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Abstract 

In spite of the impressive advances in artificial intelligence (AI), close collaboration between 

humans and AI systems is still difficult to achieve. To overcome this problem, we designed AI 

agents with a behavior tree that enables us to know what they are trying to do, and by using a 

consensus building algorithm, that is, a contract net protocol, a human and a group of AI agents 

were put together as one team. Taking advantage of this architecture, we designed an approach 

to decomposing cooperative tasks into appropriate roles. The effectiveness and feasibility of this 

approach were evaluated with teams in a simulated Tail Tag game. Matches were held with up 

to 29 AI agents and 1 person on one team and 30 people on the other team. The results indicate 

that our approach works almost evenly with human-human collaboration by sharing roles be-

tween a human and AI swarm. By understanding the roles of AI agents, a person can immediately 

understand the role that he/she should take. For further improvement, we also identified that it is 

necessary for a person to be able to give concise and global instructions. 

Keywords: multi-agent, task decomposition, human-swarm interaction 

1 Introduction 

The capabilities of artificial intelligence (AI) have greatly advanced, as evidenced by the defeat 

of the top human players in Go [1], Poker [2] or such video games as Dota 2 [3]. Similarly, 

attention has recently turned to collaborative teaming of humans and AI in data science [4], game 

design [5] or for such card games as Hanabi [6] too. 

 One example of human-AI agent collaboration is freestyle chess, in which anyone can play in 

teams of players and computers. The winners of a 2005 freestyle chess contest were not 

grandmasters with a state-of-the-art computer but two amateur American chess players using 

three computers simultaneously. This proved that “weak human + machine + better process was 

superior to a strong computer alone and, more remarkably, superior to a strong human + machine 

+ inferior process” [7].

AI systems can support humans in making long-term, systematic decisions by utilizing their

better memory capability and accuracy. In addition, input data can be processed more quickly to 
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assist in tasks that require rapid responses. In contrast, as is known as the “frame problem,” [8] 

current AI systems have difficulty dealing with problems that change the framework of the prob-

lems, such as exception handling and the creation of new value. Therefore, it is necessary to 

clarify the process by which humans understand and use AI systems for high performance on 

complex reality problems. 

Decreasing birthrates and aging populations in many countries will have a major impact in the 

near future, especially in Japan. In particular, measures addressing labor shortages are urgently 

required to maintain social infrastructure and security. If people could collaborate with many 

autonomous machines driven by AI, hereafter AI agents, we could overcome and even enhance 

social welfare even if the number of people is small. 

However, attempts to work closely with AI agents in reality, especially in serious and imminent 

situations such as those related to disaster response or national security, have revealed two prob-

lems in particular. First, the effectiveness of these systems is limited by their inability to explain 

their decisions and actions to a person [9]. Second, since the appropriate degree of support de-

pends on the state of the person, an arrangement mechanism is needed for transferring adequate 

information between humans and AI agents instantly. As the number of AI agents increases, these 

problems become more complex. Therefore, most practical autonomous products have been de-

signed to work separately from people [10], to be controlled by a human operator [11], or to 

perform only explicitly assigned roles that are not shared with a person [12].  

In this study, we use an architecture and a prototype of a human-multiple agent interface called 

“human-swarm interaction” (HSI) [13], which were proposed by A et al. (anonymity for blind 

review) [14]. The architecture consists of a behavior tree (BT) [15] and a contract net protocol 

(CNP) [16] as a mechanism for task sharing between human and AI agents. The use of the BT 

enables us to know what AI agents are trying to do, while the CNP prioritizes human-AI collab-

oration without compromising AI agent autonomy. 

We confirmed that a human player can cooperate with many AI agents at a close degree, that 

is, a human team, through an experiment with a simulated game of Tail Tag. In the experiment, 

we noticed that decomposing tasks into appropriate roles and sharing the information of the roles 

that AI agents are currently taking helps humans to understand the AI colleagues’ intention in-

stantly. 

The rest of this paper is organized as follows. First, we introduce related works in the fields of 

task decomposition and human trust in AI. Then, we discuss the problem domain and the specific 

environment of the Tail Tag game. In Section 4, we describe the architecture that combines BT 

and CNP and introduce the implementation of HSI. In Section 5, we explain an example of task 

decomposition in detail. In Section 6, we demonstrate the effectiveness of task decomposition, 

limitations, and several remarkable findings as a result. Finally, in Section 7 concludes the paper. 

 

2 Related Works 

Building teamwork among autonomous agents for complex, dynamic environments is a major 

research area of multi-agent domains towards real-world implementations of these agents. In a 

practical environment, agents must deal with several influences caused by uncertainties such as 

differing, incomplete, and possibly inconsistent views of their environment. Tambe proposed 

STEAM as a general model of teamwork that enables a team to act coherently, overcoming such 

uncertainties of complex, dynamic environments [17]. In STEAM, agents are designed to have 

an explicit model of teamwork that describes an agent organization hierarchy and the team tasks 

for the organization. The notion of a role is key in STEAM. A role is an abstract specification of 
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a set of activities an individual or a sub-team undertakes in service of the team’s overall activity. 

Nair et al. also tackled initial role allocation and reallocation upon failures or new tasks [18].  

We need to decompose tasks into an appropriate level of granularity before discussing role 

allocation. Stone et al. introduced a good example of a flexible teamwork structure for RoboCup 

soccer teams that allows for multi-agent tasks using homogeneous agents to be decomposed into 

flexible roles [19]. We have noticed that, by using well-defined roles to represent abstracted tasks, 

coordination is achieved through limited communication and pre-determined procedures as part 

of a locker-room agreement.  

We also need some coordination mechanism to allocate roles among agents. Since we focus 

on a team consisting of self-interested distributed agents, a distributed approach is required, rather 

than a purely centralized approach, that can be considered as a single-agent system with many 

degrees of freedom. A centralized approach may be able to produce optimal plans if the complex-

ity of the problem is sufficiently small. However, there are several critical problems with a purely 

centralized coordinated system. For instance, communication between the leader and others is 

critical since the leader determines everything. The point of vulnerability for such tightly coupled 

teams is the leader and its communication. Moreover, as the number of agents increases, the 

communication cost also increases. 

Market-based coordination is one distributed approach, and it has been proven in the field of 

multi-robot coordination [20]. Originally, Smith introduced the concept of using an economic 

model to distributed multi-agent systems as a CNP [16]. The CNP is the most fundamental model 

that applies economic activities to multi-agent systems. 

These related works indicate that smart agents can deal with a practical problem if we can 

assemble the appropriate solutions to each problem. Hence, the complexity of multi-agent-team 

decision problems in partially observable environments can be relaxed with communication [21], 

and it becomes more realistic to make a practical team of agents by decomposing tasks into roles 

at an adequate granularity and to reduce communication costs with a coordination mechanism. 

However, none of these works focus on cooperation between human and AI agents. A specific 

problem arises when human-AI collaboration is needed. A wide range of research has proposed 

ways to explain AI systems, and some have found that too much explanation can create confusion 

and degrade trust, and thus, humans prefer simple explanations [22]. In particular, despite the rich 

capabilities of recent machine learning, the growing complexity of these algorithms has made 

them difficult to explain to humans. Because we consider developing human-AI collaboration 

and trust to be the most important goal of our research, we use the old-fashioned multi-agent and 

multi-robot approach described above. 

 

3 Problem Setting 

3.1   Problem Domain 

In this study, we aim at enhancing team capabilities in situations where there are serious and 

imminent problems such as in disaster response, search and rescue, and security threats. Such 

situations cannot be handled by robots alone since they might threaten people’s lives, so humans 

must consider legal and ethical responsibilities in a timely manner when working with these ro-

bots. Furthermore, technical knowledge that can handle these serious problems are also useful 

for easier situations of human-AI collaboration such as those involving resource mapping and 

robot sheepdogs. 

Moreover, to evaluate human-AI agent collaboration, we decided to compare it with collabo-

ration between people. First, a team consisting of a human and AI agents competes against a team 
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consisting of humans. Next, we confirm the performance of collaboration between the human 

and AI agents through the results of the matches. 

The key features of this problem domain are as follows. 

1) multi-agent, 

2) team-style symmetry, 

3) simultaneous games, 

4) games with imperfect information, and 

5) the availability of multiple strategies with no persistent equilibria. 

We could not find a good abstracted existing environment that satisfies all the features above 

in prior studies such like RoboCup soccer [23], StarCraft [24], or capture the flag [25]. To focus 

on the fundamental aspects of the problem, we used a simpler environment and rules than these 

environments.  

As a result, we chose the simple team game Tail Tag, which satisfies all the features above, as 

the environment for this research, and we constructed a simulation. Tail Tag is a children’s game. 

The players are divided into two teams, and they tuck a piece of ribbon or string into the back of 

their shorts as a tail. Then, they run around the game area trying to catch the tails of the opponent 

team while defending their own tail. To win this game, it is important to understand the current 

situation and to quickly estimate the opponent players’ tactics. Furthermore, the players need to 

be flexible in their strategy and cooperate with their teammates, such as by coordinating their 

actions (“trap him/her in a pincer!”) and giving warnings (“look out behind you, run!”). 

3.2   Tail Tag Game 

The environment and the rules of our Tail Tag game are described in Figure 1. A round game 

area is used to avoid characteristic shapes such as corners. The game features two teams of agents. 

Team A consists of one person and a group of AI agents, while Team B consists of people. The 

human player on Team A directly controls his/her agent’s movement and communicates with the 

AI agents through HSI, which we describe later. The AI agents can not only act autonomously 

but also interact with the human player. The human players on Team B can communicate with 

their teammates by voice chat while they directly control their own agent. Each human player on 

either team uses a gamepad with two joysticks to control their agent. The translational velocity is 

controlled by moving one stick that has two analogue axes (X and Y), and the rotational velocity 

is controlled by moving the other stick, which has one analogue axis (Z). These settings satisfy 

key features 1, 2, and 3 in Problem Domain. 

An agent catches an agent on the other team when his/her front collides with the back of the 

other agent of the opponent team. Caught agents as well as agents that leave the game area are 

eliminated from the game. The winner of this game is the team that either eliminates all adversary 

agents or has more remaining agents after a time limit of 10 minutes. If two agents on opposing 

teams simply collide without a capture resulting, they are frozen for a certain length of time after 

being knocked back. In addition, if teammates collide, they are frozen for the same length of time 

regardless of their collision pattern. As shown in Figure 1, the field of view of each agent is 

limited to a circular region. The positions and directions of the friend agents and of the observed 

adversary agents are shared in an overhead view with the teammates. However, there is large 

unobserved area outside the fields of view of the teammates. In other words, key feature 4 in 

Problem Domain is satisfied. 
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Figure 1: Rules and environment of Tail Tag game used 

 

Success in this game requires collaboration among teammates. For example, since each agent 

performs the same, it is impossible for an agent to catch a target by using an optimal strategy 

against the other agent in a one-to-one situation. However, if two teammate agents cooperate, one 

can intentionally collide head-on with an opposing team agent, causing it to become frozen, 

which will enable the other teammate to catch it. When considering such cooperation, there can 

be complex combinations of teammates to cooperate with and targets to share. This is equivalent 

to key feature 5 in Problem Domain. 

 

4 Overview of Architecture and Interface 

4.1   Architecture 

As described in Section 3, success in the Tail Tag game requires teamwork. One of the keys to 

effective collaboration is the ability to update adaptive strategies dynamically to achieve the 

team’s goal while monitoring the situation including the opponent’s activities. Since we assume 

that the AI agents are autonomous, they also have individual strategies based on their local situ-

ation. For example, even if the team’s goal is to reach a specific area at a certain time, any agents 

in imminent danger shall give priority to avoiding it. Any agents that are not in imminent danger 

need to move toward the target location to achieve the team’s goal. A centralized approach in 

which one person directs a group of AI agents would become inefficient as the number of agents 

increases. Given this scalability problem and the uneven distribution of information, it becomes 

more attractive to use an architecture in which the individual local strategies of the agents and the 

team’s global strategies are aligned in a decentralized manner. 

The architecture consisting of CNP and BT achieves strategic negotiation and alignment. 

4.1.1   Contract Net Protocol 

CNP [16] is a protocol for decomposing a complex mission into independent tasks and assign-

ing them to multiple agents, analogous to contract bidding in business transactions. 

With CNP, an agent (the manager) first broadcasts a task-announcement message. Next, any 
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agent capable of performing the announced task sends a bid message to the manager for the task. 

Then, the manager evaluates the bids received, selects appropriate agents, and sends an award 

message to the selected agents. These agents selected by the manager are called the contractor. 

Finally, the manager receives a report message from the contractors detailing the results of the 

execution. Thus, CNP forms a hierarchical task allocation structure by top-down processing. 

The main feature of CNP is mutual selection. In other words, when entering into a contract, 

managers and contractors have independent utility functions for bidding and awarding. Thus, 

CNP is a protocol that enables negotiation between multiple agents regarding task assignment. 

4.1.2 Behavior Tree 

The BT is a plan representation and decision-making tool used to model and control autono-

mous agents. It was created in the game industry [15] and has been widely adopted by the game 

development community. It is commonly used to model non-playable characters and is viewed 

as an alternative to finite-state machines and hand-coded rules via scripting. 

BTs benefits for real-time, constrained, and complex applications are as follows. 

- Ease of understanding and control, 

- Fast run-time execution, 

- Quick implementation using graphical tools, and 

- Flexibility and scalability; their complexity can be scaled up and down as needed, and sub-

trees can be easily reused.  

These benefits help human players to understand the intent and purpose of agent behavior in 

human-AI collaborative systems. The typical nodes in the BT are action, condition, sequence, 

and selector. Figure 2 shows a graphical representation of these nodes.  

As shown in Figure 3, we defined two action domains: cooperative tasks and individual tasks. 

Cooperative tasks are driven by tasks contracted to an agent by the CNP, and individual tasks are 

tasks executed at the discretion of the agent. There are four types of individual tasks. Leave the 

edge [corresponding to individual task (1) in Figure 3] and collision avoidance [corresponding 

to individual task (2) in Figure 3] are essential tasks for safety. Track and catch the target [corre-

sponding to individual task (3) in Figure 3] follows an agent’s tactics and requires urgent action 

based on local information known to the agent. It is important to note that track and catch the 

target is the simple behavior of going around behind the target closest to oneself and not cooper-

ating with teammates. Finally, the search task for finding enemies requires a relatively long-term 

strategy to be achieved, and humans are usually better than AI agents at such tasks under uncer-

tainty. Therefore, random search [corresponding to individual task (4) in Figure 3] by an AI agent 

is designed to be simple behavior that involves moving around randomly. 

A BT basically evaluates a graph from left to right, so CNP tasks that require teammates to 

cooperate are designed to be to the left of individual tasks. 
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(1) Action node. Label describes action 

performed. 
 

 

 
(2) Condition node. Label describes con-

dition verified. 

 
 

 
(3) Sequence node: set of behaviors, all 

of which must be completed for se-
quence to succeed. 
 

 

 
(4) Selector node: set of behaviors, any 

one of which must be completed for 
selector to succeed. 
 

Figure 2: Graphical representation of action (1), condition (2),  

sequence (3), and selector (4) nodes. 

 

 

 

Figure 3: Behavior tree of AI agent on Team A 

 

 

 

Figure 4: Subtree of CNP tasks. Individual tasks (1) and (2) correspond to Figure 3.  
Red box represents catch task that is decomposed in this paper. 

Action Condition 

→ ? 
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4.1.3   Prioritization of CNP Tasks 

As we described in Subsection 4.1, the architecture must align the needs of cooperative tasks 

and individual tasks. This is done by making the priority of all tasks flexible. As shown in Figure 

4, the search task and retreat task are the same in terms of directing the agents to move towards 

the designated position, but their urgencies differ. In particular, continuing the search task is not 

appropriate for an agent that is likely to catch an opponent agent. In this situation, the AI agent 

should switch from the search task to the track and catch tasks. In contrast, an agent should not 

switch from the retreat task to the track and catch tasks, while it would be acceptable to switch 

to the leave the edge or collision avoidance tasks of the individual tasks for safety reasons. We 

thus prioritized the tasks as follows. 

 Prioritize tasks that ensure safety. Therefore, the retreat task has higher priority than the 

track and catch and search tasks. Similarly, leave the edge and collision avoidance have 

higher priority than the other tasks. 

 An urgent task based on local needs has higher priority than non-urgent tasks based on 

global needs. For example, track and catch tasks have higher priority than the search task. 

As we described, we assume that people are better at making decisions on the basis of uncer-

tain information, and AI agents are better at performing actions on the basis of local information. 

For this reason, we designed the architecture so that the search and retreat tasks are announced 

by the human player, and the AI agents bid for them.  

Regarding the track and catch tasks, it is necessary to make a decision on the basis of both 

uncertain global information and local information. Therefore, these tasks are flexibly designed 

to be announced by both of human player and AI agents. In this paper, the most important catch 

task (corresponding to the red box in Figure 4) is decomposed into roles. With this task decom-

position, a comparison experiment is carried out from the viewpoint of whether a human can 

flexibly cooperate while understanding the intention of AI agents. The approach to task decom-

position is discussed in detail in Section 5. 

 

4.2   Human-Swarm Interaction 

In this subsection, we introduce our prototype interface for HSI, shown in Figure 5. The play-

ers on Team A use a game controller or keyboard to control their agent and use a CNP interface 

to interact with the AI agents. There are two types of CNP interface. For the first, the human 

player on Team A can announce a search task and retreat task by using a mouse and overhead 

view. For the second, the human player can announce track and catch tasks and change the target 

as needed by using buttons assigned to the game pad. In addition, the intentions of Team A’s AI 

agents are represented by task/role symbols and a targeting line. The symbols correspond to each 

BT task/role, and the targeting line represents the target point. 

Team B had almost the same interface screens as Team A. The main difference from Team A’s 

interface is that the Team-B members could communicate with each other through voice chat by 

using a headset. Table I compares the interfaces. 
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1) First person view camera, 2) overhead view, 3) CNP interface, 

4) task/role symbols and 5) targeting line  

 

Figure 5: Display layout of human player on Team A 

 

 

 

 

 

Table 1: Interface comparison 

 

 User 
Team-A players Team-B players 

Interface  

Display function 

1st person   Available Available 

Overhead  Available Available 

CNP interface  Available Unnecessary 

Task/role symbols  
Available in some 
experimental trials 

Unnecessary 

Targeting line 
Available in some 

experimental trials 
Unnecessary 

Game controller Available Available 

Keyboard Available Available 

Mouse Available Unnecessary 

Headset Unnecessary Available 
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5 Task Decomposition of Catch Task 

5.1   Overview 

This section describes the approach to task decomposition as a condition for comparison in the 

experiments.  

As we described in Section 3, in our Tail Tag game, an agent cannot catch the target without 

cooperating with another agent when agents of both sides take optimal strategies against each 

other in a one-on-one situation because the agents perform the same in terms of maneuverability. 

Therefore, some number of agents need to form a temporary team to catch a target. At least two 

agents are required to catch an opponent, and each has different roles: confine and catch. To catch 

the target, an agent has to collide with the target from the front or side to confine and force the 

target to be in a stuck (frozen) state for a while; then, the other teammate has to rush into the 

target’s back. However, a target that a human is playing against can easily notice that he/she is 

being targeted by these two opponent agents and escape from being confined. Moreover, since 

the agent that took the role of confine in the catch task must be vulnerable from being stuck for a 

while, to protect its back from another opponent agents, we need another form of support for the 

agent of the confine role. Therefore, we added the role of support to the catch task. As a conse-

quence, we decomposed the catch task into three roles: support, confine, and catch. The basic 

unit of a temporary team for this task is a three-man cell. 

In this study, we compared two cases. When teammates agree to form a team to perform the 

catch task, one case is where the three roles of the task are changed dynamically, and the other is 

where only one role is executed and not changed. In the latter case, agents take only the catch 

role.  In the following subsections, we give details on each role and the way of changing roles. 

5.2   Calculation of Time to Arrive at and Position to Reach Target 

Estimating the position to reach the target and the time to arrive at that position is important 

for the catch task. For example, suppose an agent freezes a target in the hope that a teammate 

will catch it. However, if the teammate cannot arrive at the target while the target is frozen, con-

fining the target is clearly futile. 

The time to arrive at the target and the position to reach the target are calculated under the 

assumption that the movement direction and velocity of the target will not change in the near 

future. The position of the catch and track task agent is denoted as 𝑷𝑩, and the maximum velocity 

of the catching agent is denoted as 𝑉𝐵. When the target agent’s position is set to 𝑷𝑹 and the tar-

get’s velocity vector is set to 𝑽𝑹, the time to arrive 𝑇𝑎 is obtained by equation (1). 

𝑇𝑎 =  
−𝑹 ∙ 𝑽𝑹 − √(𝑹 ∙ 𝑽𝑹)2 − |𝑹|2(|𝑽𝑹|2 − 𝑉𝐵

2)

|𝑽𝑹|2 − 𝑉𝐵
2  

 

(1) 

, where 𝑹 is a relative position vector from the capturing agent to the target: 𝑹 = 𝑷𝑹 − 𝑷𝑩 . 

If there is a real number solution for the time to arrive 𝑇𝑎, the position to reach 𝑷𝒓 is denoted 

as equation (2). 

𝑷𝒓 =  𝑷𝑹 + 𝑇𝑎𝑽𝑹 

 
(2) 

 

Here, if the position to reach is outside the game area, the time to arrive 𝑇𝑎 and the position to 

reach 𝑷𝒓 are treated as having no solution. 
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Figure 6: Flowchart for assigning roles of catch task 

 

5.3   Roles of Catch Task 

As shown in Figure 6, we design the execution conditions of each role with reference to the 

cooperation between humans when our Tail Tag game is played. In other words, human-AI agent 

collaboration is designed to imitate interaction between people and to determine the roles of hu-

man and AI agents. We use the calculation of the time to arrive at and the position to reach the 

target to determine the situations where each role should be executed.  

First, if the target runs away in the opposite direction to all cooperative agents, these agents do 

not have a solution from calculating the time to arrive, so we then assign the track task to them 

as an exception. In the track task, the agent moves to the current position of the target agent at 

the maximum velocity. 

Next, the state of the target agent is evaluated to determine whether it is frozen or not. If the 

target agent is frozen, the cooperative agents try to catch it immediately. When the agent is one 

that can arrive at the estimated collision position first among cooperative agents and the time to 

arrive is smaller than the maximum allowable time 𝑇𝑚𝑎𝑥, the catch role will be assigned. The 

maximum allowable time 𝑇𝑚𝑎𝑥 is a parameter, and we set 𝑇𝑚𝑎𝑥 shorter than the agent freezing 

time. Conversely, if the target agent is not frozen, the cooperative agents try to confine the target 

so as to stop it. When the agent is one that can arrive at the estimated collision position first 

among cooperative agents and the time to arrive of the other cooperative agents is smaller than 

the 𝑇𝑚𝑎𝑥, the confine role is assigned. In other words, the agent assumes that the teammates will 

catch the target after he/she has successfully confined the target. If the time to arrive of the other 
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cooperative agents is larger than 𝑇𝑚𝑎𝑥, the catch role is assigned. This means that an agent at-

tempts to catch the target without cooperation since there are no teammates that can form a tem-

porary team in a timely manner. Finally, a support role is assigned to the agent that does not have 

a catch role or confine role. 

As a result, each role of the catch task can be interpreted as follows. 

- Catch Role: The role of capturing the target. This agent is expected to move towards 

and behind the target and touch its back. If the agent is faced with the back of the target 

agent, it moves to the current target position and catches it.  

- Confine Role: The role of confining the target agent to stop it. This agent moves to the 

current position of the target agent regardless of the target’s direction.  

- Support Role: The role of supporting the other cooperative agents. In this study, we 

implemented this role to have the same behavior as the confine role. 

As mentioned in Subsection 4.2, both the AI agents and the human player can announce a task 

of the track and catch tasks via the CNP interface. When a human player sends an announcement 

of the track and catch tasks to the AI agents, the two AI agents closest to the target will automat-

ically accept that announcement. In other words, a human agent and two AI agents dynamically 

form a temporary team comprising a three-man cell while sharing the same target. Note that when 

a human player and AI agents form the same temporary team, the AI agents assume that the 

human player will take a role as determined by the same flow described above. The human player 

must perceive her/his own expected role through the task/role symbol of the AI agents in a tem-

porary team in the catch task. 

 

6 Experiment 

In this section, we discuss what should be taken into account to evaluate the performance of 

Team A with our method of task decomposition, starting with an overview. We then describe the 

experimental settings, followed by the results and analysis. 

 

6.1   Overview 

In adversarial games such as the Tail Tag game, it is difficult to evaluate the performance of 

only one of two teams in a competition because most of the metrics such as the win/loss rate 

depend on the skills of the opponent. To distinguish whether Team A actually performed well as 

a result of high-level human-AI agent collaboration, it is necessary to ensure that Team B also 

demonstrated appropriate teamwork. Thus, for Team B, we employed all human players to ensure 

human-level teamwork and strategy. The win rates and survival rates of each trial enabled us to 

compare the performance between the human-AI collaboration team (Team A) and the all-human 

team (Team B). The survival rate is the ratio of the number of agents that kept surviving until the 

end of the game against the total number of agents on that team. 

 

6.2    Method 

To evaluate the performance of our task decomposing approach, we held several matches and 

compared the win and survival rates. As shown in Table 2, we first held trial #1 as a condition 

under which the catch task was not decomposed, and it included matches of 10 vs. 10 and 20 vs. 

20. In this trial, the catch role was the only role for the three cooperative agents to catch a target 

by CNP. Since all AI agents executed the same role, there was no need to declare the intent of the 
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AI agent to the person, so the task/role symbols and targeting line used by the AI agents to declare 

intentions were excluded from trial #1. In trial #2, we used the decomposed catch task. As de-

scribed in Section 5, the catch task was decomposed into three roles: catch, confine, and support. 

In addition, the AI agents used the task/role symbols and targeting line to declare their intentions. 

To evaluate the further scalability of the system in terms of population, we added 30 vs. 30 

matches for trial #2. 

Table 2: Trial conditions 

Trial 
Conditions 

Team members  Decompositions of 

catch task 
Task/role symbols 

and targeting line  

#1 
10 vs. 10 

Team A: 1 human player 

and 9 AI agents 
Team B: 10 human players 

Catch Role Only Not Available 
20 vs. 20 

Team A: 1 human player 

and 19 AI agents 
Team B: 20 human players 

#2 

10 vs. 10 Same as #1, 10 vs. 10 
Catch,  
Confine  

and Support Roles 
Available 

20 vs. 20 Same as #1, 20 vs. 20 

30 vs. 30 
Team A: 1 human player 
and 29 AI agents 
Team B: 30 human players 

To avoid dependency on a particular individual, two human players were assigned as a candi-

date for the Team A human player. In each trial, three matches were held for each one of these 

two of Team A. As a result, we held a total of six matches at least per trial. 

We held three practice games immediately before the experiment in which each team played 

against a team consisting only of AI agents to ensure that all participants were warmed up and 

finished familiarizing themselves with controlling their agent. All of the participants were col-

leagues who worked at the same company as the authors. All of them were adults and experienced 

engineers but were not involved in this research project. Although the participants of trials #1 and 

#2 were not all the same, it has been confirmed that there is no correlation between the experience 

of past participation and performance level in a game when participants have had three practice 

games in advance [13]. 

6.3   Results 

The win rates for Team A in trial #1 are summarized in Table 3, and the survival rates are 

shown in Figure 7. The win rate was stable with respect to the population growth. It is also shown 

that the survival rate of Team A increased and that of Team B decreased as the number of agents 

increased. 

The human players on Team A suggested two improvements to the system in an interview that 

we held just after the final match of trial #1. The experimental setting of trial #2 was organized 

in response to these suggested improvements:  

 HSI should be improved to make it easier for the person to interact with the AI agents 

while controlling the player’s agent. 

 The algorithm of the AI agents’ mobility tactics should be improved so that they can share 

roles such as chasing opponents and move to limit the range of the movable area of the 

target agent. This should result in better teamwork.  
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The win rates for Team A in trial #2 are summarized in Table 4, and the survival rates are 

shown in Figure 8 as well. Compared with trial # 1, the win rate and survival rates for 10 vs. 10 

and 20 vs. 20 improved. In comparison, in trial # 2, the win rate and survival rate of Team A got 

worse as the population grew. This means that the scalability of Team A’s performance was infe-

rior to Team B in terms of population growth. 

After the very last match of trial # 2, we held an interview the same as trial #1 with the Team 

A players and got the following comments. 

(1) “The task/role symbols and targeting lines were helpful for understanding the intent of 

the AI agents. This enabled us to decide whether to let the AI agents catch the target or 

to participate in collaboration.” 

(2) “In the second half of the game, the AI agents were made to separate and form a locally 

isolated swarm with a relatively lower population than the agents of Team B around them. 

As a result, the AI agents were defeated one by one under this locally inferior population 

situation.” 

(3) “We tried to gather distributed AI agents by using the retreat task. However, since the 

retreating AI agent simply tries to move to the target position, they can be captured easily 

and end up in a vulnerable situation. Therefore, we gave up using the retreat task after 

some attempts.” 

 

 

Table 3: Results for trial #1 

 

Trial 
Results for Team A 

Won Lost Win Rate 

[%] 

#1 10 vs. 10 1 5 17 
20 vs. 20 1 5 17 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Survival rates for trial #1 

Table 4: Results for trial #2 

 

Trial 
Results for Team A 

Won Lost Win Rate 

[%] 

#2 
10 vs. 10 4 2 67 
20 vs. 20 2 4 33 
30 vs. 30 1 5 17 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Survival rates for trial #2 
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6.4    Analysis 

We analyze the results and discuss the challenges of our system, new findings, and future im-

provements to the system. 

As we noted above, teamwork is a key to victory. As we noticed in comment (1) of trial #2, 

the human player could understand the behavior of the AI agents from the task decomposition 

and declaration of roles. In trial # 2, the human player could understand the role that he/she should 

take in that situation dynamically. As a result, the win rate and survival rate improved. In partic-

ular, in the 10 vs. 10 matches of trial # 2, the win rate was 67%, which means that Team A per-

formed better than Team B. 

In comparison, the team B players easily recognized that the Team A agents allocated roles 

explicitly among them and tried to catch targets in trial # 2. For this reason, as shown in comment 

(2) of trial # 2, the players on Team B intentionally moved to manipulate the Team-A AI agents 

to make them separate and kept running away until they had reached an advantageous local situ-

ation in terms of number. This observation is supported by Team-B players’ interview. One of the 

reasons that the Team-A agents were made to separate was the defined behavior of the track task. 

As shown in Subsection 5.3, the track task is defined as an exception when the target escapes, 

and it is the simple behavior of going to the target’s position. In other words, if the target player 

keeps running backwards, three AI agents also keep following the target in a row (See Figure 9 

as an example). With this behavior, AI agents are easily manipulated, which causes them to be 

vulnerable. 
As a countermeasure against a target that keeps running away, it is effective for trackers to 

properly surround the target and limit the area where the target can escape. Huang et al. proposed 

their “area-minimization strategy” for the pursuit of a single evader by multiple pursuers [26]. 

They proved that by moving toward the midpoint of a shared Voronoi boundary between a pur-

suer and evader, the pursuer is guaranteed to capture the evader in finite time. We are considering 

applying the area-minimization strategy to the track task in future trials. 
 Finally, we discuss the scalability with respect to population growth. We noticed two things. 

The first is that the search task as an instruction given to the whole of Team A was used at the 

very beginning of the game only. Second, after the middle of each game, the human players on 

Team A stuck to catching the closest opponent agent rather than paying attention to the entire 

team. Since the catch and track tasks are performed by three agents, the relative influence of that 

number of agents assigned to the tasks differs between 10 vs. 10 and 30 vs. 30. In other words, 

when Team A players were performing a relatively local task such as catching a target, we can 

say that the global situation got worse as the population grew. As noted in Section 1, we believe 

that humans are better at making global decisions on the basis of uncertain information than AI. 

Therefore, it is necessary for a human player to be able to give a global instruction even after the 

middle of the game. Specifically, as shown in comment (3) for trial # 2, the task of making all 

AI agents get together while protecting themselves when they were separated should be added. 

We will verify this gathering task as a gather task in future trials. 
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Figure 9: Typical AI agent’s behavior in track task 

 

7 Conclusion 

In this paper, we introduced an architecture and a prototype of a human-multiple agent inter-

face called “human-swarm interaction.” The architecture consists of a behavior tree and a contract 

net protocol as a mechanism for task sharing between humans and AI agents. The use of the 

behavior tree enables us to know what AI agents are trying to do, while the contract net protocol 

prioritizes human-AI collaboration without compromising AI agent autonomy. Taking advantage 

of this architecture, we also presented an approach to decomposing cooperative tasks into appro-

priate roles. As an example, we decomposed the catch task into three roles: support, confine, and 

catch. 

We confirmed that a human player can cooperate with many AI agents at a close degree, sim-

ilar to a human-only team, through an experiment with a simulated game of Tail Tag. We held 

matches with up to 29 AI agents and 1 person on one team and 30 people on the other team, both 

with and without task decomposition to compare the results. The result indicates that decompos-

ing tasks into appropriate roles and sharing the information of the roles that AI agents are cur-

rently taking helps humans to understand the AI colleagues’ intentions instantly; then, humans 

can immediately understand the role that they themselves should take. As a result, the win rate 

and survival rate improved. 

In addition, we identified that there is still room for improvement in our system as follows. 

 Area-minimization strategy for track task: 

AI agents can be easily manipulated and made to separate by human opponents, thus 

causing the agents to be vulnerable. We can avoid this by using a coordinated pursuit 

strategy such as moving toward the midpoint of a shared Voronoi boundary between 

pursuers and an evader. 

 Gather task: 

We need more scalability with respect to population growth. To achieve this, it is neces-

sary for a human player to be able to give global instructions even after the middle of 

the game to take advantage of human superiority to AI. Adding the task of making all 

AI agents get together while protecting themselves when they were separated should be 

helpful. 

We will keep improving not only the above but also the overall system including the AI agent 

algorithm to achieve more effective teamwork between humans and AI agents on the basis of the 

results of experiments that we will perform repeatedly. 
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