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Abstract 

We propose an extension of the particle swarm optimization (PSO) algorithm for each 

particle to store multiple global optima internally for identifying multiple (top-k) peaks in 

static and dynamic environments. We then applied this technique to search and rescue 

problems of rescuing potential survivors urgently in life-threatening disaster scenarios. 

With the rapid development of robotics and computer technology, aerial drones can be 

programmed to implement search algorithms that locate potential survivors and relay their 

positions to rescue teams. We model an environment of a disaster area with potential 

survivors using randomized bivariate normal distributions. We extended the Clerk-

Kennedy PSO algorithm as top-k PSO by considering individual drones as particles, where 

each particle remembers a set of global optima to identify the top-k peaks. By comparing 

several other algorithms, including the canonical PSO, Clerk-Kennedy PSO, and 

NichePSO, we evaluated our proposed algorithm in static and dynamic environments. The 

experimental results show that the proposed algorithm was able to identify the top-k 

peaks (optima) with a higher success rate than the baseline methods, although the rate 

gradually decreased with increasing movement speed of the peaks in dynamic 

environments.  

Keywords: Meta-heuristic algorithm, Particle swarm optimization, Top-k multiple peaks, 

Search and rescue in disasters, Multiple optima 

1 Introduction 

As part of an integrated emergency response to disasters such as earthquakes, search teams 

must find and rescue survivors as soon as humanly possible, because their lives are typically 

in danger, i.e., survival rates decline within three days after a disaster. In particular, the 

first few hours after an incident are the most important time period [32]. In this context, 

autonomous aerial drones or robots can be applied to locate such survivors by searching 

the areas impacted by the disaster. For example, three types of aerial drones were developed 

during a project undertaken by Japanese universities and national research institutes. One 

type was designed to transmit local communication, one to perform early reconnaissance of 
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the area, and another to locate survivors [25]. Such tasks are suitable for autonomous drones 

because they are not hindered by many types of obstacles such as rubble or debris that 

may be present after a disaster [1]. The aforementioned problem is called urban search and 

rescue (USAR). 

Drones sufficiently sophisticated to perform such tasks are precise and expensive 

equipment, and a variety of technicians are required to operate and maintain them. 

Nonetheless, multiple drones must be ready at all times, because disaster or emergency 

situations may occur suddenly, with little or no warning. Furthermore, they should be 

deployed redundantly, because some units could be destroyed or rendered inoperable by the 

disaster. Therefore, less expensive and simpler drones should be developed that can be 

easily deployed in larger quantities to locate survivors with performance equivalent to or 

better than conventional advanced drones. 

The movements of a group of cooperative drones are often modeled on schools of fish 

and foraging behaviors of insects such as those of honeybees in exploring an area to find 

locations with more food. This pattern of behavior is modeled by the particle swarm 

optimization (PSO) algorithm [17] [16]. PSO and its variants have been studied extensively 

for a long time and seem well suited for environments with a unitary optimal solution [31]; 

they have also shown good performance in static environments [26]. However, because of 

the cascading propagation of information in particle networks constructed by the generic 

PSO algorithm, its performance may not suffice in environments with multiple 

simultaneous solutions, such as the USAR problem with multiple rescue locations [7]. 

Moreover, the particles may converge prematurely and fail to find the true optimum in the 

environment, which is known as the local optima trap problem [22]. Thus, a simple and 

effective PSO algorithm capable of identifying multiple optimal values in an environment 

is needed. 

In research on PSO, many studies have attempted to identify multiple optimal 

solutions using niching techniques [6] [19] [27]. Brits et al. [6], for example, proposed the 

NichePSO algorithm to exploit the guaranteed convergence PSO (GCPSO) algorithm [33] 

[34] to locate multiple or all optimal values (peaks) in an environment. However, neither of 

these methods are sufficiently simple for application in real robot swarms, nor are the 

probabilities of finding the required number of optimal solutions sufficiently high. 

The proposed algorithm is a simple extension of the Clerk-Kennedy PSO [8], in which 

each particle stores a set of globally optimal values instead of a single globally optimal 

value. Particularly, using a set of globally optimal solutions, each particle randomly 

selects a convergence direction from a weighted set of alternatives, and information about 

the updated expected peak is communicated to other particles within a specified distance 

to retain diversity among particles in the swarm. If no improvement is achieved after a 

certain amount of time, a re-diversification strategy is introduced to re-randomize the 

positions of the particles. This method enables the diversification of the swarm and 

improved exploration of the environment. Once the terminal condition is reached, the 

swarm merges and processes all the values identified by all the particles and outputs the 

top k peaks, which correspond to the best k optimal solutions in the environment. 

First, for a given environment, we model the problem using a mixed bivariate 

normal distribution with the means randomized. Based on this model, we conducted 

experiments to locate multiple peaks in a simulated environment with multiple static or 
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dynamically moving peaks. Then, we compared these results with three baseline methods, 

including NichePSO, Clerk-Kennedy PSO, and the canonical PSO. The experimental 

results show that the proposed algorithm enables particles to find the top-k peaks 

effectively with probability higher than the baseline methods in static environments and 

in dynamic environments although the rate of findings gradually decreased according to 

the increase of movement speed. Last, we discuss the strengths and weaknesses of our 

proposed method. 

 
 

2 Related Work 
 

The basic problem solved by PSO algorithms is that of identifying a single global op- 

timum/solution in an environment. During that process, the swarm may encounter the local 

optimal trap problem, which has been studied extensively [35] [2] [28]. One of many 

approaches to solve the local trap problem is to use a collection of various PSO algorithms, 

as proposed by Engelbrecht in heterogeneous PSO (HPSO) [12]. At the initialization stage, 

each particle randomly chooses a PSO algorithm from a collection of PSO models, such 

as barebones PSO, modified barebones PSO [15], a social-only model [14], and a 

cognitive-only model. In the former, if the local optimum of particles have not been 

updated for some time, the particles would randomly rotate to a different algorithm from 

the given collection. In the latter, algorithms chosen by each particle remain unchanged. 

HPSO was also extended to handle dynamic environments [18]. 

In an optimization problem using genetic algorithms (GA), niching techniques have 

been studied extensively to identify multiple solutions, and the same tech- niques have 

also been applied in PSO algorithms to identify multiple optima. This approach was 

called NichePSO [6], in which a cognitive-only model is used by the main particles to 

locate initial optima in an environment, and multiple GCPSO sub-swarms [33, 34] are 

then formed around individual optima. If a particle or a sub-swarm moves within the 

radius of another sub-swarm, it is absorbed by the latter. Despite its performance, 

NichePSO has been shown to lose its diversity over time because all sub-swarms may 

eventually fuse into a single large swarm [10]. In contrast, comparing NichePSO, our 

proposed method top-k PSO retains the communication network within the swarm, which 

enables enhanced exploration of the environment. 

In addition to niching techniques, many other approaches to identifying multiple optima 

in an environment have been developed, such as galactic swarm optimization (GSO) [24], 

and its extension using whale optimization algorithm (WOA) [13]. Exploration and 

exploitation of the environment in GSO is balanced by dividing the swarm into two levels, 

super-swarm and sub-swarm. During the first phase, each sub-swarm finds its global 

optimal value by performing exploration in the environment using the canonical PSO. 

Next, in the second phase, the super-swarm exploits the environment by using each global 

optimal value from the sub-swarms as seed values, which are then input to a separate 

canonical PSO algorithm. No- tably, the GSO algorithm is reported to be flexible, and any 

swarm-based algorithm can replace the canonical PSO used in the experiments. 

Applying PSO to a dynamic environment has proven challenging due to many 

problems such as moving peaks, outdated memory, and loss of swarm diversity [4]. 
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The dynamic multi-swarm fractional-best particle swarm optimization (DMSFPSO)[11] 

approach was developed to solve multi-model problems, and implemented both adaptive sub-
swarm count and multi-swarm techniques. Moreover, when a change in the environment is 

detected, particle velocities are re-initialized to deal with the outdated memory problem. 

Furthermore, to retain diversity, sub-swarms repel each other. In contrast, considering that 

multiple optima might exist in a small area, we did not implement a repelling action in 
particles of the top-k PSO swarm. However, our proposed approach does implement a re-

diversification method to reduce the probability of being affected by the local trap problem. 

Moreover, in contrast to both GSO and DMSFPSO, the objective of top-k PSO is to identify 
only a subset of all optima in the environment. 

Finally, although we previously reported an extended PSO to find multiple peaks [29], 

we also demonstrate that the proposed method can find multiple peaks in a dynamic 

environment where some peaks gradually move over time. 

3 Background and Problem Description 

3.1 Clerk-Kennedy PSO 

Here, we briefly explain the basis of our proposed method, which is the Clerk- Kennedy 

PSO algorithms [9] [37]. Clerk-Kennedy PSO is different from the canon- ical PSO in that 

instead of using acceleration constants, it uses a constriction rate to gradually convert 

particles from the task of exploration to exploitation, which is the same for both global 

and local attractors. 

In Clerk-Kennedy PSO, the update formulas for the position xi(t + 1) ∈ V of 
particle pi and for its velocity vi(t + 1) are defined by Eq. 2 and 1, respectively. 

x i (t + 1) =xi(t) + vi(t + 1) and, (1) 

v i ( t + 1) =α(c · r1(t)(yi(t) − xi(t)) + c · r2(t)(g(t) − xi(t))), (2) 

where g(t) is the global best position, yi(t) is pi’s local best position, xi(t) is pi’s current 

position, 0 < r1(t), r2(t) < 1 are random numbers at t, α is the constant of the constriction 

rate and c is the acceleration constant. Both constants, α and c, are positive with 

limitation of 0 < α < 1 and c > 0. 

3.2 Model of Environment 

We modeled a disaster area as a simulated environment with the assumption that all 

locations in the environment were equally important, because the potential num- ber of 

survivors is typically not known beforehand. Moreover, prior works have shown that 

survivors tend to move toward important locations from a social view- point after a 

disaster [21]. Tracking people’s movement is also possible, such as by using mobile 

phone signals [3] or cellular base stations [8]. Assuming that viable methodologies are 

available to detect survivors, an aerial drone can sort areas based on their respective 

probability of containing survivors. Thus, the modeled problem is a two-dimensional 

(bivariate) normal distribution expressing the probability of finding a survivor within a 

certain area. Each of the center points in concentrated areas of survivors is represented as 

a mean µ and the probability of existence of each peak is the value of the density function 
fi(µ). Its covariance matrix Σ expresses the density or the spread of each concentrated 
area. We describe it in more detail below.
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where fi(x) is the distribution function of the i-th value and mi > 0 denotes its 

expected area importance; this represents special situations such as the urgency of a 
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Figure 1: Top view of an environment with three peaks [29]

In our model, time is considered as discrete and calculated in unit of ticks. Let P be the 
n particles of the PSO swarm, i.e., the set of particles, where n is a positive integer. Each 
tick, a particle pi ∈ P in the PSO swarm moves within the environment to find peaks that 
correspond to the optimal solutions, by exchanging information with surrounding particles 
pj ∈ P . A finite, square-shaped, two-dimensional space V ⊂ R2 (where R is the set of real 
numbers) is used to represent the environment, with the length of the sides of the 
environment being 2 · E. Thus, any point x ∈ V can be represented as x = (z1, z2) such that 
−E ≤ z1, z2 ≤ E for a positive number E ∈ R. N different Gaussian distributions N (µi, Σi)
for i = 1, . . . , N are used to represent N peaks in V . For each peak, the center location of i-
th peak is represented as vector µi = (µ1,i, µ2,i) (∈ V ), and covariance between the x-axis 
and y-axis for i-th peak is represented by the 2×2 diagonal matrix Σi, the elements of which 
are in the closed interval of [0, 1]. Thus, the utility value of any location x = (z1, z2) ∈ V to 
the i-th peak, or the probable number of survivors, can be formulated as

where σ1,i and σ2,i are the standard deviations of two variables. The utility value of a single 
i-th peak can be calculated by fi(µi).

Adding all distribution functions yields the utility value of the mixed distribution 
functions r(x) of x ∈ V , which is defined as
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Figure 2: Visualization of areas in an environment with E = 5 and E′ = 4. 

Figure 3: One-dimensional representation of utility values with four peaks [29] 
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given rescue or the expected number of survivors. If data regarding area importance in the 

environment are unavailable, all mi are equalized. Fig. 1 shows a top view of a sample 

environment (Fig. 2) with 3 peaks, and a simplified visualization of the utility values in 

one-dimensional environment is shown in Fig. 3. 

We introduce static and dynamic environments with the following natural as- 

sumptions to evaluate our proposed method. 

• |P | > N , i.e., the number of particles is greater than the number of peaks in the
environment.

• The peak generation area is smaller than the environment area and there is a margin

between the boundaries of the environment and the peak generation area. This

margin size is specified by E′ (≤ E) as shown in Fig. 2.

• There is no/negligible communication overhead when particles propagate in-

formation to other particles within the swarm.

Note that the peak generation area is defined as the area where all peaks exist. The first 

assumption is intuitive given USAR is the target application. It is certainly plausible that 

our proposed algorithm would perform reasonably well without this assumption, but to 

simplify our experiment we decided to add this assumption because it would be difficult 

to find the minimum number of particles that would still guarantee good performance in 

any environment [20]. 

The second assumption was introduced to allow all peaks to be explored from all 

directions, because exploring a peak only a limited direction is difficult for par- ticles in a 

swarm, in all PSO algorithms, although reducing the margin between the two areas can 

increase the area that can be explored in the environment. Further discussion is provided 

in Section 5.3. The third assumption holds because in the premise of our proposed 

method, aerial drones would use wireless communication technologies to exchange 

information within the swarm. Considering that the infor- mation payload is small and the 

number of particles is not large, it is safe to assume that information overhead is 

negligible. 

3.2.1 Static Environment 

In static environments, the locations µi and peak values fi(µi) of all peaks are 

considered to remain constant. 

3.2.2 Dynamic Environment 

In dynamic environments, only the peak values fi (µi) of all peaks remain constant. The 

position of a peak at time t can be defined as µi (t) = (µ1, I , µ2,i) (∈ V ). After each tick, 
each peak moves a random distance in random direction; the movement of the peaks is 

represented as a vector ϕi with randomized elements in the range (−E/ω, E/ω), where ω > 

0 is the movement speed factor to determine the movement speed of peaks. Thus, the next 

position of a peak can be given by µi (t + 1) = µi(t) + ϕi. 

We adopt a fully randomized movement of peaks in the environment to simulate 

the chaotic movements of survivors after a disaster, and the upper and lower bound of peak
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movements are applied because survivors can only move up to a certain distance within a 

given time frame. However, the position of each peak must be within the boundary of the 

peak generation area of the environment −E′ ≤ µ1, i, µ2, i ≤ E′ to ensure the margin E − E′ ≥ 0. 

Given that the peaks move randomly, although the mean values f (µi(t)) of each peak i at 

time t will always remain constant, the total utility value r(x) that can be calculated in a 

position x will fluctuate unpredictably throughout the experiment. This could happen as two 

groups of survivors encounter each other, producing an area with higher probability of finding 

survivors within the join boundary for drones to identify. Even if those two groups of survivors 

merge into a larger one, the problem would be reduced to finding top-k peaks from N−1 peaks, 

and our proposed method would still be applicable. 

3.3 Problem Formulation 

Given that the main priority of USAR teams is to rescue as many people as possible without 

considering their social importance or other status, USAR teams need to quickly explore 

areas indicated by the aerial drones as having the highest probable concentrations of survivors. 

However, USAR teams may be forced to prioritize areas with the greatest probability of 

finding survivors owing to limited resources. 

Let L = {µ1, . . . , µN } be a set sorted in descending order based on the utility value r(µi). 

For the purpose of our problem, the first k (≤ N) peaks from L need to be identified. A 

successful identification of a peak µj at x ∈ V by a particle pi  requires these two conditions:

(1) the difference in utility value between an optimum found by pi at x and µj must satisfy

and (2) the Euclidean distance must be small; to be precise, dist (µj , x) ≤ δd. Both 

parameters δu ≥ 0 and δd ≥ 0 represents threshold of closeness, and both are small positive 

numbers. The current location of pi is represented as x(pi). 

4 Proposed Method 

To solve the USAR problem, we extend the Clerk-Kennedy PSO to create a novel 

method top-k PSO. Clerk-Kennedy PSO is the basis of our method because it al- 

ready includes a pair of constants known to be effective [9], which obviated the 

necessity of conducting additional experiments to find optimal constants. Instead of 

storing a single global optimal (peak) as in the canonical PSO, particle pi ∈ P in top-

k PSO keeps the set of positions of possible global peaks, Gi = {gi,1, gi,2, . . . , gi,k}, 

where gi = (z1, z2) and the utility values of peaks in Gi are obtained by r(gi). Algorithm 

1 describes the top-k PSO algorithm in pseudo-code. The main modifications in top-k 

PSO are the global optima value step (Lines 23-28) and the re-diversification 

method (Lines 30-34) used to reduce susceptibility to the local trap problem. As top-k 

PSO is based on Clerk-Kennedy PSO, Lines 12-22 are almost identical to the
base method.   Exploration of the environment continues until t = Tf  is satisfied, 
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Algorithm 1 Top-k PSO Algorithm 

1: // Initializing swarms 

2: for each particle pi ∈ P do 
3: xi: current location; 

4: yi: local peaks location; 

5: Randomize initial position xi and velocity vi; 

6: Calculate r(xi); 
7: yi = xi; 

8: Gi = {yi}; // Set of (current) global peaks in pi; 
9: gi = yi: chosen global attractor; 

10: end for 
11: // Exploration 

12: while t ≤ Tf // Until reaching terminal condition do 

13: for each particle pi ∈ P do 
14: Calculate next velocity vi(t + 1) using Eq. 2; 

15: Update position xi(t + 1) using Eq. 1; 

16: if r(yi) < r(xi(t + 1)) then 

17: yi = xi(t + 1); 

18: end if 

19: if r(gi) < r(yi) then 

20: Substitute gi in Gi for yi. 

21: Set gi = yi; 

22: end if 

23: if Particle pi has no improvement in last γ1 ticks then 
24: Announce Gi to surrounding particles; 

25: Gi ← G-update(pi) in Alg. 2; 

26: gi ← an element in Gi selected with probability distribution defined by 
Eq. 5 as new direction; 

27: Randomize next velocity vi(t + 1); 

28: end if 
29: end for 

30: if All pi ∈ P have no improvements of yi in last γ2 ticks then 

31: for each particle pi ∈ P do 
32: Randomize xi(t + 1) and vi(t + 1); 

33: end for 

34: end if 

35: t = t + 1; // Also move each peak µi in dynamic environment. 

36: end while 

37: Output top k peaks using function Merging in Alg. 3; 
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i=1 

where Tf is the maximum time of the simulation and Tf > 0, which is a positive integer. 

To ensure that the swarm can identify multiple peaks, we modified the global optimal 

value update step. Depending on difference in velocity compared to the previous step, 

v(t + 1) − v(t), a particle may not exactly match with the center of the target peak µi. 

Hence, particle convergence is assumed only after γ1 ticks with no improvement; then, 

particle pi propagates Gi to its surrounding local particles (Line 23). Additionally, the 

requirement of convergence before propagating Gi is to prevent premature announcement 

of its current location xi; premature announce- ment would attract surrounding local 

particles to a sub-optimal location. After propagation, a new exploration direction is 

selected by particle pi (Line 26). In contrast to the canonical and Clerk-Kennedy PSOs, in 

our proposed top-k PSO the propagation of candidate peak values Gi is limited to 

nearby particles (particles the Euclidean distance of which is ≤ 2 · E/k2). Limiting the 

Gi propagation area reduces the loss of swarm diversity and reduces the influence of distant 

peaks, which improve particles’ ability to explore local areas. 

There is a possibility that two peaks g, g′ ∈ Gi and g ̸= g′, but dist (g, g′) is 

negligible. Thus, we consider two peaks g and g′ as virtually identical, which is 

expressed by g ∼ g′, if these conditions |r(g) − r(g′)| ≤ δeqv and dist (g, g′) ≤ δeqv 

are fulfilled, where δeqv is a small positive number determining the resolution of 

exploration and we set δeqv = 10−4 in our experiment below. Therefore, to maintain unique 

elements in set Gi, when g ∼ g′, one of these elements is removed from set Gi and G in 

Algs. 1, 2, and 3. 

Algorithm 2 Function G-update(pi) 

1: Let G be the list of global peaks Gj from close particles; 

2: Gi ← (Gi ∪G∈G G) ∪ yi; 
3: Sort Gi in descending order of r(gi). 

4: if |Gi| > k then 

5: Gi ← the first k elements in Gi; 
6: end if 
7: return Gi 

Algorithm 3 Function Merging() 

1: G = ∪n Gi; // Retrieve all global peaks from all pi. 

2: Sort G in descending order of r(g) for g ∈ Gi; 

3: R ← the first k elements in G; 
4: Return R; 

In top-k PSO, a particle pi must identify the top k locations that are indistinguishable to the 

first k peaks in the sorted set L. During information propagation, a particle pi receives 

potential global peaks Gj locations from surrounding close particles and merges them to 

update Gi; Gj is transmitted by converged particles pj within a distance of 2 · E/k2 to particle pi 

with i ̸= j using function G-update(pi) in Alg. 2 (Line 25 in Alg. 1). Next, a global peak 

candidate gi ∈ Gi is randomly selected by particle pi as a new global attractor, which would 

substitute g(t) in Eq. 2. The process of selecting a new global attractor gi ∈ Gi is randomized
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Table 1: Experimental Setup. 

Case n (= |P |) N k Env. size Peak area size 

1 30 3 3 E = 5 E′ = 4 

2 50 10 3 E = 7 E′ = 5.5 

3 50 15 5 E = 10 E′ = 8 

using the following probability function p(gi). 

where xi is the location of particle pi. 

Selecting a new global attractor gi for particle pi would also randomize its next velocity 

v(t+1) to remove the influence of the previous global attractor. To improve exploration of the 

environment, a re-diversification mechanism is implemented to cause the swarm to 

randomize the next positions x(t + 1) and velocities v(t + 1) of all particles if no particles 

were able to locate better positions in the last γ2 ticks (Lines 30-34). However, this process 

does not randomize global peak positions Gi and local peak position yi. 

Positive integer parameters γ1 and γ2 in Line 23 and Line 30 denote the sensitivity of 

particles in detecting a convergence; lower values are preferred when peaks in an environment 

tend to be separated from each other. For the following experiments, values of γ1 = γ2 = 5 are 

used because they were deemed suitable. 

The exploration continues until the termination condition of t = Tf , and then the 

candidate global peak set Gi of all particles are merged and duplicated values are removed; 

thus, the set of all candidate global peaks is G = G1 ∪ · · · ∪ Gn. Then, based on the utility 

value r(gi) of each element in the set G, elements are sorted in descending order. Finally, the 

top k values in the sorted set G are the top-k peaks in a given environment that are identified 

by the swarm (Line 37 in Alg. 1). 

5 Experimental Evaluation and Discussion 

5.1 Experimental Setup 

Three experiments were conducted in both static and dynamic environments to evaluate the 

effectiveness of top-k PSO against several algorithms, including the NichePSO, canonical 

PSO, and Clerk-Kennedy PSO. We list the values of environmental parameters for each case 

(Cases 1, 2 and 3) in Table 1, where (2E ≥)2E′ > 0 is the length of the side of peak generation 

area, i.e., initial position of peak i is defined by µi = (µ1,i, µ2,i), and must satisfy −E′ < µi < 

E′. In the initialization phase, all peaks are randomly generated inside the peak generation 

area of each experimental run. To insert a margin between the environment area and the 

peak generation area, E′ was approximately 20% to 25% smaller than E. The value of area 

importance of each peak was set to mi = 1 to represent all peaks having equal priority. 

gi ∼ p(gi) =

r(gi)

dist(gi, xi)∑
gj∈Gi

gj
dist(gj , xi)

, (5)
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Table 2: Case 1 Experimental Result (in %) 

Algorithm 1st Peak 2nd Peak 3rd Peak 

top-k 64.5 ± 41.1 67.9 ± 42.2 71.1 ± 37.2 

Canonical 29.4 ± 30.3 27.1 ± 19.0 17.9 ± 13.6 

Clerk-Kennedy 31.3 ± 30.3 25.7 ± 17.0 18.3 ± 15.6 

Niche 62.3 ± 32.6 13.4 ± 21.2 1.0 ± 2.4 

 

 
Table 3: Case 2 Experimental Result (in %) 

Algorithm 1st Peak 2nd Peak 3rd Peak 

top-k 58.5 ± 27.7 67.3 ± 29.0 68.6 ± 32.5 

Canonical 25.5 ± 24.9 27.4 ± 19.5 17.6 ± 12.3 

Clerk-Kennedy 25.5 ± 25.9 26.3 ± 18.6 17.8 ± 15.5 

Niche 65.5 ± 26.9 26.4 ± 25.5 2.5 ± 5.6 

 

 

The threshold for closeness was the parameters δu ≥ 0 and δd ≥ 0, which are small positive 

numbers. For our experiments, we used the values δu = 0.05, δd = 0.1, δeqv = 10−4 and Tf 

= 50, 000. For each experiment case, a total of 30 different environments were randomly 

generated, and 50 independent runs were executed. Experiment results are shown in tables 

with numbers denoting the means and their standard deviations of successfully identified 

peaks across the 30 randomly generated environments. 

The experiments in dynamic environments used the same parameters as experiments in 

static environments, with only the randomized constant movement of peaks differing during 

the experiments, with a movement speed factor of ω = 50000. A large constant was 

chosen to show notable but not drastic differences between static and dynamic 

environments, as a small movement speed factor such as ω = 100 resulted in all 

algorithms failing to identify any peaks at all due to quick peak movements. 

For the baseline method of canonical PSO, we set both local and global acceleration 

constants to c1 = 2 and c2 = 2. For top-k PSO and its base method Clerk-Kennedy PSO, 

we used two values from the original study [9], including a constriction rate of α = 

0.729843788 and an acceleration constant of c = 2.05. For NichePSO, a partitioning 

threshold of 10−3 and a merging distance for sub-swarms with swarm radius of D = 0 of 

10−4 was adopted. As for the underlying GCPSO in NichePSO, the same constants as 

canonical PSO were used and the initial scaling factor was set to ρ(t) = 0.1. A detailed 

description of NichePSO and its base method are described in these references [6, 33, 34]. 

To show the performances of baseline methods, NichePSO, canonical PSO, and Clerk-

Kennedy PSO in identifying top-k peaks, in each of those algorithms, an additional step of 

function Merging in Alg. 3 was added. Due to incompatibility when applying function 

Merging to the algorithms used for comparison, in canonical and Clerk-Kennedy PSO, 

Line 1 of Alg. 3 was replaced by G = ∪n  yi, whereas in 

NichePSO G =∪n      gi
 . 
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Table 4: Case 3 Experimental Result (in %) 

Algorithm 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak 

top-k 51.2 ± 32.2 64.8 ± 30.1 62.3 ± 35.4 65.7 ± 33.6 70.7 ± 32.8 

Canonical 8.9 ± 10.3 15.4 ± 13.7 11.8 ± 10.4 12.7 ± 10.0 9.6 ± 8.8 

Clerk-Kennedy 9.3 ± 9.8 16.3 ± 15.9 12.9 ± 11.6 12.5 ± 11.9 12.1 ± 8.9 

Niche 43.7 ± 25.4 33.1 ± 25.2 11.9 ± 14.4 6.3 ± 13.1 2.9 ± 5.1 

 

 

5.2 Experimental Results in Static Environment 
 

Tables 2 to 4 show the results of the first experiment, i.e., the probabilities of identifying 

top-k peaks in Cases 1 to 3. These figures indicate that in identifying top-k peaks using 

these 4 algorithms, top-k PSO was the most successful with the exception of identifying 

the first peak compared to NichePSO in some cases. 

In Case 1, the objective of the swarm was to identify all 3 peaks in the environment. 

Table 2 shows that top-k PSO was able to identify all of the 3 peaks with a probability 

greater than 0.5, while both the canonical and Clerk-Kennedy PSOs were only able to 

identify them with probability less than 0.4. In contrast, NichePSO was the second most 

successful at identifying the highest peak, but was also unable to identify the second and 

third peaks, with probabilities even lower than both canonical and Clerk-Kennedy PSOs. 

This issue is discussed further in Section 5.5. 

Table 3 shows the experimental results of Case 2, which were similar to Case 1 but 

with N = 10 and n = 50, i.e., a swarm of fifty particles searching for the top 3 out 

of 10 peaks. This figure indicates that among the 4 algorithms used, top-k PSO was able 

to identify the top three peaks with the greatest probability. Particularly, top-k PSO was 

the only algorithm able to identify the third peak with an acceptable rate; the baseline 

methods exhibited lower probabilities in identifying peaks, especially the third peak, and 

NichePSO showed the lowest probability to identify the third one in the first experiment. 

However, NichePSO was the most successful in identifying the first peaks with the 

highest probability. 

We conducted further experiment in a more complicated case with larger envi- 

ronments in Case 3, where 50 particles were used to identify the top 5 peaks from 15 peaks 

in the environment. The result of the experiment are shown in Table 4. This figure shows 

that similar to the previous two cases, top-k PSO was able to identify all peaks with high 

probabilities, and identified the all peaks at higher probabilities than baseline methods. 

However, unlike Case 2, top-k PSO outperformed NichePSO in identifying the first peak. 

However, repeating the experiment sometimes resulted in NichePSO performing better in 

identifying the first peak compared to top-k PSO by a small margin, vice versa. For more 

experimental results in static environments, please refer to our conference paper [29]. 

As for the standard deviation of results from all Cases, as shown in Tables 2 to 4, 

there was no notable difference between top-k PSO and the baseline methods, and each 

standard deviation of each experiment result for each k-th peak is relative to its mean. 

However, NichePSO did produce slightly smaller deviation compared to top-k PSO at 

identifying the first peak. 
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Table 5: Comparison of different peak area sizes (E = 10, in %) 

E′ 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak 

5 60.1 ± 31.5 82.6 ± 27.4 79.3 ± 27.5 73.3 ± 39.5 56.9 ± 43.0 

6 71.3 ± 32.4 78.9 ± 22.8 82.4 ± 26.9 66.9 ± 40.0 65.0 ± 38.6 

7 64.4 ± 28.7 63.0 ± 32.3 61.0 ± 33.1 78.9 ± 24.5 69.8 ± 34.2 

8 50.7 ± 32.3 60.7 ± 34.9 57.5 ± 36.4 67.7 ± 33.1 56.4 ± 36.1 

9 32.3 ± 34.7 40.8 ± 35.8 51.9 ± 41.8 54.3 ± 38.8 67.6 ± 39.6 

10 41.1 ± 38.2 37.5 ± 39.8 45.0 ± 42.8 40.3 ± 37.3 49.6 ± 41.0 

 

 

Table 6: Case 1 Dynamic Experimental Result (in %) 

Algorithm 1st Peak 2nd Peak 3rd Peak 

top-k 51.3 ± 38.1 51.5 ± 40.5 41.9 ± 34.3 

Canonical 30.1 ± 23.5 18.6 ± 15.0 5.7 ± 5.2 

Clerk-Kennedy 30.3 ± 25.1 17.8 ± 16.8 5.1 ± 7.4 

Niche 49.9 ± 22.7 14.1 ± 14.9 1.4 ± 5.2 

 

 
5.3 Effect of Peaks Near Edges of Environments 

 
During the experiment, we discovered that peaks would sometimes be initialized near the 

edges of the environments, which negatively affected all algorithms on successfully 

identifying peaks. This was the basis for applying a margin of E − E′ between the edge of 
the environment and the edge of the peak generation area in our experiment. To examine this 

further, we performed six cases of the experiment with environmental sizes of 20 (E = 10) 

with varying margin sizes, i.e., E′ = 5, 6, 7, 8, 9, 10. For other experimental settings, we 

used parameters from Case 3. 

Table 5 shows the result of this comparison experiment. 

From Table 5, it may be observed that when margin E − E′ of 20% (i.e., E′ ≤ 8) or 

greater, top-k PSO was able to find the top five peaks with approximately equal 

probability. However, the success rate noticeably decreased when the peak generation area 

size was E′ = 9 and E′ = 10. To improve the experimental result, we inserted a margin of 

about 20% in all Cases 1 to 3. Regardless, our proposed method top-k PSO produced better 

result with any margin, as shown in Table 5, than those by the baseline methods with E′ = 8 

(20% margin) in Table 4. 

 
Table 7: Case 2 Dynamic Experimental Result (in %) 

Algorithm 1st Peak 2nd Peak 3rd Peak 

top-k 30.7 ± 25.5 32.1 ± 24.7 32.8 ± 29.8 

Canonical 14.3 ± 14.2 11.6 ± 12.4 7.8 ± 8.4 

Clerk-Kennedy 12.8 ± 9.2 10.3 ± 9.6 6.6 ± 7.7 

Niche 34.9 ± 24.0 13.4 ± 14.0 3.7 ± 5.7 
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Table 8: Case 3 Dynamic Experimental Result (in %) 

Algorithm 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak 

top-k 17.5 ± 16.1 26.8 ± 22.9 22.2 ± 14.3 32.9 ± 21.8 32.9 ± 24.3 

Canonical 5.7 ± 8.3 5.7 ± 5.9 6.6 ± 5.7 4.1 ± 5.6 2.5 ± 3.4 

Clerk-Kennedy 5.9 ± 8.0 7.6 ± 8.1 5.6 ± 7.5 4.7 ± 5.4 3.5 ± 5.6 

Niche 14.3 ± 11.5 7.0 ± 7.9 2.7 ± 4.0 2.3 ± 5.4 0.7 ± 1.4 

 

Table 9: Comparison of different movement speed factors (ω, in %) 

ω 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak 

10000 1.4 ± 2.2 1.5 ± 2.0 1.5 ± 2.2 1.7 ± 3.1 1.5 ± 3.0 

20000 7.3 ± 10.0 6.6 ± 7.8 3.4 ± 5.0 5.7 ± 6.1 6.7 ± 8.8 

30000 9.3 ± 9.0 9.3 ± 9.2 13.3 ± 11.5 13.2 ± 14.9 10.7 ± 12.0 

40000 14.5 ± 16.0 23.7 ± 21.7 25.5 ± 22.6 19.7 ± 17.9 15.3 ± 17.6 

50000 17.5 ± 16.1 26.8 ± 22.9 22.2 ± 14.3 32.9 ± 21.8 32.9 ± 24.3 

60000 22.2 ± 22.5 36.3 ± 27.1 34.0 ± 28.3 30.3 ± 27.6 34.5 ± 28.7 

∞ (Static) 51.2 ± 32.2 64.8 ± 30.1 62.3 ± 35.4 65.7 ± 33.6 70.7 ± 32.8 

 

5.4 Experimental Results in a Dynamic Environment 

We conducted the second experiment in dynamic environments with the movement speed 

factor ω = 50, 000 to confirm whether our method can locate the moving top-k peaks. The 

results are shown in Tables 6, 7 and 8. In these experiments, we could observe the similar 

trends in Cases 1, 2, and 3 as of the static environments, that is, top-k PSO was the most 

successful in identifying all k peaks compared to other algorithms, although NichePSO 

showed better result in identifying only the first peak by a small margin in Case 2. 

These results shown in Tables 6, 7 and 8 indicate that the probability of finding top-k 

peaks were slightly lower than those in the first experiment for all algorithms, although top-

k PSO exhibited the acceptable probabilities of finding peaks. As for the standard 

deviation relative to its mean, we were not able to find noticeable difference with the 

experiments in static environment. These results suggested that the moving speed of peaks 

affect the performance of identifying top-k peaks. 

Therefore, we investigated how moving speed affect the performance of top-k PSO 

by changing the movement speed factor to ω = 10000, 20000, 30000, 40000, 50000, 60000, 

and ∞. Note that ω = ∞ corresponds to the static environment. This result is shown in 

Table 9. This graph indicates that the performance of top-k 

PSO degraded if the movement was faster, i.e., the lower ω. We do not show the results, 

but we conducted the same experiments using the baseline methods and the results 

exhibited the same tendency, although their performance more quickly degrades than top-

k PSO. This suggests that there is the trade of between moving speed and the frequency of 

calculation of particles, but frequent calculation requires more computational cost. This 

means that top-k PSO can reduce the required computational cost if the peaks are moving. 

Slower peak movement minimizes impacts on performance because of one condition 

for positively identifying a peak, more precisely, the difference in Euclidean distance is 

less than 0.1. The higher the limit of peak movements, the higher the probability of the 

distance between the particle and its targeted peak being more than 0.1 in the last tick, 

which is reflected in the result in Table 9. This discussion also indicates the trade of 

An Extension of Particle Swarm Optimization to Identify Multiple Peaks using Re-diversification in Static and Dynamic Environments 15



Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

 

 

between moving speed and the frequency of calculation of particles. Note that even if ω 

= 50000 is fixed, the frequency of calculation can be increased by shortening the time 

length per unit for the simulated environment of moving particles. 

 

5.5 Discussion 

5.5.1 Static Environment 

Our proposed method top-k PSO produced the best results in our experiments. The re-

diversification introduced in our proposed method was the main component that supported 

this performance, because it makes particles in the swarm less susceptible to the local trap 

problem compared to the baseline methods. 

Both the canonical and Clerk-Kennedy PSO algorithms exhibited a lower success 

rate in the simpler case of Case 1 with k = 3 and N = 3 (Table 2) was caused 

partially by gradually vanishing velocity update in both algorithms. In the canonical PSO, 

as a particle approached an optimum, the next velocity decreases, and eventually, the 

successive convergence would take infeasible amounts of time. A similar phenomenon 

was also observed in Clerk-Kennedy PSO; it is due to the constriction rate causing 

successive velocity updates to always be smaller than the previous velocity. 

NichePSO could identify the first peak with similar probability compared top-k PSO, 

but due to the long simulation time, the sub-swarms of NichePSO exhibited a high 

probability of coalescing, causing the swarm to lose multiple tracked op- tima [10], and 

making the behavior of the swarm closer to that of the canonical PSO. In multi-modal 

problems such as in our case, this phenomenon is problematic, as shown in Tables 2 to 4, 

where NichePSO performed worse than both baseline methods when identifying second 

and subsequent peaks. 

Comparing the result of Case 1 (Table 2) with that of Case 2 (Table 3), there was a 

significant decrease in the probability of identifying the top k peaks in the environment. 

This was most likely caused by the local trap problem, as number of available peaks N 

were much larger in Case 2 than in Case 1. Although Case 2 employed a larger number of 

particles n, the algorithms failed to overcome the local trap problem. An even larger 

number of particles may be required to obtain a similar result. 

Then, comparing the result of Case 2 (Table 3) with that of Case 3 (Table 4), top-k PSO 

identified the top k peaks with a success rate similar to that of Case 2, despite more 

difficult parameters; Case 3 had a greater target peak count k and peak count N while using 

the same particle count n. One possible reason for this result is that information 

propagation is limited to particles within Euclidean distance of 2 · E/k2; higher k results in 

more localized communications. Shorter communication distances causes the behavior of 

particles to be closer to that of a cognition-only model, which is suited for exploring local 

areas and thus identifying individual peaks. Due to the completely randomized generation 

of peaks in the environment, a peak could be generated very close to another peak with a 

small difference between their utility values. This phenomenon results in a tendency of 

particles to move toward peaks with higher utility values, reducing success rates for later 

peaks. This was observed in Case 1 and Case 2, in which probability rates fell the lower 

the position of the targeted peak is across all algorithms. However, this was not noticeable 

in Case 3 (Table 4) due to the larger k, because particles would be less affected by peaks 

identified by other particles. 
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Even at this current state, top-k PSO still requires many improvements for its 

convergence performance, including its re-diversification mechanism. For example, 

NichePSO identified the first peak better than top-k PSO across Case 1 to Case 3, which 

is mainly attributed to its base method of GCPSO [34]. In GCPSO, only the best 

particle (i.e., argmaxpi∈P r(x(pi))) continues exploration of the environment while other 

particles update their positions using canonical PSO, reducing the susceptibility of its 

particles to the local trap problem. NichePSO has a tendency to coalesce [10] causing the 

swarm to behave more like GCPSO, which limits its ability to find multiple peaks. In 

contrast, although a re-diversification strategy is included in top-k PSO at the swarm level, 

a single converging particle suffices to pre- vent its activation. Considering the slowing 

velocity update rate of the underlying Clerk-Kennedy PSO, the probability of re-

diversification mechanism being activated fell as time progressed. To improve both 

convergence accuracy and speed of top- k PSO, additional technologies should be 

implemented such as deep reinforcement learning [36], which remains as a possible topic 

for future research. 

5.5.2 Dynamic Environment 

In the dynamic environment of the second experiment, peaks moved randomly as time 

progressed, and thus, the utility value r(x) at coordinate x at time t may differ at time t + 1, 

which would cause a problem of stale values stored in particles. All the algorithms used in 

the experiment, including our proposed top-k PSO, are unable to track time elapsed since 

utility values were calculated and thus, they could not perform at acceptable levels in 

dynamic environments. Moreover, as time progresses, swarms would eventually lose 

diversity, which is another serious issue when exploring dynamic environments [5]. 

Two main concerns in exploring dynamic environments were evident from the 

experimental results of Case 1 to Case 3, as shown in Tables 6 to 8. Compared to their 

counterparts in the static version, all algorithms in Case 1 to Case 3 produced lower 

successful identification rate of top k peaks. This was mainly due to the loss of diversity, 

because the swarms tended to converge over time, which rendered them unable to 

continuously explore the environment and thus caused them to lose track of the peak points. 

However, the relative trend in the results achieved by top-k PSO compared with those of 

other algorithms remained; top-k PSO was better at identifying second and later peaks 

than other algorithms, while similar of slightly worse than NichePSO at identifying the 

first peak. 

Furthermore, the reduction in probability of identifying peaks between the dynamic 

and its static counterpart of Case 3 was larger than Case 1. This may be attributed to limit 

of peak movements calculated using the side length of the environment E; the greater the 

range of the movement, the more likely that a tracked peak may move outside the 

Euclidean distance limit of δd from the particle, causing the particle to be unable to 

identify the peak successfully. However, the opposite may also occur, albeit at lower 

probability, when a peak further than δd from a particle moves to within δd, enabling the 

particle to successfully identify the peak. To confirm this observation, we also 

experimented using Case 3 in dynamic environment but with different movement speed 

factors ω for the peaks, as shown in Table 9. The results of this experiment showed that the 

slower the movement of the peaks in the environment (higher ω), the higher the 

probabilities of identifying the top k peaks in the environment. Even though top-k PSO 

includes a re-diversification mechanism which should reduce the decrease in 

An Extension of Particle Swarm Optimization to Identify Multiple Peaks using Re-diversification in Static and Dynamic Environments 17



Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

 

 

performance when tracking faster moving peaks, the mechanism is triggered only when the 

particle remains converged after γ1. Considering that peaks move constantly, this 

mechanism may be triggered far less often in faster environments. Further research would 

be required to refine this condition to allow top-k PSO to identify optimal points better 

in dynamic environments, especially with fast-moving peaks. 

 
 

6 Conclusion 
 

In this study, we modeled the problem of identifying areas with higher probability of 

survivors after a disaster as a two-dimensional environment, using a bivariate normal 

distribution to simulate areas with different concentrations of survivors. To solve this 

problem, we extended a PSO algorithm to develop our proposed top- k PSO, which is 

designed to identify top-k locations among all possible locations where survivors would 

be more likely to be found. After multiple experiments with different variables in a static 

environment and a comparison with several other algorithms, we found that top-k PSO 

was more effective in identifying a single peak (optimum) in most cases and in almost all 

cases when identifying top-k peaks. The re-diversification method that we introduced 

improved the convergence performance and also maintained swarm variation throughout 

the simulation. 

When top-k PSO was tested in a dynamic environment, it was still able to identify the 

top-k locations at a satisfactory rate. Notably, our proposed algorithm was less affected in 

dynamic environments compared to the other algorithms compared. However, the 

performance of top-k PSO degrades quickly the faster the targets in the environment 

move. 

From these experiments, we were able to identify several weak points that can be 

developed further; an example would be to enable top-k PSO to explore an environment 

with fewer particles than the number of peaks in the environment, mimicking the real-life 

situation of a limited number of aerial drones. The other weak point is that although we 

performed simulations in dynamic environments, a study on the aftermath of the 2010 

Haiti earthquake showed that the movement of survivors is highly predictable [21], which 

suggests that our simplified model of randomized movements might not be fully 

applicable in the real world. Hence, a more accurate model of the problem is required to 

fully evaluate the effectiveness of our proposed algorithm in real applications. 

Furthermore, the performance of top-k PSO in dynamic environment is highly influenced 

by the movement speed of the dynamic peaks, and further research is required to enable 

top-k PSO to identify and track faster-moving peaks and peaks with changing utility 

values. 

In addition to the need for additional investigation to realize application of top-k PSO in real 

world, collisions between unmanned aerial vehicles (UAVs) must also be avoided if top-k 

PSO were applied to actually search for potential survivors in a disaster area. Many 

different approaches can be applied to prevent collisions, such as using PSO [23] or using 

deep reinforcing learning [30]; combining top-k PSO with these methods could provide 

another potential direction for future research. 
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