International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2023, Vol. 7, No. 2, [ISCAI789

Improving Multi-Agent Reinforcement Learning for Beer
Game by Reward Design Based on Payment Mechanism

Masaaki Hori *, Toshihiro Matsui *

Abstract

Supply chain management aims to maximize profits among supply chain partners by man-
aging the flow of information and products. Multiagent reinforcement learning in artificial
intelligence research fields has been applied to supply chain management. The beer game
is an example problem in supply chain management and has also been studied as a coop-
eration problem in multiagent systems. In the previous study, a solution method SRDQN
that is based on deep reinforcement learning and reward shaping has been applied to the
beer game. By introducing a single reinforcement learning agent with SRDQN as a par-
ticipant in the beer game, the cost of beer inventory was reduced. However, the previous
study has not addressed the case of multiagent reinforcement learning due to the difficulties
in cooperation among agents. To address the multiagent cases, we apply a reward shaping
technique RDPM based on mechanism design to SRDQN and improve cooperative policies
in multiagent reinforcement learning. Furthermore, we propose two reward design methods
with modifications to the state value function designs in RDPM to address various consumer
demands for beers in the supply chain. And then we empirically evaluate the effectiveness
of the proposed approaches.

Keywords: Multi-Agent Reinforcement Learning, Beer Game, Reward Shaping, Supply
Chain Management, VCG Mechanism

1 Introduction

Supply chain management generally optimizes a system consisting of multiple participants
in production and distribution process that cooperate or compete with each other. It manages
the flow of products, raw materials, and associated information in order to improve the
profitability of the entire system. In today’s highly uncertain and complex society, there
is a need for methods that can flexibly respond to environmental changes and demands,
and achieve desirable benefits. In addition, the diversification of consumer demand and
the shortening of product cycles in the supply chain have made it necessary for companies
to cope with increased storage costs due to inventory holding and opportunity loss due to
inventory shortages. Therefore, inventory management has become an important business
challenge.

* Nagoya Institute of Technology, Aichi, Japan

M. Hori, T. Matsui

Multiagent systems consisting of multiple agents that make decisions autonomously
have been studied as a research area of artificial intelligence. Agents obtain information
from environment and try to cooperatively/competitively solve complex large-scale prob-
lems of the entire system by relatively simple perceptual actions. Since it is difficult to
design the agents’ behavior in advance, multiagent reinforcement learning (MARL) has
been studied [3, 16], where each agent aims to adapt to its environment by trial and error,
depending on the surrounding situation.

We address the improvement of an existing solution method for the beer game that is an
example problem of supply chain management [13]. The beer game deals with inventory
management in the supply chain, and consists of a serial supply chain network in which four
agents are located at the retailer, warehouse, distributor and manufacturer [5]. The agents
must make independent replenishment decisions with limited information, and the objective
of the beer game is to minimize the inventory cost of the entire system. The system can be
modeled as a coordination problem on a decentralized multiagent system.

In the study by Afshin et al. [13], Shaped Reward DQN (SRDQN), which is based
on the Deep Q-Network (DQN) [9] has been proposed for solving the beer game. SRDQN
employs reward shaping, which considers the interaction among multiple agents. At the end
of each game, the history of states, actions and rewards of agents are shared, and reward
shaping is applied to the rewards of the agent performing reinforcement learning. This
improves the quality of learned policies and the overall inventory cost of the system. In the
previous work, one of four agents in a beer game performs SRDQN, and the other agents
act according to predefined rules. This involves the attempt to stabilize the entire system,
including the unlearning agents. However, there is room to improve the solution quality and
stability of the conventional method. Moreover, a system in which all four agents perform
reinforcement learning has not yet been considered.

Matsunami et al. [8] have proposed Reward Design for MARL based on the Payment
Mechanism (RDPM), which is a reward design method to improve cooperative policies in
MARL. RDPM applies the concept of payment used in mechanism design. It causes agents
to avoid selfish policies and learn effective policies to increase social surplus.

We apply RDPM to the SRDQN framework to improve the accuracy and stability of
learning in the conventional method. In particular, this reduces the cost value of the sys-
tem in which all four agents perform reinforcement learning. In the study of RDPM [8],
the technique is applied to the immediate rewards of each agent in MARL. However, in
the beer game, RDPM cannot be applied to rewards during each play of the game because
information sharing among players is prohibited during each play. We investigate the case
of application of RDPM to reward shaping in SRDQN for the beer game. Furthermore,
we propose two reward design methods with modifications to the state value function de-
signs in RDPM to address various consumer demands in the supply chain. We evaluate the
effectiveness of the proposed method through experiments.

Our study shows how MARL can be applied to inventory optimization in a fundamen-
tal game of supply chain management. We expect that our approach can be applied to
other supply chain management problems in which supply chain participants behave unpre-
dictably or selfishly. This study is an extension of our previous work [11]. We improve the
description by adding new reward design methods and experimental results.

The rest of the paper is organized as follows. The next section presents the preliminaries
of this study, including a description of the beer game, SRDQN, and RDPM, with reference
to previous studies. Then we present how RDPM is applied to SRDQN and the four reward
design methods for comparison in Section 3. We experimentally investigate the proposed

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

. Raw materials‘ P —— — —
—— _/—/ [Beer] Beer| [Beer| Beer

’ Manufacturer, » Distributor » Warehouse » Retailer ‘
« agent(4) « agent(3) ‘ agent(2) « agent(1) «

Jorder Order J Ordeﬂ) IOrderJ J OrderJ)

[¢]

Figure 1: Beer Game

approach in Section 4 and conclude our study in Section 5.

2 Preliminaries

In this section, we present the background of our research, including multiagent reinforce-
ment learning, the beer game, the conventional method SRDQN, and the reward design
method RDPM based on the Vickrey-Clarke-Groves (VCG) Mechanism.

2.1 Multi-Agent Reinforcement Learning (MARL)

Reinforcement learning is a machine learning technique for agents interacting with their
environment. The agent explores its environment and empirically acquires a policy consist-
ing of a sequence of optimal actions. Reinforcement learning is based on an agent’s set of
states S, a set of actions A and a reward function R : S X A — r. At each time step t, the
agent observes the current state s, € S of the system, selects an action a, € A, obtains a re-
ward ry, which then causes the system to transition to state s, 1. The goal of reinforcement
learning is to determine the policy 7 : § — A that maximizes the expected discounted sum
of the reward r;. In multiagent reinforcement learning (MARL), reinforcement learning is
performed by multiple agents that share an environment. Agents consider their interactions
and aim to obtain a policy that improves their own or the entire system’s benefit.

2.2 Beer Game

The beer game (Figure 1) is performed on a serial supply chain network consisting of four
agents arranged in the following order: retailer, warehouse, distributor, and manufacturer.
Each agent must make inventory replenishment decisions based on the limited information
available from its neighboring agents. This game is widely used as an example to illustrate
the bullwhip effect, in which order variability increases as one moves upstream in the supply
chain, and the importance of communication and coordination in supply chains [6].

In this system, the manufacturer is at the upstream end and the retailer is at the down-
stream end. The retailer agent supplies beer in response to stochastic demand from con-
sumers. The manufacturer agent can receive an unlimited amount of raw materials from
suppliers. For each agent’s inventory, the shortage cost and the excess holding cost are
evaluated. During the play of the beer game, the demand for beer occurs from the con-
sumer at the beginning of each time. In each period of the game, each agent chooses the
quantity g of discrete orders to be submitted to its upstream agent or suppliers to minimize
the long-term cost of the entire system. The entire system’s inventory cost is given by the

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

M. Hori, T. Matsui

following equation.

M-&

>

t=1i

¢t x max(0 IL’)+C x max (0, —IL!) (1)
1

In Equation (1), i is the index of the agent, ¢ is the index of the period, T is the time horizon
of the game, c}; and c; are the coefficients of agent i’s holding cost and shortage cost, and /L
is agent i’s inventory level at period ¢. The inventory level is an integer value representing
the amount of beer in stock, or a negative number if beer is in short supply.

The game can be modeled as a coordination problem on a decentralized multiagent
system. We focus on the previous study [13] that aims to reduce the cost of the system by
introducing a player agent that performs reinforcement learning. In that setting, one agent
is the reinforcement-learning agent, and the other agents behave according to a prescribed
algorithm.

In the standard rules of the beer game, agents cannot communicate in any way during
a play. Only at the end of a game, all agents can share local inventory statistics and cost
information with each other, and thus the agents that are capable of learning can improve
their policies. However, during a play, each agent makes decisions based only on partial
information about the environment. The objective of the game is to minimize the total cost
of the entire system by cooperating with other agents under the above conditions. As in the
previous study [13], we evaluate the results of playing a beer game by simulation.

2.3 Shaped Reward DQN (SRDQN)

In the study by Afshin et al. [13], Shaped Reward DQN (SRDQN), which is based on
the deep reinforcement learning method DQN [9], is proposed for solving the beer game.
SRDQN employs a reward shaping technique to consider the interactions among multiple
agents. At the end of each game, the history of the states, actions and rewards of the
agents in the play is shared, and reward shaping is applied to the rewards of the agents
that perform reinforcement learning. This improves the accuracy and stability of learning
and further improves the inventory cost of the entire system. In the previous study, a single
agent performs reinforcement learning with the goal of reducing the entire system cost. The
other agents act is based on prescribed rules of behavior, such as the Sterman formula [15].
The system of reinforcement learning in the previous study is represented by (S,A,R). S
denotes the set of states s, A denotes the set of actions a, and R denotes the reward function.
The details of the reinforcement learning are described below.

State: The state is the history of the last m steps of play. The state of agent i at time ¢
is represented as follows.

s; = [(max(0,IL}),max (0, —IL}), 00, A0 AS})i; i @)

In Equation (2), OO is the amount of on-order beers at agent i, in other words, the amount
that agent i + 1 has ordered but not yet received. AO! is the amount of order received from
agent i — 1, and AS; is the amount of beer that has arrived from agent i + 1. ai is the action
taken by agent i, and /L is the inventory level. The inventory level represents the amount
of beer in stock at each facility. If an agent is not able to fulfill an order from a downstream
agent, the shortage is evaluated as a negative value. An overstock is evaluated as a positive
value. AO) represents the demand from consumers and AS} represents the amount of raw
materials from external suppliers.

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

Action: Although the beer game rules allow an agent to order any amount of beer in
[0, 0] during each period of the game, some restrictions are placed on the amount that agents
can order in a simulation of actual play, as shown in Equation (3). Action @' of agent i at
time ¢ is the order quantity chosen by agent i, and it is represented by using constant a, as
follows.

a =A0 +x, (x:-a, <x<a,) 3)

Reward function: Using the coefficient of holding cost cﬁl and the coefficient of short-
age cost c;, given to each agent, the reward is shown as follows.

ri = —{c}, x max(0,—ILi) +c}, x max(0,7L; ,)} S

The reward is negative so that the agent gets low reward when the inventory cost is high.
The maximum reward at each time in the beer game is zero.

DNN: The Deep Neural Network (DNN) acts as an approximator of the Q function,
outputting Q values for any pair of state s and action a. The DNN is trained iteratively
using random mini-batches taken from the experience replay memory until all episodes are
completed. At each time #, observation data e = (si,al, r!,s! 1) is added to the experience
replay memory of each agent using SRDQN.

Feedback scheme: At the end of each episode of the beer game, a reinforcement learn-
ing agent using SRDQN updates the observed reward in the last 7 time steps in its expe-
rience replay memory by Equation (5) so that the agent considers the information of the
reward for the entire system.

S B : L
/i :rt’+g(TZZrz‘—TZr;), (vt € {1,...T}) 5)

In Equation (5), B is a coefficient of agent i to balance the information between the original
reward and the reward of the entire system.

2.4 Reward Design based on Payment Mechanism (RDPM) for MARL

In the study by Matsunami et al. [8], RDPM that is a reward design method for MARL
based on the Vickrey-Clarke-Groves (VCG) mechanism [14] has been proposed. Mecha-
nism design is a branch of microeconomics and game theory that deals with the problem of
how to efficiently bring together multiple selfish agents and design a mechanism that max-
imizes social surplus. Unlike the common difference reward [1], which takes into account
the degree of contribution of the agent, RDPM uses nuisance payments of the agent. To
compute the payment, a state value function representing the social utility is designed in
advance. The payment to agent i is based on the difference between two values determined
by the state value function. One is the sum of the values determined by the other agents
when agent i is in the environment. The other value is the sum of the values determined by
the other agents when agent i is not present in the environment. As with the VCG payment,
the difference between the two is subtracted from the reward earned by the agent being
evaluated. The payment of agent i represents the extent to which the presence of agent i
affects others. By incorporating these payments into the reward design, agents avoid selfish
policies and learn effective policies to increase social surplus. The payment rule is defined

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

M. Hori, T. Matsui

by the Equations (6) and (7).

=Y V(ST =Y V() (6)
J#i J#i
=VHST)=VT(S) ©)

In Equations (6) and (7), state value function V(S) is introduced to evaluate the nuisance
in state S, and it is defined in advance. S~/ denotes the situation excluding the influence of
agent i. V/(S) represents the case with the contribution of agent i, and V /() is the case
without the contribution of agent i. In order to deal with the problem of individual profit
and overall profit not necessarily coinciding, that study define payment amount p' as a part
of agent i’s reward as shown in Equation (8).

ri= aR(s") - p' ®)
In Equation (8), R(s") is the local reward function determined for agent i only. It is treated as
corresponding to the value function of each individual agent. In addition, « is a coefficient
that determines the weight between the local reward and the payment amount, and it is used
to adjust the balance between the local reward and the social value.
In the previous study, RDPM yielded higher average rewards than a similar reward
shaping method based on difference rewards. The difference appears particularly clear as
the problem setup becomes more complex.

3 Application of RDPM to SRDQN

In the previous study [13], one of four agents in a beer game employs SRDQN and the other
agents act according to the predefined rules. In other words, the case in which an attempt
is made to stabilize the entire system including the unlearning agents has been considered.
However, there is room to improve the accuracy and stability of the learning results of the
proposed method. In addition, a system in which all four agents perform reinforcement
learning has not been considered. In this study, we apply more effective reward shaping [8]
to improve the stability of learning and the cost of the system.

In the study by Matsunami et al. [8], RDPM is applied to each agent’s immediate re-
ward in multiagent reinforcement learning, while the experience replay memory can be
employed with DQN. However, in the beer game, RDPM cannot be applied directly to re-
wards during game play because information sharing among players is prohibited during
game play. Therefore, we investigate a method to apply RDPM to the feedback scheme in
SRDQN. This method is denoted as SRDQN+RDPM. By applying RDPM, we improve the
cooperative policies when using MARL.

In addition to SRDQN+RDPM, we define the state value function for a more realistic
consumer demand. Actual consumer demand for beer varies gradually with periodic peaks
throughout the year. Therefore, we define the state value function using the variation of cost
values between time series, and denote this method as TSRDPM. The method that takes ac-
count of the variation of cost values between time series is denoted as SRDQN+TSRDPM.

The previous study [8] also presented a method based on difference reward [1] for com-
parison, which is slightly different from the SRDQN formulation. We show the application
of these methods to the beer game. In the following part of this section, we first explain the
difference between the problem in which RDPM was applied in the previous study [8] and

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

During Game Play i After Game Play
get last T steps e’

DQN Feedback Scheme

| store experience e} = (s, al, f, sf1)

—F

_ Experience Replay Memory |
agent i

update rewards in e’ by using RDPM

Figure 2: Applying RDPM to rewards in experience replay memory

that in the beer game, and we explain why RDPM is applied to the rewards in the experi-
ence replay memory of each reinforcement learning agent. Then, we define the state value
function for determining the RDPM payment in the beer game. Furthermore, we define
the state value function of SRDQN+TSRDPM for more realistic consumer demand. We
then explain how the three methods are applied and compared to the conventional method
SRDQN.

3.1 Updating rewards in experience replay memory by using RDPM

In the previous study [8], RDPM has been applied to the Highway Driving Problem Do-
main (HDD), which simplifies the problem of autonomous driving on highways [2], and
the Predator-Prey Domain (PPD) [7]. In HDD, learning agents driving autonomously on a
highway attempt to cooperate. A driving agent’s personal utility is to drive as fast as pos-
sible, while its social utility is to avoid dangerous driving by allowing each agent to match
its speed with that of other agents. PPD consists of four predator agents and a single prey
agent. Predators learn and cooperate to hunt a single prey that performs a predefined policy.
In these two problems, the learning agent can obtain rewards by taking into account the
information of other agents in the environment.

In the beer game, however, each agent cannot share information with other agents dur-
ing a play, and the agent’s immediate reward cannot reflect information other than its own.
Figure 2 shows the method that apply RDPM to SRDQN. During game play, each rein-
forcement learning agent is only aware of its individual utility, making it difficult for the
entire system to cooperate. Then, at the end of the game, all agents can share their local in-
ventory statistics and cost information with each other. In the feedback scheme of SRDQN
performed at this step, the history of actions and rewards of the agents in play are shared,
and reward shaping is applied to the rewards in the experience replay memory of the agents
performing reinforcement learning. We apply RDPM to reward shaping in the feedback
scheme to improve the cooperative policies of reinforcement learning agents.

3.2 Definition of state value function for payment

We use the cost value of Equation (9), which inverts the positive and negative values of
Equation (4) representing the agent’s reward in the beer game.

cost! = ci, x max (0, —1L{_ ;) +c}, x max(0,IL, ;) 9)

Using cost!, we define the state value function of agent i for calculating the payment in
RDPM as shown in Equations (10) and (11). Here, vf (S) in Equation (11) is defined as the
difference in the cost value between the agent having the largest cost value among all agents

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

M. Hori, T. Matsui

participating in the beer game and agent i. The strategy of this formulation resembles the
study of Matsunami et al. [8]. Then, the state value function is formulated.

V($) =} vi(S) (10)
ieN
Vi(S) = I]fla}\)]((cost,k — cost!) (11)
=

Here, N denotes the number of all agents in the system. By the definition of the state value
function given in Equations (10) and (11), the payment increases when one agent takes
an action that produces a larger cost value than the other agents. Therefore, this agent is
expected to cooperate with other agents to decrease the cost value of the entire system.

3.3 Another state value function for continuous demand fluctuations

In addition to the state value function in Equation (11), we propose another state value
function aimed to deal with the case of relatively continuous demand fluctuations in the
supply chain. In a realistic consumer demand for beer, it may be relatively cyclical or a
little noise may be placed on a relatively continuous fluctuation.

Therefore, we define the state value function that considers the variation of cost values
in a time series as shown in Equation (12). Instead of the cost value of each agent in time
t in Equation (11), the difference between the average cost value in the last 7 times and the
cost in time ¢ is used in Equation (12).
vi(S) = max((cost* — ! XT: cost*) — (cost! — 1 i cost! ;) (12)
t - keN t ,51:1 t—1 tor “= t—1

In Equation (12), for agents i and k € N, we first compute the difference between the
cost value at time ¢ and the average of the cost values for the last 7 times. Next, we fur-
ther compute the difference between the previously computed i’s difference and k’s one.
This difference is computed for each pair of agents i and k € N in the supply chain, and
the maximum difference value is defined as i’s state value vi(S) at time 7. The payment
decreases when one of agents takes an action that produces a lower cost value at time ¢ than
the average cost value in the last T times, and the difference value is lower than that of other
agents. Therefore, agent i is expected to cooperate with other agents to decrease the cost
value of the entire system with the cyclical consumers’ demand for beers by considering
the improvement in cost value from the last 7 times.

We denote this RDPM method that considers the cost value between time series as Time
Series RDPM (TSRDPM). Then, the method to apply TSRDPM to the feedback scheme in
SRDQN is denoted as SRDQN+TSRDPM.

3.4 Four reward design methods for comparison

In the previous study [8], to evaluate the effectiveness of the RDPM, global reward (GR)
and difference reward (DR) [1], which are the basic reward design methods used in MARL,
are used for comparison. GR is a method that gives the same global reward to all agents.
In a baseline approach of MARL, GR defines a desired state as a whole and then agents
aim to obtain a policy that maximizes GR through learning. However, learning that only
considers of GR may not be sufficient for learning interactions. DR is a method to evaluate
the contribution of agent i by considering the reward of this agent as the difference between

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

the utility of the entire system and the utility when the agent i is excluded. DR is represented
as Equation (13).
r'=R(S)—R(S™) (13)
The difference between Equation (7) and Equation (13) is that Equation (7) evaluates the
degree of nuisance of agent i, while Equation (13) evaluates the contribution of agent i.
We denote the method that applies DR to the SRDQN feedback scheme as SRDQN+DR.

To make a comparison with SRDQN+RDPM, we treat Equation (13) as a payment and ex-
press the reward update equation used in SRDQN+DR as shown in Equation (14).

r=R(s) +y(V(S)-V(ST)) (14)

Here, 7 is a coefficient for adjusting the weight of the payment. Local reward R(s) in the
beer game is represented as shown in Equation (15) as well as in Equation (4).

R(s') = —{c, x max(0, 1L,) + ¢}, x max(0,IL{,)} (15)

In this study, we compare the reward shaping of SRDQN with the three other methods:
SRDQN+DR and our two proposed methods SRDQN+RDPM/TSRDPM. The update equa-
tions in the feedback scheme for the methods are defined as Equations (16), (17), (18)

and (19).
SRDQN:
SR L RN A i
n=n+n (Y Y=Y, (e{l,..T} (16)
3T i=1t=1 t=1
SRDQN+DR:
rf = r§+y(z max(cost,k —cost, Zmax (cost; —C05tz> , (Ve {l,..,T}) 7
jEN keN ik
SRDQN+RDPM:
rf = r Zmax cost —cost, Zmax COSf _COSIt»v (vt e{l,..,T}) (18)
JFi ki J?él
SRDQN+TSRDPM:

1
ri=ri— Zmax ((costh — = Z cost’) — (cost] — = Z cost!))
J#

jz"#rl?ea}\)/(((costtk — El;costtk,) — (cost] — g Zcosttj_l))), (Vre{l,..,T})

=1

19)

4 Evaluation

4.1 Settings of experiment

The effectiveness of the proposed method in the beer game was evaluated through experi-
ments. In the simulation of the beer game, we used the same experimental environment as
in the previous study [13]. We evaluated the cost values shown in Equation (1) as follows.
After playing 100 times with the training data, the game was played 50 times with the test
data, and the average cost of the 50 test results was recorded as the evaluation value for the

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

10

M. Hori, T. Matsui

Table 1: Simulation parameter settings

Number of episodes 40,000 State space size (m) 10
Steps per episodes 100 Constant for action (a,) 50
Learning rate 2.5x 1073 Constant for SRDQN () 10
Gamma 0.99 Shortage cost coefficients (c,) [1,1, 1, 1]
Initial € value 0.9 Holding cost coefficients (c;) [1, 1,1, 1]
End € value 0.1 Transportation lead times (/;,) [2, 2, 2, 4]
Experience replay memory size 500,000 Information lead times (/;;,) [2,2,2,0]
Batch size 128

number of training sessions at each time point. This procedure was repeated up to the max-
imum number of training sessions to evaluate the evolution of the average cost per game as
the reinforcement learning agent’s training progressed. We implemented an experimental
environment including the proposed method based on a simulation of the beer game [12].
We evaluated a system including only one reinforcement learning agent and a system with
four players performing reinforcement learning. We compared the conventional method
SRDQN, a compared method SRDQN+DR, the proposed methods SRDQN+RDPM and
SRDQN+TSRDPM. A system consisting only of agents using the Sterman formula [15]
was used as a baseline. The other co-players in the system with only one player performing
reinforcement learning used the Sterman formula to determine the amount of beer to order
each period, as in the previous study [13]. The Sterman formula models the behavior of
real human players, and an agent’s order is represented by Equation (20).

gi = max{0,A0!. | —0.5(IL; —a') —0.2(00; —b')} (20)
Here, a’ and b’ are parameters corresponding to the inventory level and the amount of beer
currently on order. For all agents (i = 1,2,3,4), a’ = ug,b' = ud(lifi + [") with the average
demand from consumers ;. lif" and [are the lead times for order and product flows.

Agents performing reinforcement learning use DQN [9] as the learning algorithm. The
agent learns each Q-network based on its own state and behavior. The input to the Q net-
work is the value of each state vector. The neural network has three hidden layers, with
each hidden layer having 180, 130, and 61 outputs. Each output was activated by a ReLU
function [10], and the optimizer was Adam [4]. The simulation of the beer game was per-
formed using the parameters shown in Table 1. The parameters of the experiments were
selected based on the settings of the previous study, and the parameters that gave typical
results were selected by preliminary experiments.

In the evaluation of SRDQN+TSRDPM, the cases T = 1 and 7 = 5 were tested. Here,
the parameter 7 is a constant that determines the degree of use of information about past
cost values in determining the payment of TSRDPM. In the captions of the following results
figures of SRDQN+TSRDPM, the case T = 1 was denoted SRDQN+TSRDPM-71, and the
case T = 5 was denoted SRDQN+TSRDPM-15.

We tested two types of demand fluctuations as shown in Figures 3 and 9. During the
play of the beer game, the demand for beer occurs from the consumer at the beginning
of each time. The first is the case of random demand fluctuations (Figure 3). In the first
case, we assumed a supply chain in which the amount of demand from consumers changes
rapidly over a short period of time, and evaluated problems with only one reinforcement
learning agent and problems with all four agents using reinforcement learning. The second

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

(a) Demand for beers at each time

(b) Histogram

g e

[4
b5
£
s
2
2
3 6
oy
5
<
2
]
£
]
a

o8 &

0 UARIAARSAARARA AMRAS ARSSS ARRRS ARROAARRSA)
0 10 20 30 40 50 60 70 80 90 100

Data

Figure 3: Demand of consumers in case of random demand fluctuations

400000

(a) Retailer

300000

cost

100000 {4

200000 {} 7

cost

0
0

400000

10000 20000 30000 40000
episode

(c) Distributor

STERMAN
—e— SRDQN

—#— SRDQN+DR
—5~ SRDQN+RDPM

400000

300000

200000

(b) Warehouse

100000 ¥ IS

10000 20000 30000
episode

(d) Manufacturer

40000

300000

200000

cost

100000

ot 0+
0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode

Figure 4: Total cost (single RL agent)

is the case of relatively continuous demand fluctuations (Figure 9). In the second case, we
assumed a more realistic supply chain in which the amount of demand from consumers
changes slowly with periodic peaks, and evaluated only problems with all agents using
reinforcement learning.

4.2 Case of random demand fluctuations

In this section, the amount of consumers’ demand was represented by a discrete uniform
distribution taking integer values of [0, 100]. Figure 3 shows the example which represents
fluctuation of demand for beers during a play of the beer game. In this case, a system
consisting only of agents using the Sterman formula [15] was used as a baseline.

4.2.1 Results for case of single reinforcement learning agent

Figure 4 shows the evolution of cost values during the learning process for the system with a
single reinforcement learning agent, and the other co-players use the Sterman formula. We
show where the reinforcement learning agent is plased. In Figure 4, we show the learning
results for SRDQN+DR and SRDQN+RDPM with ¥ = 1.0. For this system, the result of
one instance is shown because there was little difference in the experimental results from
instance to instance. When the reinforcement learning agent was placed in a retailer or
a warehouse, the cost value was lower for SRDQN ((a) and (b) in Figure 4). Since the
retailer agent and the warehouse agent are in the positions to be affected by erratic demand

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

11

M. Hori, T. Matsui

—— y=0.5 —— y=1.0 -5 y=1.5

(a) SRDQN+DR (b) SRDQN+RDPM

400000 400000
+~J -~
3 8

O 200000 Wy Iy o O 200000

Al ; %
0 0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode

(c) SRDQN+TSRDPM-T1 (d) SRDQN+TSRDPM-15
400000

400000

B B
3 3
S 200000 S 200000

0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode

Figure 5: Total cost (four RL agents with y=0.5,1.0,1.5)

STERMAN —+— SRDQN+DR —#%- SRDQN+TSRDPM-T1
—S— SRDQN —=— SRDQN+RDPM SRDQN+TSRDPM-T5
(a) Instance 1 (b) Instance 2
500000 500000
4000001 400000
+ 300000 + 300000
o o

O 200000 O 200000

100000 § gy 100000

0 0

0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode
(c) Instance 3 (d) Instance 4
500000 500000
400000 400000
+ 3000007 W + 300000
(o] o

9] 200000—' O 200000
100000 { ¥ o) TR e e 100000
0 0

0 10000 20000 30000 40000 0 10000 20000 30000 40000

episode episode

Figure 6: Total cost (four RL agents)

from consumers, it is expected that the cost value could be significantly improved if the
learning process were successful. When the reinforcement learning agents were placed at
distributors or manufacturers, SRDQN+RDPM had the lowest cost values, but not by much
((c) and (d) in Figure 4). The more upstream the reinforcement learning agent was placed,
the smaller the contribution of the reinforcement learning agent became, making it more
difficult to improve the cost value. Except for the case where the agent using SRDQN was
placed at the manufacturer, the cost values were better than those of the system consisting
only of agents using the Sterman formula. For all of the methods, the system with only one
agent performing reinforcement learning had a higher stability of learning. The cost values
of SRDQN+DR and SRDQN+RDPM did not differ significantly, although SRDQN+RDPM
showed relatively lower cost values for any facility with a reinforcement learning agent.

4.2.2 Results for case of four agents using reinforcement learning

Figure 5 shows the evolution of the cost values during the learning process with each values
of 7. To evaluate the impact of the parameter y on the learning process of SRDQN+DR,
SRDQN+RDPM and SRDQN+TSRDPM, three types of y € {0.5,1.0,1.5} were tested. In

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

Table 2: Statistical information of total cost value (6 instances)

RL method Min Max Average Variance
SRDQN 5.099 x 10* 4.965x10° 1.628 x 10° 5.316 x 10°
SRDQN+DR 7.200 x 10* 4.520 x 10° 1.348 x 10° 6.090 x 10°
SRDQN+RDPM 5519 x 10* 4.329x10° 8212 x 10* 2.369 x 10°
SRDQN+TSRDPM-71 5.276 x 10* 4.628 x 10° 8.647 x 10* 3.414 x 10°
SRDQN+TSRDPM-75 5.923 x 10* 5.046 x 10° 1.318 x 10° 7.740 x 10°

Retailer

= UV/N'A

—1000 0 0
Warehouse © 50 100 0 50 100 0 50 100
ime i

o 1000
(@]

50 100

= 0

o]
action
reward

1000
Distributor © 50 100 0 50 100 0 50 100

5
Timi Time Time 0 Time
= 0 \W o

~1000
Manufacturer © 50 100 0 50 100 0 50 100 50
Time Time Time o Time

0
action
reward

|

o o o 1000

o]
action
reward

—1000 0 0
0 50 100 0 50 100 0 50 100 0 50 100
Time Time Time Time

Figure 7: IL, OO, action and reward of all agents (SRDQN)

each method, the parameter 7y is used as a coefficient for adjusting the weight of payment.
SRDQN+DR and SRDQN+RDPM did not show significant differences in learning stability
when y was varied ((a) and (b) in Figure 5). SRDQN+TSRDPM-71 showed worse learning
stability in the early stages with y =1.5 ((c) in Figure 5). SRDQN+TSRDPM-75 showed
weaker learning stability with y =1.0 ((d) in Figure 5).

Figure 6 shows the evolution of the cost values during the learning process for the
system consisting only of reinforcement learning agents. We present four typical experi-
mental results, since there were relatively large differences in the results. In Figure 6, we
show the learning results for SRDQN+DR, SRDQN+RDPM, SRDQN+TSRDPM-71 and
SRDQN+TSRDPM-75 with ¥ = 1.0. For all instances, SRDQN+RDPM had the lowest
cost value and the highest learning stability. However, SRDQN+TSRDPM-71 also had high
learning stability and the second lowest cost value following SRDQN+RDPM. The results
for different values of T in SRDQN+TSRDPM show that using a smaller 7 resulted in more
stable learning and smaller cost values. In this case, we concluded that using information
from the exceedingly distant past would result in poor performance in the learning process.
When SRDQN was used, the stability of learning became worse. The learning results were
also unstable in some cases of using SRDQN+DR. Since SRDQN+DR is based on a reward
design similar to that of SRDQN, this can be considered a common weakness. Compared
to the results for the system with a single reinforcement learning agent, SRDQN+RDPM
was able to significantly improve the cost value over those of the other methods. The in-
crease in the number of agents using SRDQN+RDPM can be attributed to the improvement
in cooperative policy.

Table 2 shows statistical information of total cost value for the system consisting only
of reinforcement learning agents in the case of random demand fluctuations. The values in
Table 2 represent the average values of the various statistics for the cost values of six in-

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

14

M. Hori, T. Matsui

Retailer
1000 S a0 - 0
0 .o G
= 8 2 2
. o 3 500
500 . LN o
Warehouse 0 50 100 0 50 100 0 50 100 0 50 100
Time 1000 Time Tim 0 Time
o o 5 200 =
= © B $ -0
—500 & L
L 0 0
D|Str|butor 0 50 100 0 50 100 0 50 100 0 50 100
Time Time Time o Time
1000
o o S 200 i
= AN 8 : :
. <] B 500
500 . LN o
Manufacturer 0 50 100 0 50 100 0 50 100 0 50 100
Time 1000 Time Time 0 Time
o o S 200 2
= 8 = 2
By o B 500
~500 ® L
0

0
0 50 100 0 50 100 0 50 100 0 50 100
Time

Figure 8: IL, 0O, action and reward of all agents (SRDQN+RDPM)

(a) Demand for beers at each time (b) Histogram

Counts
o = v ow & o«

0 20 40 60 80 100
Time

10 20 30 40 50 60 70 80 90

Data

Figure 9: Demand of consumers in case of relatively continuous demand fluctuations

stances. The value of y for each reinforcement learning method is the same as the value used
in the experiments in Figure 6. In terms of average value and variance, SRDQN+RDPM
was able to minimize the cost the most, while SRDQN+TSRDPM-71 was able to minimize
it the second most. SRDQN+RDPM had the lowest average value and variance, indicating
that it contributed to the stability of the entire system with a relatively low cost value.

Figures 7 and 8 show examples of the results of playing a beer game with SRDQN or
SRDQN+RDPM after training with 40,000 episodes in Instance 3. We show the details of
Inventory Level (IL), Open order (OO), action and reward for each agent. Here, /L and OO
are as shown in Section 2.3, IL is the inventory level that represents the amount of beers in
stock or lack at each facility, and OO is the amount of on-order beers at each agent. First,
note that in the initial example we used, the system is particularly difficult to stabilize due to
the extreme situation where consumer orders always follow a uniform distribution. When
SRDQN+RDPM was used, a time-series relationship can be read between the amount of
orders placed by each player (Figure 8). However, in the case of SRDQN, some agents
behaved selfishly and did not cooperate well with each other (Figure 7).

4.3 Case of relatively continuous demand fluctuations

In this experiment, the amount of consumers’ demand was represented by a periodic func-
tion. Figure 9 show the example which represents demand for beers during a play of the
beer game. In contrast to the case of random demand fluctuations (Figure 3), there are
no large fluctuations over a short period of time, and peaks occur periodically in the case
of relatively continuous demand fluctuations (Figure 9). In this case, we also evaluate the
system consisting only of reinforcement learning agents.

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

—— y=0.5 —— y=1.0 -5 y=1.5

RDQN+DR RDQN+RDPM
400000 (a) SRDQ 400000 (b) SRDQ
] i
S 200000 {lE) |A 1 A S 200000
o WA o
0 0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode
(c) SRDQN+TSRDPM-T1 (d) SRDQN+TSRDPM-15
400000 400000
7] i
200000 AR P © 200000 A
© R e g H v .
0 inleaoaien el 0 | I —
0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode
Figure 10: Total cost (four RL agents with y=0.5,1.0,1.5)
—=5—- SRDQN —5—- SRDQN+RDPM SRDQN+TSRDPM-T5
—#— SRDQN+DR —#%- SRDQN+TSRDPM-T1
a) Instance 1 b) Instance 2
500000 (@) 500000 (b)
400000 400000
+3 3000004 +3 300000
(o] 0y o
o 2000007\ | O 200000
1000001 = 100000
R R S e R
0 ; , | 0 | | |
0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode
Instan Instance 4
500000 (c) Instance 3 500000 {d) Instance
400000 400000
+ 300000 13 300000
S 200000 S 200000 iy
I ol [i j’
1000001 ¥ 100000 { G ¥ R\ gt
0 0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
episode episode

Figure 11: Total cost (four RL agents)

Figure 10 shows the evolution of the cost values during the learning process with
each values of y. To evaluate the impact of the parameter ¥ on the learning process of
SRDQN+DR, SRDQN+RDPM and SRDQN+TSRDPM, three types of y € {0.5,1.0,1.5}
were tested. In each method, the parameter Y is used as a coefficient for adjusting the
weight of payment. When the value of y was varied, SRDQN+DR differed in terms of
learning stability, with the most stable and lowest cost with ¥ = 0.5 ((a) in Figure 10). The
other methods did not show significant differences in learning stability when y was varied.
In terms of cost minimization, SRDQN+DR, SRDQN+RDPM, and SRDQN+TSRDPM-
75 had the lowest cost with ¥ = 0.5, and SRDQN+TSRDPM-71 had the lowest cost with
Y= 1.0.

Figure 11 shows the evolution of the cost values during the learning process. We
present four typical experimental results, since there were relatively large differences in
the results. In the experiments in Figure 11, each method used the value of ¥y when it
achieved the lowest cost value in the experiments in Figure 10. Thus, Figure 11 shows
the learning results for SRDQN+DR, SRDQN+RDPM and SRDQN+TSRDPM-15 with
Y= 0.5, and for SRDQN+TSRDPM-71 with y = 1.0. When SRDQN was used, the learn-
ing stability was worse in all instances, and the cost values were sometimes very large.

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

15

16

M. Hori, T. Matsui

Table 3: Statistical information of total cost value (6 instances)

RL method Min Max Average Variance
SRDQN 6.386 x 10* 5.680 x 10° 2.033 x 10° 7.555 x 10°
SRDQN+DR 7.010 x 10* 4.366 x 10° 1.060 x 10° 2.788 x 10°
SRDQN+RDPM 6.188 x 10* 4.513x 10° 9.241 x 10* 2.767 x 10°

SRDQN+TSRDPM-71 5.172 x 104 4.411 x 105 8.577 x 10* 3.377 x 10°
SRDQN+TSRDPM-75 6.562 x 10* 5.085 x 105 1.352x 105 5.875 x 10°

Retailer

0 0
2000 o -
= ©
= 8 g 2
o 9] 3
—5000 0 ® = 5000
50 00 0 50 100 00 0

Warehouse 0 2 o | -
N ime 2000 ime ime o ime

=

00
action
reward -
|

—5000 0 o
Distributor ¢ 5 00 0 50 100
0 e 2000 = 0

-

00
action
: E e
reward
]

—5000
Manufacturer © 50 100 0 50 100 0 50 100 0 50 100

o
= I}

action
b
reward
I

5000 0 0
0 50 100 0 50 100 0 50 100 o 50 100
Time Time Time Time

Figure 12: IL, 00, action and reward of all agents (SRDQN)

When SRDQN+DR or SRDQN+TSRDPM-15 was used, the learning stability was also
worse in some cases, but more stable than when SRDQN was used. By contrast, when
SRDQN+RDPM and SRDQN+TSRDPM-71 were used, learning stability was very high in
both cases, but SRDQN+TSRDPM-71 achieved a smaller total cost value. The results for
different values of 7 in SRDQN+TSRDPM show that using a smaller 7 resulted in more
stable learning and a smaller cost value. In this case, we also have concluded that using
information from the too distant past can reduce the performance in the learning process.

Table 3 also shows statistical information of total cost value for the system consisting
only of reinforcement learning agents in the case of relatively continuous demand fluctua-
tions. The values in Table 3 represent the average values of the various statistics for the cost
values of six instances. The value of y for each reinforcement learning method is the same
as the value used in the experiments in Figure 11. SRDQN+TSRDPM-71 had the lowest
average value and minimum value. While SRDQN+RDPM was the best at minimizing the
average total cost in the case of random consumer demand fluctuation, SRDQN+TSRDPM-
71 had the best cost minimization performance in this case. Further improvement in the
cost value of inventory would be expected by modifying the reward design in the feedback
scheme depending on the fluctuation of consumer demand. In our experiments, the results
for T = 1 were better. Therefore, it could be one direction to take into account further
information on the derivative of the time variation.

Figures 12 and 13 also show examples of the results of playing a beer game with
SRDQN or SRDQN+TSRDPM after training with 40,000 episodes in Instance 3. We also
show the details of Inventory Level (IL), Open order (OO), action and reward for each
agent. Here, /L and OO are as shown in Section 2.3, /L is the inventory level that represents
the amount of beers in stock or lack at each facility, and OO is the amount of on-order beers
at each agent. When SRDQN was used, the lack of inventory for downstream agents in the

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

Retailer

ol)
0 1000 S 200
_ o 2
= 500 5}
©

Warehouse 0 50 100 0 50 100 0 50 100 0 50 100
Time Time. Time. 0 Time

reward
L

o]

W
0

00
action
reward

]

=
—500

Distributor © 50 100 0 50 100 0 50 100 0 50 100
Time Time 0 Time

0

2_‘
g
00

action
reward

=
—500

Manufacturer o 50 100 0 50 100 0 50 100 0 50 100

Time Time Time 0 Time
< o
0 1000 S 200 = VAWV
= a
—500 o t % —500
I <
0 0
0 50 100 0 50 100 0 50 100 0 50 100
Time Time Time Time

Figure 13: IL, 0O, action and reward of all agents (SRDQN+TSRDPM-71)

supply chain was very large, and consequently the cost value also increased (Figure 12).
In contrast, when SRDQN+TSRDPM-71 was used, a time-series relationship can be read
between the actions, and rewards were stable at high values except in the early stages of the
game (Figure 13).

4.4 Comparing game performance by number and placement of RL agents

We evaluated the statistical information of the test results in order to compare the case
with only one reinforcement learning (RL) agent and the case with all agents are RL agent.
To begin with, since our proposed method is for the coordination of multiple RL agents,
SQDQN may be better for the case of only a single RL agent. However, when the proposed
method was placed upstream (such as at the Distributor or Manufacturer) in the supply
chain, the results were in some cases relatively better than SRDQN.

Tables 4 and 5 show statistical information of total cost value for the system with a
single RL agent, and the other co-players use the Sterman formula. The values in Tables 4
and 5 represent the average values of the various statistics for the cost values of six in-
stances. The Agent column in Tables 4 and 5 indicate at which facility a single RL agent is
placed in the beer game, where R, W, D and M denote the Retailer, Warehouse, Distributor
and Manufacturer, respectively. For the random demand fluctuations in Table 4, the lowest
average cost was generally achieved when the SRDQN was used at the Retailer (R) posi-
tion. This trend was consistent across all RL methods. In the case of relatively continuous
demand fluctuations in Table 5, the lowest average cost was observed when the RL agent
was at the Warehouse (W) position for the SRDQN. This trend was also consistent across
all RL methods. For both random and relatively continuous demand fluctuations, placing
the RL agent more downstream (such as at the Retailer or Warehouse) tended to result in
lower average costs. This suggests that in the beer game, managing demand uncertainty
closer to the end consumer (downstream) could be more beneficial in minimizing costs.

We evaluated the results in Tables 2 and 4, and in Tables 3 and 5, for comparing the case
where there is only one RL agent and the case where all agents are RL agents. In Tables 2
and 4, which represent the case of random demand fluctuations, we observed that when
the single RL agent was placed at the Retailer (R) position using the SRDQN, the system
achieved the lowest average cost of 7.896 x 10* (Table 4). However, when all agents were
RL agents and use the SRDQN+RDPM, there was only a minor increase in the average
cost to 8.212 x 10* (Table 2), indicating that having all agents as RL agents might be a

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

18

Table 4: Statistical information on the total cost value when only one RL agent is used with

M. Hori, T. Matsui

relatively continuous demand fluctuations (6 instances)

RL method Agent Min Max Average Variance
R 5.178x10% 2.017 x 10° 7.896 x 10* 7.888 x 10®
SRDQN W 6.494 x10* 2.862 x 10° 9.212x10* 8.110x 103
D 1212x10° 2.540x 10° 1.662x 10° 4.545 x 108
M 2.042x10° 3.543x 10° 2.769 x 10° 7.241 x 108
R 9.247x10* 2.957 x 10° 1.356 x 10° 2.803 x 10®
SRDQN+DR W 1.232x10° 2.587 x10° 1.709 x 10° 3.522 x 108
D 2.017x10° 2.587x10° 2.490 x 10° 6.531 x 108
M 2.017x10° 3.650x 10° 2.490 x 10° 6.531 x 108
R 9.777x 10* 2.515x10° 1.581 x 10° 2.165 x 108
SRDQN+RDPM W 9421 x 10* 2.925x 10° 1.069 x 10> 4.539 x 108
D 1.229x10° 2.626x10° 1.480x 10° 6.634 x 108
M 1.969 x 10° 3.662 x 10° 2.199 x 10° 6.177 x 108
R 9.848x10% 2.255x10° 1.278 x 10° 3.354 x 108
SRDQN+TSRDPM-71 W 9.308 x 10* 3.096 x 10° 1.065 x 10° 3.870 x 108
D 1.253x10° 2211x10° 1.397x10° 1.179 x 108
M 1917 x10° 3.365x 10° 2.063 x10° 3.733 x 108
R 1.069 x 10° 2.284 x 10° 1.499 x 10° 2.621 x 10®
SRDQN+TSRDPM-t5 W 1.031x10° 2758 x10° 1.168 x 10° 2.874 x 10
D 1.260x10° 2.300x 10° 1.383x10° 1.330 x 108
M 1.929x10° 3.333x10° 2.071 x 10° 3.442 x 108

Table 5: Statistical information on the total cost value when only one RL agent is used with

relatively continuous demand fluctuations (6 instances)

RL method Agent Min Max Average Variance
R 5.700 x 10* 2.490 x 10° 1.130 x 105 1.090 x 10°
SRDQN W 7.935x10* 2.363 x 105 1.004 x 105 4.007 x 108
D 1.526x10° 2.864x10° 1.941 x10° 4.655 x 108
M 2947 x10° 4.635x10° 3.965x 10° 1.037 x 10°
R 1.187x10° 3.117x10° 2.019x 10° 1.203 x 10°
SRDQN+DR W L118x10° 2.702x10° 1.748 x 10° 1.047 x 10°
D 1.629x10° 2.869x 10° 2.285x 10° 5.960 x 108
M 2979x10° 4.979x10° 4.552x10°> 1.160 x 10°
R 1.082x10° 2.863x 10° 1.885x 10° 5.014 x 10®
SRDQN+RDPM W 1.073x10° 2.601 x 10° 1.354 x 10° 4.106 x 103
D 1.624x10° 2.790 x 10° 2.218 x 10° 7.457 x 108
M 3.018x10° 5.089x10° 4.238 x10°> 1.751 x 10°
R 1.047x10° 3.260 x 10° 1.874 x 10° 3.254 x 108
SRDQN+TSRDPM-71 W 1.127x10° 2.590 x 10° 1.340x 10° 3.004 x 10
D 1.590x10° 2.921 x10° 1.874x10° 5.386 x 108
M 2749 x10° 4.646x10° 2.932x10° 8.938 x 108
R 1.033x10° 2.657x10° 1.793 x 10° 1.958 x 103
SRDQN+TSRDPM-75 W L151x10° 2.465x10° 1.386x10° 3.214 x 10°
D 1.609x10° 2.968 x 10° 1.993 x 10° 8.321 x 108
M 2.784x10° 4.790 x 10° 2.968 x 10° 8.876 x 108

viable strategy. In Tables 3 and 5, which represent the case of relatively continuous demand
fluctuations, the lowest average cost was achieved when all agents were RL agents using the

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

Improving Multi-Agent Reinforcement Learning for Beer Game by Reward Design Based on Payment Mechanism

SRDQN+TSRDPM-11, yielding an average cost of 8.577 x 10* (Table 3). This implies that
a complete RL agents setup can bring significant advantages in terms of cost minimization
when dealing with relatively continuous demand fluctuations. In summary, the placement
of RL agents in the beer game and the choice of whether all agents should be RL agents
significantly influence the system’s performance. A downstream position of the RL agent
(like the Retailer) seemed generally favorable for reducing the average cost, particularly
in the case of random demand fluctuations. However, the best placement of RL agents
can change based on the nature of the demand fluctuations and the specific RL method
used. This emphasizes the importance of adaptability in MARL setups. Furthermore, a
system where all agents are RL agents can result in the lowest average costs, indicating the
possibility of a MARL setting in the beer game.

5 Conclusion

We proposed new reward shaping techniques in SRDQN for the beer game to improve
the cooperation among multiple agents and the resulting inventory costs. The issues with
conventional method were that there was room for improvement in learning stability, and
the application to MARL had not been considered. We applied the reward design method
based on the VCG mechanism to SRDQN with the aim of improving cooperation in a
system with multiple reinforcement learning agents. In addition, in order to deal with a
variety of fluctuations in consumer demand, we presented different types of reward design
depending on the properties of the demand. In the evaluation using a beer game with two
types of consumer demand when MARL is used, SRDQN+RDPM was the best solution
in the case of random demand, and SRDQN+TSRDPM-71 had the best cost minimization
performance in the case of relatively continuous demand. Compared with the previous
method SRDQN, our experimental evaluation revealed that the proposed method improved
learning stability and reduced cost values in the play results for the systems consisting only
of reinforcement learning agents. Furthermore, by modifying the reward design in response
to the properties of demand fluctuations, we achieved more cost values reduction. Our study
presented how MARL can be applied to inventory optimization in a fundamental game of
supply chain management. We believe that our approach can be applied to other supply
chain management problems in which supply chain participants behave unpredictably or
selfishly. Future work will include integration with other learning efficiency methods and
detailed analysis under more realistic supply chain structure and demand fluctuations.
Acknowledgement:

6 Acknowledgement

This work was supported in part by JSPS KAKENHI Grant Number JP22H03647.

References
[1] Adrian K. Agogino and Kagan Tumer. Analyzing and Visualizing Multiagent Rewards

in Dynamic and Stochastic Domains. Autonomous Agents and Multi-Agent Systems,
17(2):320 - 338, 2008.

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

19

20

(2]

(3]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Hori, T. Matsui

Sushrut Bhalla, Sriram Ganapathi Subramanian, and Mark Crowley. Deep Multi
Agent Reinforcement Learning for Autonomous Driving. In Canadian Conference on
Artificial Intelligence 2020: Advances in Artificial Intelligence, pages 67-78, 2020.

Sven Gronauer and Klaus Diepold. Multi-Agent Deep Reinforcement Learning: A
Survey. Artificial Intelligence Review, 55(2):895 — 943, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, Conference Track Pro-
ceedings, 2015.

Hau Lee, V. Padmanabhan, and Seungjin Whang. Comments on ’Information Distor-
tion in a Supply Chain: The Bullwhip Effect”. Management Science, 50:1887-1893,
2004.

Hau Lee, V. Padmanabhan, and Seungjin Whang. Information Distortion in a Supply
Chain: The Bullwhip Effect. Management Science, 43:546-558, 2004.

Benda M., Jagannathan V., and Dodhiawalla R. On optimal cooperation of knowledge
sources. Technical Report BCS-G2010-28, 1985.

Natsuki Matsunami, Shun Okuhara, and Takayuki Ito. Reward Design for Multi-
Agent Reinforcement Learning with a Penalty Based on the Payment Mechanism.
Transaction of the Japanese Society for Artificial Intelligence, 36(5):AG21-H_1-11,
2021.

Volodymyr Mnih et al. Human-level control through deep reinforcement learning.
Nature, 518:529-533, 2015.

Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltz-
mann Machines. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, page 807 — 814, 2010.

Authors’ names omitted for review. Applying Reward Design Based on Payment
Mechanism to Shaped-Reward DQN for Beer Game. In 2022 [2th International
Congress on Advanced Applied Informatics (IIAI-AAI), pages 384—-390, 2022.

Afshin Oroojlooy et al. A Deep Q-Network for the Beer
Game: Deep Reinforcement Learning for Inventory Optimization.
https://github.com/OptMLGroup/DeepBeerInventory-RL.

Afshin Oroojlooy jadid, Mohammadreza Nazari, Lawrence Snyder, and Martin Tak4c.
A Deep Q-Network for the Beer Game: Deep Reinforcement Learning for Inventory
Optimization. Manufacturing & Service Operations Management, 24(1):285-304,
2021.

Tim Roughgarden. Algorithmic Game Theory. Communications of the ACM, 53(7):78
- 86, 2010.

John D. Sterman. Modeling Managerial Behavior: Misperceptions of Feedback in a
Dynamic Decision Making Experiment. Management Science, 35:321-339, 1989.

Oriol Vinyals et al. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575:350 — 354, 2019.

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.

