Fugo, which can receive cards in card
changes.

On the other hand, when the squares of the scores are used (Snowl), the differences
become larger as the rank increases. These values can be interpreted as emphasizing a
higher rank.

These results, along with those of section 3.2, suggest that it is better to play to obtain a
higher rank in the current game, than it is to play to obtain higher future evaluation values.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino24

Table 4: Value of Pn of snowl

n Daihugo Hugo Heimin Hinmin Daihinmin
0 5.000 4.000 3.000 2.000 1.000
1 9.209 7.720 5.800 4.279 2.9928
2 12.947 11.158 8.6530 6.829 5.415
3 16.394 14.421 11.560 9.555 8.070
4 19.665 17.579 14.503 12.390 10.863
5 22.828 20.674 17.469 15.290 13.739
6 25.927 23.732 20.448 18.230 16.663
7 28.986 26.767 23.435 21.194 19.618
8 32.022 29.788 26.428 24.172 22.591
9 35.044 32.800 29.423 27.159 25.574

10 38.057 35.808 32.421 30.151 28.564
11 41.065 38.813 35.419 33.146 31.558
12 44.069 41.815 38.418 36.143 34.555
13 47.072 44.817 41.417 39.141 37.552
14 50.074 47.818 44.417 42.140 40.551
15 53.075 50.819 47.417 45.140 43.550

Table 5: Value of Pn used in Wisteria

n Daihugo Hugo Heimin Hinmin Daihinmin
0 400 300 200 100 0
1 627 472 283 122 0
2 766 576 327 130 0
3 852 640 352 134 0
4 906 679 368 137 0
5 940 704 378 138 0
6 961 719 384 139 0
7 975 729 388 139 0
8 983 735 390 140 0
9 988 739 392 140 0

10 991 741 393 140 0
11 993 743 393 140 0
12 995 744 394 140 0
13 996 744 394 140 0
14 996 745 394 140 0

Table 6: Differences between the Snowl evaluation values (sq)

Daihugo↔Hugo Hugo↔ Heimin Heimin↔Hinmin Hinmin↔Daihinmin
sq 0.38 0.29 0.21 0.13

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 25

 29000

 29500

 30000

 30500

 31000

f1 f2 f5 f15 sq- sq sq+

A
v
e
r
a
g
e

S
c
o
r
e

Program
Figure 2: Score of snowl

 29000

 29500

 30000

 30500

 31000

f1 f2 f5 f15 sq- sq sq+

A
v
e
r
a
g
e

S
c
o
r
e

Program
Figure 3: Score of MSM04

 29000

 29500

 30000

 30500

 31000

f1 f2 f5 f14 sq- sq sq+

A
v
e
r
a
g
e

S
c
o
r
e

Program
Figure 4: Score of Wisteria

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino26

Table 7: Differences between the Snowl evaluation values(Pn)

Daihugo↔Hugo Hugo↔ Heimin Heimin↔Hinmin Hinmin↔Daihinmin
0 0.25 0.25 0.25 0.25
1 0.24 0.31 0.24 0.21
2 0.24 0.33 0.24 0.19
3 0.24 0.34 0.24 0.18
4 0.24 0.35 0.24 0.17
5 0.24 0.35 0.24 0.17
6 0.24 0.36 0.24 0.17
7 0.24 0.36 0.24 0.17
8 0.24 0.36 0.24 0.17
9 0.24 0.36 0.24 0.17
10 0.24 0.36 0.24 0.17
11 0.24 0.36 0.24 0.17
12 0.24 0.36 0.24 0.17
13 0.24 0.36 0.24 0.17
14 0.24 0.36 0.24 0.17
15 0.24 0.36 0.24 0.17

Table 8: Difference between the evaluation values of MSM04

Daihugo↔Hugo Hugo↔ Heimin Heimin↔Hinmin Hinmin↔Daihinmin
0 0.25 0.25 0.25 0.25
1 0.23 0.30 0.25 0.22
2 0.23 0.32 0.24 0.20
3 0.23 0.33 0.24 0.20
4 0.23 0.33 0.24 0.20
5 0.23 0.33 0.24 0.19
6 0.23 0.34 0.24 0.19
7 0.23 0.34 0.24 0.19
8 0.23 0.34 0.24 0.19
9 0.23 0.34 0.24 0.19
10 0.23 0.34 0.24 0.19
11 0.23 0.34 0.24 0.19
12 0.23 0.34 0.24 0.19
13 0.23 0.34 0.24 0.19
14 0.23 0.34 0.24 0.19
15 0.23 0.34 0.24 0.19

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 27

Table 9: Difference between the evaluation values of Wisteria

Daihugo↔Hugo Hugo↔ Heimin Heimin↔Hinmin Hinmin↔Daihinmin
0 0.25 0.25 0.25 0.25
1 0.24 0.30 0.25 0.21
2 0.24 0.33 0.25 0.19
3 0.25 0.33 0.25 0.18
4 0.25 0.34 0.25 0.17
5 0.25 0.34 0.25 0.17
6 0.25 0.34 0.25 0.17
7 0.25 0.34 0.24 0.17
8 0.25 0.34 0.24 0.16
9 0.25 0.34 0.24 0.17
10 0.25 0.34 0.24 0.16
11 0.25 0.34 0.24 0.16
12 0.25 0.34 0.24 0.16
13 0.25 0.35 0.24 0.16
14 0.25 0.35 0.24 0.16

4 Method2: Algorithm to target a specific player

4.1 Proposed Algorithm

In multiplayer games, it is difficult to realize a play that affects a specific target player. In
this paper, we propose an algorithm to increase or reduce the score of a target player using
the Monte Carlo method.

Monte Carlo simulations can be used to obtain a player’s own evaluation values, as well
as those of other players, for each player’s set of card(s). However, existing programs that
use the Monte Carlo method seek to maximize the player’s score by playing the cards with
the highest evaluation values, based only on the player’s own evaluation value. Therefore,
the values of other players are not used.

The proposed algorithm focuses on the evaluation values of the target player, obtained
from the simulation results, and plays those card(s) with the highest or lowest values. Three
algorithms are proposed. The first reduces the score of the target player by as much as
possible, the second increases the score of the target player by as much as possible, and the
third reduces the score of the target player, while considering the player’s own score. When
executing the Monte Carlo method, the proposed algorithm calculates an evaluation value
X ′i , where the score of the target player is V , and selects the card(s) to play based on this
value. The three algorithms are given below.

[Proposed Algorithm I] This algorithm reduces the score of the target player by as much
as possible. The player’s own score is not considered.

1. List all card(s) that can be played in a phase.

2. Randomly select one or more cards from the list. Let i represent the selected card(s).

3. From the next phase, which plays the cards i, until the end, perform random simula-
tions.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino28

4. Evaluate i from the final rank of the target program, and update the value Xi
′.

5. Repeat steps 2-4 multiple times, playing the cards with the highest evaluation values.

Compared with the naive Monte Carlo algorithm, this algorithm is expected to reduce both
the player’s score and that of the target player.

[Proposed Algorithm II] This algorithm increases the score of the target player by as much
as possible. The player’s own score is not considered.

1. List all cards that can be played in a phase.

2. Randomly select one or more cards from the list. Let i represent the selected card(s).

3. From the next phase, which plays the cards i, until the end, perform random simula-
tions

4. Evaluate i from the final rank of the target program, and update the value Xi
′.

5. Repeat steps 2-4 multiple times, playing the cards with the lowest evaluation values.

Compared with the naive Monte Carlo algorithm, this algorithm is expected to reduce the
player’s score and increase the score of the target player.

[Proposed Algorithm III] This algorithm reduces the score of the target player, while also
considering the player’s own score.

1. List all cards that can be played in a phase.

2. Randomly select one or more cards from the list. Let i represent the selected card(s).

3. From the next phase, which plays cards i, until the end, perform random simulations.

4. Update the evaluation value Xi of the card(s) i from the player’ s final rank, and update
Xi
′ of the card(s) i from the final rank of the target program.

5. Repeat steps 2.4 multiple times, playing the card with the lowest evaluation value for
the target program from the player’s two cards with the highest evaluation values.

When selecting cards with low evaluation values for the target player, there are only two
options. Therefore, although the score of the target player is higher than that of the Proposed
Algorithm I, we estimate that it is lower than that of the naive Monte Carlo algorithm. We
further estimate that, although the player’s own score is higher than that of the Proposed
Algorithm I, it is lower than that of the naive Monte Carlo algorithm.

4.2 Comparison of Algorithms

In this section, we explain the differences in the behavior of each algorithm by comparing
them.

The flowchart for each algorithm is shown in Figure 5. The bolded areas in the figure
are the differences between the algorithms. The differences signify the ways in which the
evaluation values are obtained, and the ways in which the play is selected. These differences
affect plays under same situations.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 29

Table 10: Example of Algorithm Results

i Average
of my
rank

Average
of target’s
rank

Xi in the
Naive Monte
Carlo method

Xi in the
Algorithm
I and II

Xi−X ′i in the
Algorithm
III

Algorithm

0 4.1 3.2 4.1 3.2 0.9 Normal
1 3.4 1.5 3.4 1.5 1.9 Algorithm III
2 1.5 1.2 1.5 1.2 0.3 Algorithm II
3 2.4 3.5 2.4 3.5 -1.1 Algorithm I
4 2.8 3 2.8 3.0 -0.2

An example of the execution of the naive Monte Carlo algorithm and proposed algo-
rithms are shown in Table 10. The table shows evaluation values and choices of plays in a
given situation. In this example, there are five possible plays from 0 to 4. The average rank-
ings of players and their targets for each play in multiple playouts are also shown. There
are a variety of ways to get a rating from a rank. In this example, the evaluation value is as-
sumed to be equal to the rank. The rightmost column of the table shows the play submitted
by each algorithm.

In the naive Monte Carlo method, play 0 is chosen as it has the highest evaluation
value. In Algorithm I, the play with the highest evaluation value of the opponent is selected;
therefore, play 3 is selected. In Algorithm II, the play with the lowest evaluation value of the
opponent is selected; therefore, play 2 is selected. In Algorithm III, the play with the largest
difference in the evaluation value between the player and the target is selected; therefore,
play 1 is selected. Thus, even in the same situation, each algorithm chooses a different play.

4.3 Computer Experiment

The effectiveness of the proposed method is evaluated using computer experiments. We cre-
ated Snowl-I, which is an implementation of the Proposed Algorithm I on Snowl; Snowls,
which is an implementation of the Proposed Algorithm II on Snowl; and jsnowl, which is an
implementation of the Proposed Algorithm III on Snowl. The performance of each program
is compared with that of the original Snowl.

In each experiment, the match combination is as follows: each fixed program × 1, and
one program × 4. Here, Default, Kou2, Snowl, and Blau are used as the match program,
because the results may differ depending on the combination of match programs. The match
cards are shown in Table 11. Here, P1 is a target program, and P5 is one of Snowl, Snowl-
i, Snowl-s, and Jsnowl. Matches 1-3 consisted of 100 sets, with 3000 games in each set,
and matches 1-4 consisted of 30-50 sets, with 3000 games in each set. It is difficult to
compare algorithms in the same situation because the algorithms using the Monte Carlo
method have ¡random behavior. We considered the average of 100 or 50 games to obtain an
unbiased result. Because Default is the most basic action, Kou2 and Blau, winners of the
lightweight and indiscriminate classes, respectively, were chosen as opponents. Blau is the
strongest of the programs, followed in order by Snowl, Kou2, and Default.

The experimental results for Snowl (called “Base Exp.”) are shown in Table 12. In this
case, the opponent’s score has not changed; in other words, Snowl does not affect specific
opponents.

The experimental results for Snowl-i (called“ Exp.1”) are shown in Table 13. Here,

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino30

Table 11: Match Cards

P1 P2 P3 P4 P5
Match1 default default default default Proposed Algorithm
Match2 Kou2 Kou2 Kou2 Kou2 Proposed Algorithm
Match3 snowl snowl snowl snowl Proposed Algorithm
Match4 Blau Blau Blau Blau Proposed Algorithm

Table 12: Averages of score in the experiment using Snowl (Base Exp.)

P1 P2 P3 P4 Snowl
Match1(Default) 7954 7942 7950 7943 13208
Match2(Kou2) 8930 8927 8890 8959 9292
Match3(Snowl) 8994 8984 9023 8984 9012
Match4(Blau) 9406 9447 9433 9373 7338

the P1 scores are lower than the P2-P4 scores, regardless of the opponent’s program. Thus,
Algorithm I reduces the score of the target player, as intended. The P5 score is low.

The experimental results for Snowl-s (called “Exp.2”) are shown in Table 14. In this
case, the P1 scores are higher than those of P2-P4, regardless of the opponent’s program.
Thus, Algorithm II increases the score of the target player, as intended. The P5 score is
again low.

The experimental results for Jsnowl (called “Exp.3”) are shown in Table 15. Here, the
P1 scores are lower than those of P2-P4, regardless of the opponent’s program. Therefore,
Algorithm III reduces the score of the target player, as intended. The P5 score is low.

Table 16 shows the average P1 and P5 scores in each experiment. Both the P1 and the P5
scores rank highest to lowest in Base, Exp.3, and Exp.1. This is because of the difference
in the way Algorithms I and III treat their respective scores. Algorithm III attempts to
increase its own score, while reducing the score of the target player (P1). Therefore, it is
less efficient than both the original Snowl and Algorithm I.

To examine the algorithm, we calculated the percentages of the ranks of Snowl-i (P5) in
each game (see Table 17), and the average score of each of P1 and P2 for every Snowl-i (p5)
rank (see Table 18). As evident from the low scores, Snowl-i does not have a higher rank.
Moreover, the value of P2-P1 is large when a player’s rank is Heimin. There are several
possible reasons for these results. 1) If Snowl-i has a high rank and strong cards, then it has
no effect. 2) If Snowl-i has a high rank and strong cards, it must play the strong cards, in
which case, the opponent cannot do anything. 3) If Snowl-i has a low rank and weak cards,
it cannot control the game. Consequently, we estimate that Heimin, with a wide range of
cards, is most able to serve this purpose. These results show that each algorithm achieves

Table 13: Averages of score in the experiment using Snowl-i (Exp.1)

P1 P2 P3 P4 Snowl-i
Match1(Default) 7392 9013 8986 9023 10584
Match2(Kou2) 8537 10026 10022 10032 6380
Match3(Snowl) 8798 10096 10076 10078 5949
Match4(Blau) 9021 10242 10256 10208 5270

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 31

Table 14: Averages of score in the experiment using Snowl-s (Exp.2)

P1 P2 P3 P4 Snowl-s
Match1(Default) 11284 9628 9639 9608 4840
Match2(Kou2) 11043 10044 10044 10019 3850
Match3(Snowl) 11065 10118 10139 10130 3548
Match4(Blau) 10964 10144 10108 10161 3623

Table 15: Averages of score in the experiment using Jsnowl (Exp.3)

P1 P2 P3 P4 Jsnowl
Match1(Default) 7639 8379 8373 8393 12214
Match2(Kou2) 8684 9452 9422 9427 8012
Match3(Snowl) 8855 9535 9523 9538 7548
Match4(Blau) 9195 9782 9805 9804 6411

its purpose.

5 Discussion

In Sections 3 and 4, we examined two new methods. In both cases, the objectives were
achieved by changing only the method used to calculate the evaluation value.

This process may be more effective if we change other parts of the algorithm. Snowl,
Wisteria, and Blau use evaluation functions and a log of parameters to control their behavior
by learning in advance. The pre-learned parameters may depend on the evaluation value
used in the Monte Carlo method. Therefore, in Method1, it is possible to obtain a more
effective evaluation value by incorporating parameter relearning. Furthermore, in Method2,
the simulation is based on the pre-learned parameters after the first hand. Therefore, P5 is
acting on the first play and, thus, has a different purpose. By reflecting these differences in
purpose in the evaluation function and parameters, the games may be more effective.

Lastly, the card exchange algorithm has not changed. In particular, in Method2, it is
possible to determine which type of card exchange is best by examining which play is
effective. If such a card exchange method becomes evident, the actions of Daihugo may be
more effective than those of Heimin.

Table 16: Average score of P1 and P5

P1 P5
Base Exp.1 Exp.3 Base Exp.1 Exp.3

Match1(default) 7954 7392 7639 13208 10584 12214
Match2(Kou2) 8930 8537 8684 9292 6380 8012
Match3(Snowl) 8994 8798 8855 9012 5949 7548
Match4(Blau) 9406 9021 9195 7338 5270 6411

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino32

Table 17: Ratio of ranks of Snowl-i (P5)

Match1 Match2 Match3 Match4
(Default) (Kou2) (Snowl) (Blau)

Daihugo 32.95 4.3 4.57 1.87
Hugo 23.83 10.39 9.35 6.32

Heimin 17.48 17.47 14.29 12.24
Hinmin 14.31 29.52 23.36 24.79

Daihinmin 11.41 38.29 48.4 54.76

Table 18: Average score of P1 and P2 according to ranks of Snowl-i

Default Kou2 Snowl Blau
Own Rank P1 P2 P1 P2 P1 P2 P1 P2
Daihugo 2.41 2.78 2.58 2.94 2.62 2.95 2.72 3.01

Hugo 2.35 2.94 2.44 3.12 2.49 3.12 2.52 3.23
Heimin 2.41 3.15 2.53 3.36 2.56 3.38 2.60 3.44
Hinmin 2.56 3.24 2.85 3.39 2.88 3.42 2.97 3.43

Daihinmin 2.75 3.23 3.13 3.38 3.17 3.41 3.18 3.43

6 Conclusion

In this study, we proposed two new applications of the Monte Carlo method: a method for
setting the evaluation value in repeated games, and a method for increasing or decreasing
the score of a target player. Our experiments focused on specific situations. Therefore,
further experiments are required, for other situations. The Monte Carlo method is expected
to continue providing new applications. Furthermore, future research should clarify the
detailed conditions under which play becomes effective.

References

[1] M. Wakatsuki, Y. Dobashi, T. Mitsuishi, S. Okubo, and T. Nishino, “Strengthening
Methods of Computer Daihinmin Programs,” Proceedings of the CAINE 2017,ISCA,
pp.229–236, 2017.

[2] S. Okubo, T. Aayabe, and T. Nishino, “Cluster Analysis using N-gram Statistics for
Daihinmin Programs and Performance Evaluations,” International Journal of Soft-
ware Innovation (IJSI), vol. 4, Issue 2, pp. 33–57, 2016.

[3] S. Morita and K. Matsuzaki, “Proposal of Rating Algorithms Considering Inhomo-
geneity of Initial Hand in Daihinmin,” GI, vol. 2014-GI-31, no. 14, pp. 1–5, 2014.

[4] T. Nishino and S. Okubo, “Computer Daihinmin(<Special Issue>Mind Games),”
Journal of Japanese Society for Artificial Intelligence, vol. 24, no. 3, pp. 361–366,
May 2009.

[5] M. Konishi, S. Okubo, M. Wakatsuki, and T. Nishino, “Decision Tree Analysis in
Game Informatics,” 5th International Conference on Applied Computing & Informa-
tion Technology (ACIT2017), 2017.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 33

[6] M. Wakatsuki, M. Fujimura, and T. Nishino, “A Decision Making Method Based on
Society of Mind Theory in Multi-player Imperfect Information Games,” International
Journal of Software Innovation (IJSI), vol. 4, Issue 2, pp. 58–70, 2016.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the Multiarmed
Bandit Problem,” Machine Learning, vol. 47, no. 2, pp. 235–256, May 2002.

[8] D. Silver and G. Tesauro, “Monte-carlo Simulation Balancing,” in Proceedings of the
26th Annual International Conference on Machine Learning, ser. ICML ’09. ACM,
2009, pp. 945–952.

[9] F. Suto, K. Narisawa, and A. Shinohara, “Development of Client “Snowl” for Com-
puter Daihinmin Convention,” Computer DAIHINMIN Symposium 2010, 2010.

[10] K. Ohto and T. Tanaka, “Supervised Learning of Policy Function Based on Policy
Gradients and Application to Monte Carlo Simulation in Daihinmin,” GI, vol. 2016-
GI-35, no. 10, pp. 1–8, Mar 2016.

[11] K. Tagashira and Y. Tajima, “Heuristics Implementation and Evaluations for Com-
puter Daihinmin,” IPSJ Journal, vol. 57, no. 11, pp. 2403–2413, Nov 2016.

[12] K. Tagashira, Y. Tajima, and G. Kikui, “Heuristics for Daihinmin and their Effective-
ness,” International Journal of Computer and Information Science, vol. 17, no. 2, pp.
7–14, Jul 2016.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

S. Okubo, M. Wakatsuki, T. Mitsuishi, Y. Dobashi, T. Nishino34

(a) Naive Monte Carlo Method (b) Algorithm I

(c) Algorithm II (d) Algorithm III

Figure 5: Flowchart of Each Algorithm

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

New Applications of the Monte-Carlo Tree Search to Computer Daihinmin 35

