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Abstract

In financial market forecasting, various methods based on statistical analysis and neural 
networks have been proposed. Accurate forecasting of future market states can be helpful 
in decision-making related to investment behavior; however, existing forecasting methods 
have considerable deficiencies due to the nature of financial markets and their complex-
ity, influenceability, and nonstationarity. Forecasting of complex systems, such as finan-
cial markets, should be performed considering predictive uncertainty, and decision-making 
needs to be adjusted accordingly. In the present study, we introduce the concept of uncer-
tainty to neural network-based financial market forecasting. A sparse variational dropout 
Bayesian neural network (SVDBNNs) is used for stochastic prediction, and on this basis, 
the corresponding decision-making process is proposed. The proposed method is validated 
by conducting investment simulation on the historical orderbook data from the Tokyo Stock 
Exchange and is confirmed to enable more efficient and safe investments compared with 
the considered alternative approaches.

Keywords: Financial data mining, Financial market forecasting, Uncertainty consideration, 
Neural networks

1 Introduction

Financial market forecasting has a long history of related research, and various methods to 
predict future market states have been proposed. Conventionally, the methods based on the 
knowledge on financial engineering have been investigated [1] [ 2]. In recent years, more 
advanced approaches, such as methods based on neural networks, have been actively stud-
ied [3] [4]. High generalization ability of neural networks [5] can improve the prediction 
accuracy.

In spite of large number of related studies, achieving perfectly accurate prediction of 
future market states is still unrealistic. Financial markets are known as complex systems [6]
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[7], which do not imply deterministic relationships between the current and future states of
markets. Therefore, prediction has to be performed considering uncertainty [8].

In the financial market field, future forecasting can be applied to facilitate decision-
making processes related to investment behavior. Market follower and contrarian strategies
are one of the simplest forecasting-based decision-making-approaches. However, in the
case when financial market forecasting includes uncertainty, decision-makings based on
uncertain forecasts may cause risk of losses.

Therefore, while developing a neural network-based financial market forecasting method,
it is necessary to account for uncertainty. However, previous neural network-based methods
aimed to perform financial market forecasting have not considered predictive uncertainty.
To address this issue, in the present study, we introduce an approach based on consid-
ering uncertainty in the neural network-based financial market forecasting and decision-
making processes. Predictive uncertainty is incorporated by using Bayesian neural net-
works (BNNs) [9] [10], which allows accounting for the posterior distribution of output
variables. To implement Bayesian inference in neural networks, we apply sparse varia-
tional dropout [11] [12]. Moreover, we design a decision-making process based on the
predicted distribution provided by BNNs.

The proposed method was validated by conducting investment simulation on the histor-
ical stock order data obtained from the Tokyo Stock Exchange. As a result, we confirmed
that the proposed method allowed performing more efficient and safe decision makings
compared with ordinary neural network based investment strategies.

The main contributions of the present study are as follows:

1. We proposed an investment decision-making process based on a Bayesian neural
network to consider predictive uncertainty of financial market forecasting.

2. The proposed decision-making process was evaluated by conducting investment sim-
ulation on the historical stock order data from the Tokyo Stock Exchange. The pro-
posed process was confirmed to provide efficient decisions.
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The rest of the paper is organized as follows. In Section 2, previous research works 
related to the considered topic are summarized. In Section 3, we described the BNNs im-
plemented to consider predictive uncertainty. In Section 4, an investment decision-making 
process using BNNs is proposed. In Section 5, the input features and neural network con-
figuration are described. In Section 6, experimental details and results are discussed, and 
Section 7 outlines the final conclusions.

2 Related Work

2.1 Financial Market Forecasting

Financial market forecasting has been investigated for a long time, and there are numerous 
research works [13] [14]. Specially, forecasting of financial market prices and volatility is 
considered to be one of the most widely researched topic [1] [15]. In recent years, employ-
ing neural networks in financial market forecasting [ 4] [ 16] has been one of mainstream 
approaches, and a number of related topics have been investigated, such as classification-
based financial markets prediction [17], forecasting stock prices based on the limit order-
book data using convolutional neural networks [18], financial market prediction using long
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short-term memory [19], and developing a financial trading model based on stock bar chart
image time series data [20].

2.2 Investment Decision Making

Decision-making processes related to investment behavior have been investigated by con-
ducting artificial market simulation and applying financial engineering [21]. Convention-
ally, dynamic model-based approaches apply simple rules and formulas to describe the
trader behavior patterns, such as the sniping [22], the Zero intelligence [23], and the risk-
based bidding strategies [24]. In recent years, reinforcement learning methods [25] [26],
specially deep reinforcement learning (DRL) methods [27] [28] have been widely applied
to learning investment strategies in various studies [29] [30], such as DRL for financial
portfolio management [31], market making via reinforcement learning [32], and DRL for
price trailing [33].

2.3 Predictive Uncertainty

Considering predictive uncertainty is essential in constructing forecasting models [34] [35].
Conventionally, probabilistic models, such as Gaussian process (GP) [36] have been de-
veloped to address this problem. In recent years, as a result of rapid advance in the field
of neural networks, studies focused on applying them to the task of forecasting have been
conducted, including such applications as uncertainty estimation via prior networks [37],
evidential deep learning [38], and evaluating predictive uncertainty of neural networks un-
der the dataset shift [39].

3 Bayesian Neural Networks (BNNs)

In general, a regression model outputs one value for one certain input variable. In contrast, a
model, which can consider predictive uncertainty has to output more information, including
posterior distribution of the output variable [34]. In the present study, BNNs are employed
to account for predictive uncertainty.

Conceptually, BNNs [9] [10] perform Bayesian inference in neural networks by approx-
imating the following posterior distribution.

p(y|D,x,θ) =
∫

p(y|x,w)p(w|D,θ) (1)

where x and y are input and output variables; D is the training data; θ denotes the set of 
parameters of the neural network; and w corresponds to the set of weight values conditioned 
by D and θ . By approximating the posterior distribution of the output variable, we can 
incorporate predictive uncertainty. Narrow tail distribution is predicted in the case when 
the predictive uncertainty is small, and fat tail distribution is obtained when the predictive 
uncertainty is large.

There are several methods developed for training BNNs, such as Laplace approxima-
tion [40], variational inference [41] [10], and automatic differentiation variational infer-
ence (ADVI) [42]. In the present study, the method based on sparse variational dropout 
is used. Variational dropout is employed to interpret Gaussian dropout [43] as a Bayesian 
approximation. By applying Gaussian dropout also in the inference phase, sampling from
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the approximated posterior distribution of the output variable can be realized [44]. Opti-
mization of parameters in BNNs can be performed using the stochastic gradient variational
Bayes (SGVB) method [11] [45]. By using SGVB, an unbiased Monte Carlo estimator of
the expected log likelihood can be obtained. Moreover, the local reparameterization trick
proposed in [11], as well as reparameterization of posterior parameters and approximation
of Kullback–Leibler (KL) divergence proposed in [12] can be used to improve variational
dropout aiming to perform learning with a small variance. For the purpose of the present
study, we employ sparse variational dropout Bayesian neural networks (SVDBNNs) pro-
posed in [12]. SVDBNNs are used to parameterize mean µi and standard deviation σi of
each weight wi in networks instead of the dropout rate αi aiming to reduce the variance of
a gradient. Each weight value is sampled according to the following equation:

wi = µi +σiεi (2)

where εi ∼ N(0,1). α can be calculated as αi = σ2
i /µ2

i . The Kullback-Leibler (KL)
divergence of the parameters can be approximated as per the following equation:

−DKL ≈ k1σ(k2 + k3 logαi)−0.5log(1+α
−1
i )+C (3)

where k1 = 0.63576; k2 = 1.87320; k3 = 1.48695; and σ denotes the likelihood function
of the standard normal distribution. The overall loss function to minimize can be written as
follows:

−LD(θ)+DKL (4)

where −LD(θ ) is the negative log likelihood for the training data and is equal to the 
cross entropy function.

SVDBNNs can be used for prediction to obtain the outputs stochastically. Prediction 
in BNNs is performed by sampling parameters of the network from their posterior distribu-
tions (Equation 2), and the posterior distribution of the output variable cannot be identified 
analytically. Therefore, posterior mean and standard deviation are estimated by performing 
multiple samplings.

4 Decision-Making Using BNNs

Predicted future prices can be used for the purpose of decision-making related to invest-
ment behavior. Applying the prediction model that can consider predictive uncertainty, the 
decision-making process can be improved. In the present study, we propose a baseline pro-
cess using only predicted prices, and develop an improved method that incorporates both 
predicted prices and uncertainty.

We consider that a prediction model f (·) outputs the score (or probability) values of 
changing in the mid price y = [yup,ystay,ydown], where (yup, ystay, and ydown) are the scores 
of a price increase, leveling off, and fall, respectively, and yup + ystay + ydown = 1. We note 
that price fluctuations below a predefined threshold are as leveling off (the threshold is set 
according to orderbook states). We denote this prediction as y = f (X), where X correspond 
to a set of market states.
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4.1 Score-Based Process

As a baseline, we propose a score-based process, which takes the predicted scores as input.
In the score-based process, investment behavior is described as follows:

1. Buy (yup > max(t,ystay,ydown))

2. Sell (ydown > max(t,yup,ystay))

3. Stay (otherwise)

where t is the score threshold. When the investment behavior corresponds to buying or
selling, a transaction is executed. There are various ways to execute a transaction, such as
limit order (LMT) and market order (MKT) transactions. In the present study, we consider
mid price transaction to eliminate transaction costs, which allows ignoring differences in
the transaction frequency. In the case of executing mid price transaction with price pmid
and volume v, the change in trader cash ∆c is written as −pmidv. We note that v is positive
when the behavior is buy, and negative when the behavior is sell. The investment volume v
is calculated as follows:

v =

{
(c+pmidI)r

pmid
(Buy)

− (c+pmidI)r
pmid

(Sell)
(5)

where I and r are the inventory value and investment ratio, respectively. c + pmidI
represents the current capital value of a trader. In addition, the limit of absolute inventory
Ilim is considered. The inventory I must be within −Ilim and Ilim. Then, Ilim is calculated as
follows:

Ilim =
(c+ pmidI)l

pmid
(6)

where l is the leverage value. Then, the investment volume v can be calculated as
follows:

v =

{
min( (c+pmidI)r

pmid
,max(Ilim− I,0)) (Buy)

−min( (c+pmidI)r
pmid

,max(Ilim + I,0)) (Sell)
(7)

The algorithm of the score-based process is described in Algorithm 1. In case of a
standard neural network, the deterministically predicted scores are used. In turn, in case
of a Bayesian neural network, the mean values of sampled scores are used as the predicted
scores.

4.2 Std-Based Process

By accounting for predicted uncertainty, decision-making processes can be improved. Here,
we propose a process based on standard deviation (std), which uses modified scores calcu-
lated as follows:

y′ = y− kσy (8)

where k is a coefficient, and σy is standard deviation of y. σy can be substituted by sam-
ple standard deviation in cases when standard deviation cannot be obtained analytically (as
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Algorithm 1 Decision-making and investment behavior in the score-based process
Require: prediction NN (BNN) f (·)
Parameter: score threshold t, investment ratio r, and leverage l
Get current cash c and inventory I
Get market states X and mid price pmid
Predict scores using NN (BNN) [yup,ystay,ydown] = f (X)

Get inventory limit Ilim = (c+pmidI)l
pmid

if yup > max(t,ystay,ydown) then
Determine buy volume v = min( (c+pmidI)r

pmid
,max(Ilim− I,0))

else if ydown > max(t,yup,ystay) then
Determine sell volume v =−min( (c+pmidI)r

pmid
,max(Ilim + I,0))

else
Do nothing v = 0

end if
Trade on the current mid price and the determined volume
Update cash c← c− pmidv
Update inventory I← I + v
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in BNN). Equation 8 is based on the lower confidence bound [46] [47]. The lower or upper
confidence bound has been proposed as an acquisition function for Bayesian optimization
[48] [49], and is known to enable efficient parameter search. The coefficient k represents
the trade-off between utilization and search in optimization. In the present study, a larger k
corresponds to safer investment decisions.

After calculating y′, the rest of the procedure is the same as in the score-based process.
The algorithm of the std-based process is shown in Algorithm 2.

5 Neural Network Configuration

In this section, we describe feature engineering, and the network architecture of the pro-
posed neural network.

5.1 Feature Engineering

As the feature input into neural networks, two features; price series and orderbook features,
are used.

The price series is composed of the data corresponding to ten market prices (the last or
current trade price) registered at certain time step intervals. In this study, the interval is set
to ten tick.

The orderbook features are arranged in a vector of the latest orderbook and are used
to summarize order volumes of the upper and lower prices centered at the mid price. To
distinguish between the buy and sell orders, buy order volumes are recorded as negative
values.

The positional information of the orderbook features is considered important for the
price trend prediction, but traditional multivariate analysis methods cannot extract posi-
tional information. As described in the next section, we applied convolutional neural net-
works (CNNs) for valid predictions.
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Algorithm 2 Decision making and investment behavior of the std-based process
Require: prediction BNN f (·)
Parameter: coefficient k, score threshold t, investment ratio r and leverage l
Get current cash c and inventory I
Get market states X and mid price pmid
for i = 1, · · · ,N do

Sample scores using BNN [yi,up,yi,stay,yi,down]∼ f (X)
end for
Get modified sores y′up = E[yi,up]− k

√
V [yi,up],y′stay = E[yi,stay]− k

√
V [yi,stay],

y′down = E[yi,down]− k
√

V [yi,down]

Get inventory limit Ilim = (c+pmidI)l
pmid

if y′up > max(t,y′stay,y
′
down) then

Determine buy volume v = min( (c+pmidI)r
pmid

,max(Ilim− I,0))
else if y′down > max(t,y′up,y

′
stay) then

Determine sell volume v =−min( (c+pmidI)r
pmid

,max(Ilim + I,0))
else

Do nothing v = 0
end if
Trade on the current mid price and the determined volume
Update cash c← c− pmidv
Update inventory I← I + v

5.2 Network Architecture

The proposed network architecture is represented in Figure 1. The baseline and BNNs have 
the same layer configuration. In these networks, two market state features, price series, and 
orderbook features (Section 5.1), are extracted and merged. To extract price series features, 
a long short-term memory (LSTM) [50] layer is employed according to the previous studies 
[19] [51]. Convolutional (Conv) and maximu pooling (MaxPool) layers [52] are used to ex-
tract the orderbook features that correspond to the positional information [18] [53]. Merged
features are transformed by using fully-connected (Dense) layers, and the price change y is
the output from the last layer.

Convolutional and fully-connected layers can be converted to the sparse variational 
dropout (SVD) form [12]. Therefore, in the proposed BNN, SVD convolutional, and fully-
connected layers are used instead of ordinary ones.

6 Experiments

To validate the developed methods, several experiments were conducted. For this purpose, 
the proposed models were trained using the historical stock order data obtained from the 
Tokyo Stock Exchange. The model performance was validated by checking prediction 
accuracies and investment performance.

In these experiments, baseline and Bayesian NN models were considered. In addition, 
the models with L2 regularization (L2Regu) [54] [55] were also trained using the same 
procedure. L2 regularization is a technique commonly used to prevent overfitting [56] [57] 
and to improve the prediction accuracy. In the present study, L2 regularization was applied
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Figure 1: Overview of the proposed networks. Two market state features, price series,
and orderbook features are extracted and merged. The LSTM layer is used to extract the
price series features, and the Conv and MaxPool layers are employed to extract orderbook
features. Merged features are transformed by using Dense layers, and the price change
is obtained as the final output. In the proposed BNN, SVD Conv, and Dense layers are
employed instead of ordinary ones to convert the network into the Bayesian form.

to the parameters in the LSTM, convolutional, and fully-connected layers.

6.1 Dataset

To conduct the experiments, we used the FLEX FULL historical full orderbook data ob-
tained from the Tokyo Stock Exchange 1. The FLEX FULL dataset contains tens of mil-
lions of stock order data items per day including high-frequency trading orders [58].

In this experiment, the data for symbol 9022 (Central Japan Railway Company) col-
lected in the period between January 1, 2019 and June 30, 2019 were used for training, and
data collected between July 1, 2019 and August 31, 2019 was used for validation. Training
samples were extracted picking every ten available samples to reduce correlation between
samples.

6.2 Prediction Accuracy

Prediction accuracy values estimated on the validation data are represented in Table 1. Pre-
dicted price change probabilities are validated in terms if the area under the receiver oper-
ating characteristics (AUROC) [59], false-positive rate 95% (FPR95), area under precision-
recall curve (AUPR) [60] [61], and expected calibration error (ECE) [62]. ECE is defined
as the average difference between the predicted score and accuracy and is used to measure
the validity of predicted scores (equal to predictive uncertainty).

As shown in Table 1, all proposed methods achieved the approximately similar values
of AUROC, FPR95, and AUPR. This result is in line with preliminary expectations, as

1https://www.jpx.co.jp/english/markets/paid-info-equities/realtime/index.html
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Table 1: Prediction accuracy estimated on the validation data. Predicted order 
probabilities are validated in terms of AUROC, FPR95, AUPR, and ECE.

Model AUROC ↑ FPR95 ↓ AUPR ↑ ECE ↓
Baseline 0.5627 0.9322 0.3767 0.1087
Baseline + L2Regu 0.5599 0.9336 0.3727 0.1145
SVDBNN 0.5504 0.9167 0.3725 0.0068
SVDBNN + L2Regu 0.5603 0.9081 0.3819 0.0089

no modification has been made to improve the prediction accuracy. However, the proposed
SVDBNN and SVDBNN + L2Regu have achieved excellent ECE values and have predicted
uncertainty much more accurately compared with the than baseline NN and NN + L2Regu.

6.3 Investment Performance

Investment performance estimates are provided in Table 2. Investment simulation was
performed for each day in the validation dataset, and the simulation procedure was im-
plemented according to Algorithm 1 and Algorithm 2. Traders were given possibility
to invest on every 10 order, and act according to the predictions of the trained models.
Here, we set investment ratio r = 0.1, and leverage l = 1. In addition, score thresh-
old t was selected in the range of {1/3,0.4,0.5,0.6,0.7,0.8} (1/3 is the minimum pos-
sible value of max(yup,ystay,ydown)) in the case of the baseline NN, and in the range of
{0,0.1,0.2,0.3,0.4,0.5} in the case of the Bayesian NN. In the std-based process described
in Section 4.2, the coefficient value k was also changed in the range of {0.5,1,2}. The
initial cash and inventory values were set to 1.0×108 and 0.

Investment performance estimates were evaluated in terms of the total return rate Tr,
Sharpe ratio Sp [63] [64], and maximum drawdown MDD [65] [66]. The total return rate Tr

is calculated as follows:

Tr =
capend− capstart

capstart
(9)

where capstart and capend are the initial and final capital values calculated by cap =
c+ pmidI. Daily Tr values are multiplied by 250 to be converted to the annual rates. The
Sharpe ratio Sp is calculated as follows:

Sp =
E[Ra−Rb]√
V [Ra−Rb]

(10)

where Ra and Rb are returns of the investment and benchmark, and E and V are expected
value and variance. In this study, Rb = 0 was assumed. Maximum drawdown is calculated
using the following equation:

MDD =
P−L

(11)
P

where P and L are the highest and lowest capital amounts before and after the largest 
capital drop.

As shown in Table 2 and Table 3, all models achieved acceptable Tr and Sp values in the 
case when the threshold t was small. In general, the large value of t allows preventing large 
losses, but limits the possibility of gaining stable profits at the same time. In addition, the
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Table 2: Investment performance estimates of the score-based process using the 
trained baseline NN and SVDBNN models. Performance estimates of the models 
are validated in terms of the total return rate Tr, Sharpe ratio Sp, and maximum 
drawdown MDD. Mean and standard deviation values of daily indices are 
provided. The rows without any values indi-cated the cases when no simulation 
could be performed due to excessively large threshold values.

Model t Tr ↑ Sp ↑ MDD ↓
Baseline 1/3 0.9379±1.3388 0.0138±0.0197 0.0016±0.0004
(Score based) 0.4 0.8338±1.3769 0.0121±0.0194 0.0016±0.0004

0.5 0.5159±1.1397 0.0076±0.0170 0.0017±0.0004
0.6 0.1867±1.3677 0.0020±0.0199 0.0018±0.0004
0.7 0.0655±1.3935 0.0006±0.0205 0.0015±0.0006
0.8 −0.0573±1.1387 −0.0033±0.0212 0.0012±0.0006

Baseline 1/3 1.2575±1.6847 0.0174±0.0206 0.0014±0.0002
+ L2Regu 0.4 1.1952±1.7257 0.0162±0.0210 0.0014±0.0003
(Score based) 0.5 0.8636±1.7033 0.0102±0.0215 0.0016±0.0003

0.6 0.4135±1.4812 0.0031±0.0199 0.0017±0.0005
0.7 0.3654±1.5046 0.0027±0.0232 0.0015±0.0006
0.8 0.2087±1.1344 0.0048±0.0236 0.0011±0.0006

SVDBNN 1/3 1.1951±1.5409 0.0169±0.0207 0.0013±0.0003
(Score based) 0.4 0.6977±1.6765 0.0080±0.0228 0.0015±0.0003

0.5 −0.0024±0.8229 0.0017±0.0230 0.0009±0.0010
0.6 −0.1827±0.7854 −0.0013±0.0212 0.0007±0.0014
0.7 −0.0259±0.1088 −0.0117±0.0138 0.0001±0.0003
0.8 − − −

SVDBNN 1/3 1.3602±1.3615 0.0208±0.0197 0.0013±0.0003
+ L2Regu 0.4 0.6145±1.2419 0.0085±0.0202 0.0015±0.0003
(Score based) 0.5 −0.0487±1.2490 −0.0006±0.0215 0.0014±0.0006

0.6 −0.1248±0.7760 −0.0018±0.0261 0.0006±0.0005
0.7 0.0018±0.0117 0.0100±0.0000 0.0000±0.0000
0.8 − − −
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Model k t Tr ↑ Sp ↑ MDD ↓
SVDBNN 0.5 0 1.2450±1.4619 0.0177±0.0191 0.0013±0.0003
(Std based) 0.1 1.3119±1.4066 0.0192±0.0190 0.0013±0.0002

0.2 1.2634±1.4551 0.0180±0.0194 0.0013±0.0002
0.3 1.2748±1.6564 0.0175±0.0208 0.0013±0.0002
0.4 0.5462±1.7732 0.0052±0.0222 0.0018±0.0005
0.5 −0.2973±0.9135 −0.0053±0.0194 0.0009±0.0015

SVDBNN 1 0 1.2243±1.5536 0.0169±0.0199 0.0013±0.0002
(Std based) 0.1 1.2976±1.5561 0.0182±0.0206 0.0013±0.0002

0.2 1.2374±1.6341 0.0170±0.0208 0.0013±0.0002
0.3 1.2111±1.4363 0.0170±0.0192 0.0014±0.0003
0.4 −0.4022±1.1832 −0.0058±0.0190 0.0013±0.0015
0.5 −0.2971±0.8451 −0.0061±0.0196 0.0008±0.0015

SVDBNN 2 0 1.0663±1.6193 0.0138±0.0208 0.0015±0.0006
(Std based) 0.1 1.2235±1.6485 0.0163±0.0212 0.0015±0.0005

0.2 1.0241±1.5412 0.0136±0.0206 0.0014±0.0003
0.3 0.7311±1.5499 0.0091±0.0212 0.0015±0.0004
0.4 −0.2767±0.9115 −0.0052±0.0190 0.0009±0.0015
0.5 −0.0097±0.0796 −0.0020±0.0200 0.0000±0.0001

SVDBNN 0.5 0 1.4327±1.2971 0.0224±0.0196 0.0012±0.0003
+ L2Regu 0.1 1.4289±1.4009 0.0213±0.0191 0.0013±0.0003
(Std based) 0.2 1.3262±1.4027 0.0201±0.0198 0.0013±0.0003

0.3 1.4454±1.3298 0.0224±0.0195 0.0013±0.0003
0.4 −0.1249±1.2795 −0.0020±0.0205 0.0017±0.0013
0.5 −0.1191±0.7834 −0.0042±0.0221 0.0006±0.0005

SVDBNN 1 0 1.3759±1.3126 0.0212±0.0175 0.0014±0.0004
+ L2Regu 0.1 1.4013±1.2687 0.0214±0.0174 0.0013±0.0003
(Std based) 0.2 1.4828±1.5593 0.0223±0.0209 0.0013±0.0003

0.3 1.4453±1.3713 0.0216±0.0182 0.0013±0.0003
0.4 −0.0479±0.8866 −0.0092±0.0224 0.0006±0.0005
0.5 − − −

SVDBNN 2 0 1.2509±1.2408 0.0191±0.0177 0.0013±0.0003
+ L2Regu 0.1 1.1639±1.3837 0.0173±0.0193 0.0013±0.0003
(Std based) 0.2 1.3471±1.4619 0.0206±0.0204 0.0013±0.0003

0.3 1.0053±1.3677 0.0155±0.0212 0.0015±0.0004
0.4 − − −
0.5 − − −
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Table 3: Investment performance estimates of the std-based process using the 
trained SVDBNN models. Performance estimates of the models are validated in 
terms of the total return rate Tr, Sharpe ratio Sp, and maximum drawdown MDD. 
Mean and standard deviation values of daily indices are provided. The rows 
without any values indicated the cases when no simulation could be performed due 
to excessively large threshold values.
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Figure 2: Example of changes in capitals and mid price (August, 8, 2019). The 
top plot shows changes in capitals of the proposed methods, the middle three plots 
show changes in inventories, and the bottom plot represents changes in the mid 
price. t = 1/3 for the score based processes; and k = 0.5 and t = 0 for the std-
based process are selected as representatives. The horizontal axis represents the 
number of actions.
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proposed std-based process using SVDBNN with l2 regularization achieved better results.
By setting k = 0.5 and t = 0, effective investments with large Tr and Sp, and small MDD
can be realized.

Example investment results are represented in Figure 2. Figure 2 depicts changes in
capitals and inventories of the proposed methods, and mid price according to the number
of actions. The results for the case when t = 1/3 are provided for the score-based pro-
cesses using the baseline and SVDBNN models, and the results when k = 0.5 and t = 0 are
represented for the std-based processes using SVDBNN models. As shown in Figure 2, in-
ventories of baseline models and SVDBNN models changed in opposite directions. In this
case, SVDBNN models achieved more accurate predictions compared with the baseline
ones, and the investment performance estimates of the SVDBNN models were excellent.
Comparing the score-based and std-based processes using SVDBNN models, it can be con-
cluded that std-based process achieved slightly better performance.

7 Conclusions

In the present study, we aimed to demonstrate the importance of considering predictive un-
certainty in neural-network based financial market prediction and corresponding decision-
making. We introduced BNNs into financial market forecasting to consider predictive un-
certainty, and proposed an investment decision-making process based on BNNs. Experi-
ments were conducted using the historical stock order data, and the proposed method was
confirmed to allow performing more efficient decision makings.

With regard to this advanced problem, we note that it is difficult to make decisions in the
case when major changes in financial markets (like the financial crisis [67]) happen. There
are greater potential risks associated with such market conditions, and decision-making
processes robust with respect to these risks are required. In the future research, we will aim
to update our the proposed method to consider major market changes.
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