
International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2024, Vol. 8, No. 1, IJSCAI832

PGSGAN: Policy Gradient Stock GAN

Masanori Hirano * , Hiroki Sakaji † , Kiyoshi Izumi *

Abstract

We introduce a novel generative adversarial network (GAN) designed to generate realistic
trading orders for financial markets. Past models of GANs for creating synthesized trad-
ing orders have always been focused on continuous spaces because their architecture has
constraints coming from the learning algorithm. Contrary to this, actual orders are placed
on discontinuous space, which comes from the actual trading rules such as a minimum unit
price for orders. In this study, therefore, we adopt a different approach supporting the actual
trading rules and placing generated orders to discontinuous state space. The modification
led to the inability to apply the standard GAN’s learning algorithm, requiring us to use a
policy gradient, a solution commonly used in the realm of reinforcement learning, as our
learning strategy. Our experiments handle massive amounts of order data over half a year.
Our experimental results indicated that the proposed model surpassed previous models in
terms of the distribution pattern of the generated orders. A noteworthy advantage of in-
tegrating the policy gradient into our model is that it provides the ability to monitor the
GAN’s learning progress by analyzing the entropy of the generated policy.

Keywords: Generative adversarial networks (GAN), Financial markets, Policy gradient, Or-
der generation

1 Introduction

In financial markets, the realized sequence of orders is a small subsection within a vast range of
potential states. To put it differently, the variety of possible market trajectories comprises one
actual path and countless unrealized possibilities. Even though the state space of a single
order may be confined, the aggregation of these orders might expand the state space
extensively. Furthermore, the inherent non-stationarity of financial markets implies that all
possible states might not be realized in historical data, leading to an inadequate amount of
data for several potential states.

Accumulating a larger volume of data can provide several benefits. I t could enhance
the effectiveness of trading strategies derived from such data. Performing a backtest with
this data increases the precision of risk-level estimations. Also, a correct assessment of
portfolios can be achieved by using a variety of simulated time-series price paths.
∗ The University of Tokyo, Tokyo, Japan
† Hokkaido University, Hokkaido, Japan

Despite the availability of extensive financial market data, it is often inadequate, leading
to many research efforts focused on overcoming this data scarcity. In this regard, a leading
solution is augmenting the available dataset with GANs.

To this end, the prominent approaches are artificial market simulations and data aug-
mentation via GANs.

Artificial market simulations aim to simulate virtual markets under hypothetical situ-
ations and examine those situations that have not occurred in the actual financial market.
Events such as financial crises are rare, but occured variedly. However, data about such
events are insufficient. Additionally, the effects of external factors, such as new regulations,
remain unknown. Therefore, by controlling the situations in artificial market simulations,
we receive insights and benefits.

The other approach, GANs, aims to make realistic order time series to augment past
data. This approach is more pragmatic than artificial market simulations. For predic-
tions, deep learning approaches are gaining popularity; however, they require plenty of
data. GANs can fill this need.

This study focuses on the latter approach, that is, GANs for making realistic order time
series in financial markets, especially in stock markets.

Several studies have aimed to apply GANs within stock markets, but the generated syn-
thetic data often lacks realism. Notable works in this area are Stock-GAN (S-GAN) [1], and
Market GAN [2]. For GANs to function effectively, a gradient link between the generator
and the critic is imperative. The necessity for this link can lead to data that seems invalid.
With S-GAN, for instance, all order values such as buy/sell decisions, order types, prices,
and volumes are continuous. Distincting such generated data is relatively easy because ac-
tual market orders are not continuous. Though Market GAN produces discrete values and
determines the probability of the classes, the generated data remains implausible because
humans can easily distinguish the generated data from the real data. The predominant issue
with current financial market GANs is the placement of the generated fake data within a
continuous space. It is crucial that generated data are acceptable to the order system in
order to mimic real-world situations effectively.

Another problem is the treatment of buy/sell decisions and order types as continuous
variables and adjoining their state spaces. For instance, if buy/sell was represented as a
range from 0 to 1, the two would be bound together across this state space. For example,
suppose the order is 100 shares at $200. In that case, when the best quote is $190, the
meaning is completely different between sell and buy; the buy at $200 is effectively a take
order; the sell at $200 is effectively a make order.

To address those issues, this research proposes Policy Gradient Stock GAN (PGSGAN),
a new GAN learning method for stock markets using a policy gradient. This technique is
commonly utilized in reinforcement learning. Through the integration of reinforcement
learning principles into the GAN structure, the need for a gradient link between the gener-
ator and the critic can be eliminated, resulting in more realistic discrete generated orders.

In our studies, we processed over 65 million orders spanning more than six months
from 10 different stocks and built our GAN model. This experiment led to the successful
creation of a GAN output that aligns with authentic market trading rules, thereby improving
the data generation performance. This model could be used to augment more realistic data,
improving the machine learning prediction tasks’ learnability.

While the PGSGAN was crafted on the rules of the Tokyo Stock Exchange (TSE), it
can be easily adapted for other markets with minor modifications.

In the following sections, we will discuss the related work in Section 2. Section 3

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi2

explains the details of models in Section 3. Then, the experiments and the results are
described in Section 4 and 5, respectively. Section 6 discusses the results. Finally, we
will conclude our study in Section 7. This paper is an extended version of our previous
paper [3].

2 Related Work

As mentioned above, there are two main types of data augmentation approaches in financial
markets.

In the artificial market simulation context, Maeda et al. [4] attempted to make a model
learning the better trading strategy via augmented data by artificial market. Returning to the
basics of artificial market simulation, Edmonds et al. [5] argued that agent-based simulation
is useful for social sciences. The importance of agent-based simulation, especially for the
financial markets, was discussed in [6, 7]. Mizuta [8] demonstrated that a multi-agent
simulation for the financial market could contribute to the implementation of rules and
regulations in actual financial markets. Indeed, Mizuta et al. [9] tested the effect of price
tick size, that is, the price unit for orders, which led to a discussion of tick size devaluation
in the Tokyo Stock Exchange Market, based on the data from an artificial market simulation.
Hirano et al. [10] assessed the effect of the regulation of the capital adequacy ratio (CAR)
and observed the risk of market price shock and depression due to CAR regulation from the
generated data under the hypothetical situation realized in their artificial market simulation.
Although artificial market simulations do not seem to augment data, these can be called
thus, because they generate data and use it for discussion.

The other approach employed in this study is GANs. As previously discussed, Li et
al. pioneered the Stock-GAN (S-GAN)[1]. S-GAN was a groundbreaking advance in the
use of GANs for stock market modeling. It aimed to generate order time series without
the need for authentic order book data through the use of continuous double auction (CDA)
networks. Furthermore, Naritomi et al. [2] demonstrated a GAN model’s effectiveness for
stock markets, showcasing its capability to produce data useful for future price movement
forecasts. In the realm of GAN usage for future price predictions, some studies [11, 12]
have delivered promising results. Collectively, these studies reflect the growing practicality
and effectiveness of GAN-based approaches in financial markets.

The development of GAN technology has seen notable improvements over time. Good-
fellow et al. [13] proposed the original GAN. Subsequently, Mirza et al. [14] proposed
the concept of Conditional GAN, which leverages conditional inputs, and the design is also
used in this study. Radford et al. [15] later introduced the Deep Convolutional GAN (DC-
GAN), another model we referenced for the comparative model of this study. As other
learning architectures, the least-squares GAN [16], generalized f-GAN [17], Laplacian
pyramid GAN [18], variational autoencoder GAN [19], image-to-image translation GAN
(known as pix2pix) [20], self-attention GAN [12], cycle GAN [21] for image translations,
style GAN [22] for style converts, and progressive growing GAN [23] for high-resolution
images were proposed. In addition, Yu et al.[24] introduced SeqGAN as a method to gener-
ate sequences such as text or music using policy gradient techniques. Although their work
may appear similar to ours, our GAN does not focus on sequence generation. Moreover, as
an extension of GANs, Donahue et al. [25] proposed adversarial feature learning for em-
bedding images into vectors, Schlegl et al. [26], Zenati et al. [27], and Deecke et al. [28]
proposed anomaly detection based on GANs. Wasserstein GAN (WGAN) [29] was sug-

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 3

gested based on the discussion of the learning stability of GANs [30], which our study is
based on. To stabilize the WGAN, various techniques have been proposed, such as gradient
penalty [31] and spectral normalization [32]. In our study, we have chosen to use spectral
normalization as a means to achieve this stabilization.

3 Models

3.1 Policy Gradient Stock GAN (PGSGAN)

The PGSGAN leverages historical data and current conditions to generate the next order
in financial markets. It is built upon the GAN framework [13] and incorporates the policy
gradient theorem [33, 34, 35].

More specifically, our approach is based on the Wasserstein GAN (WGAN) [29]. We
employ the REINFORCE algorithm [36] with a baseline as the policy gradient algorithm.
To enhance the performance of our neural network, we utilize a convolutional neural net-
work (CNN) architecture.

In order to stabilize the learning process, several normalization techniques are em-
ployed. Batch normalization [37], layer normalization [38], and spectral normalization [32]
are utilized in our model. These techniques play a crucial role in improving the stability
and efficiency of the learning process.

3.1.1 PGSGAN Architecture

Condition
(H

istorical D
ata)

Random Seed

Generator

Policy Fake Order

Real Order

Sampling

Critic Output

Figure 1: The outline of PGSGAN

Figure 1 indicates the outline of our PGSGAN.
The generators in our experiments have the capability to process conditional data, which

consists of historical market data. They also require random seeds as input for generating
fake order data. Specifically, the conditional data includes the previous 20 order time series
as well as the current best sell and buy prices.

The order time series provides information such as whether it is a buy or sell order, if
it is a new order or a cancellation, whether it is a market order, the price relative to the best
price, the volume (scaled by dividing it with the minimum volume unit), and the best prices
before the order is placed.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi4

To initialize the generation process, a random seed is generated with 128 dimensions.
This seed is used by the generator to create a policy that determines how the next fake
order will be generated. In our experiments, the generator utilizes 14 convolutional layers
followed by 5 linear layers (explains the details later) to generate the following policy:

• Sell or Buy – 2 classes (probability)

• New or Cancel – 2 classes (probability)

• is a market order? (Is MO) – 2 classes (probability)

• relative price (ticks from the best price) – 40 classes (probabilities for 0 – 39) 1

• volume (scaled by dividing by minimum volume unit) – 40 classes (probabilities for
0 – 39)1

Once the generator has computed the probabilistic policy, it proceeds to generate a fake
next order using weighted sampling based on this policy.

On the other hand, the critic has a different role and is designed to map inputs into a
scalar value while satisfying the 1-Lipschitz constraint. This constraint is similar to the one
used in the basic Wasserstein GAN (WGAN) framework.

The critic in our experiments takes two inputs: the conditional data (same as used by
the generator), and either the generated fake next order or the real next order. To ensure
consistency, real next orders are also transformed into the same range as the generated fake
orders, as described earlier.

In this transformation process, only the price and volume of the real data are mapped
into the range of 0-39 (integer values). However, if the real order is a market order, the price
value is specifically set to 0.

3.1.2 PGSGAN Learning Mechanism

The sampling process in PGSGAN, which generates a fake order based on a generated
policy, results in a loss of the gradient connection between the generator and the critic. The
traditional GANs, including those designed for stock markets, heavily rely on the gradient
connection between their generator and critic for training the generator effectively.

Given this lack of gradient connection, our PGSGAN diverges from the traditional
learning theory typically used for generator training. Instead, we adopt a new learning
approach for the generator using the policy gradient method, which is widely utilized in the
field of reinforcement learning.

In the subsequent discussion, we will use the following notations:

• z: random variables (seed for generator. In our experiment, z ∈ R128.)

• Pz: the distribution of random variables

• Pr: the distribution of real data

1When the value is equal or more than 40, it was regarded as 40th class. Although these cases (40 ticks
over or more than 4000 shares) could happen, the percentages are very limited in TSE. Moreover, these cases
usually occurred by events outside markets themselves; thus, we ignore the detailed modeling of these cases in
this study.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 5

• C(x): the critic as a function. The output is scalar. Here, x is a given input from the
outside.2

• G(z): the generator as a function. The output is a policy. Usually, the generator
accepts random seeds.2

• x̃∼ G(z): the sampled fake order x̃ follows the policy generated by G(z).

• θC,θG: params in the critic and generator, respectively.

• LC,LG: loss function for the critic and generator.

• || f ||L≤1: 1-Lipschitz constraint for any function f .

• pG(z)(x̃): probability for the sampled fake order x̃ according to the generated policy
G(z).

• NLLG(z)(x̃): negative log-likelihood for the sampled fake order x̃ according to the
generated policy G(z). NLLG(z)(x̃) =− ln{pG(z)(x̃)}.

At first, PGSGAN will solve the following minimax game:

min
G

max
||C||L≤1

LGAN(G,C), (1)

where

LGAN(G,C) := Ex∼Pr [C(x)]−Ez∼Pz

[
Ex̃∼G(z) [C(x̃)]

]
.

This form is similar to the original form of WGAN. However, the sampling term Ex̃∼G(z)
has been added. This change is substantial for generator learning.

For the critic, the objective function is

max
||C||L≤1

{
Ex∼Pr [C(x)]−Ex̃∼G(z) [C(x̃)]

}
(2)

because the generator and its seeds do not matter to the critic. Thus, the loss function for
the critic is:

LC := Ex̃∼G(z) [C(x̃)]−Ex∼Pr [C(x)] . (3)

These are the same as WGAN because the generator does not matter for the critic; only the
fake data affect the critic.

In contrast, the learning theory for the generator is complicated. The outline of the
learning is shown in Figure 2.

The generator’s objective function is:

min
G

{
Ex∼Pr [C(x)]−Ez∼Pz

[
Ex̃∼G(z) [C(x̃)]

]}
. (4)

Like the original WGAN, the first term of this equation is unchangeable for the generator.
Thus, the objective function is re-written as:

max
G

Ez∼Pz

[
Ex̃∼G(z) [C(x̃)]

]
. (5)

2Correctly, it also accepts conditional data, but it is ignored in this notation for simplicity.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi6

Condition
(H

istorical D
ata)

Random Seed

Generator

Policy Fake Order

Real Order

Sampling

Critic Output

Reinforcement Learning Framework

Environment

Rewards
Rewards

Figure 2: Outline of a generator’s learning in terms of a reinforcement learning (RL) frame-
work

This objective function cannot be converted into a backpropagation of a neural network
because of the lack of gradient connection for the generator. Thus, here, we employ RE-
INFORCE, one of the policy gradient methods, as a learning algorithm from reinforcement
learning.

As Figure 2 shows, the form of the generator can be thought of as reinforcement learn-
ing, in which the generator is an actor pursuing higher rewards and generating a policy for
action. Then, according to the generated policy, an action is taken: making fake orders.
Through the unknown environment, then, the action makes a reward: the output from the
critic. Finally, according to the rewards, the actor, that is, the generator, is updated.

According to REINFORCE, the parameter is updated as:

θ ← θ +α ·G∇θ lnπθ (a|s), (6)

where θ is model parameter, α is the learning rate, G is the return (usually the sum of
discounted future rewards; however, in this study, just upcoming reward itself caused by
action a), πθ (a|s) is a probability of action a under the state s according to the current
policy πθ . By introducing baseline, equation 6 is changed to

θ ← θ +α · (G−B)∇θ lnπθ (a|s), (7)

where B is the baseline. (In this study, we employ mean of G in one batch.)
By applying REINFORCE for PGSGAN, the parameter update of the generator is:

θG← θG +α(C(x̃)−B)∇θG ln pG(z)(x̃), (8)

where x̃ ∼ G(z), z ∼ Pz, and B is the mean of C(x̃) among a learning batch. Thus, the loss
function for the generator is defined as:

LG := −(C(x̃)−B) ln pG(z)(x̃) (9)

= (C(x̃)−B) ·NLLG(z)(x̃). (10)

Therefore, the generator is enabled to learn.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 7

3.1.3 Additional Notes and Actual Implementation for PGSGAN

In PGSGAN, we employ spectral normalization [32] in all layers, which is required to
realize 1-Lipschitz constraint in critics. However, for learning stability, we use it also in the
generator.

The layers processing the conditional data in both the generator and the critic have the
same architecture; however, they are trained separately and not shared.

In our implementation (including the common architectures for conditional data, which
has 44,750 parameters), the number of parameters in the critic and generator are 113,071
and 141,625, respectively. The detailed implementations are shown in Figures 3 and 4.

History (20 x 7)

Unflatten
20 x 7

Conv2d (kernel 3x3)
1 x 20 x 7

BatchNorm2d
3 x 18 x 5

ReLU
3x 18 x 5

Conv2d (kernel 3x3)
3 x 18 x 5

BatchNorm2d
9 x 16 x 3

ReLU
9 x 16 x 3

Conv2d (kernel 3x3)
9 x 16 x 3

BatchNorm2d
64 x 14 x 1

ReLU
64 x 14 x 1

Flatten
64 x 14 x 1

Conv1d (kernel 3)
64 x 14

BatchNorm1d
64 x 12

AvgPool1d (kernel 3)
64 x 12

Conv1d (kernel 3)
64 x 10

BatchNorm1d
64 x 8

AvgPool1d (kernel 3)
64 x 8

Conv1d (kernel 3)
64 x 6

BatchNorm1d
64 x 4

AvgPool1d (kernel 3)
64 x 4

Flatten
64 x 2

Current Best Price (2)

Linear
2

LayerNorm
16

ReLU
16

Concat
16

Unflatten
144 = 128 + 16

Conv1d (kernel 9, dilation16)
1 x 144 (128 + 16)

BatchNorm1d
64 x 16

ReLU
64 x 16

Conv1d (kernel 3, circ pad 1)
64 x 16

BatchNorm1d
4 x 16

ReLU
4 x 16

Flatten
4 x 16

128

Linear
64

LayerNorm
128

Fake seed (128)

ReLU
128

Stack
128

Conv1d (kernel 3, circ pad 1)
2 x 128

128

BatchNorm1d
64 x 128

ReLU
64 x 128

Conv1d (kernel 3, stride2)
64 x 128

BatchNorm1d
64 x 63

ReLU
64 x 63

Conv1d (kernel 3, stride2)
64 x 63

BatchNorm1d
64 x 31

ReLU
64 x 31

Conv1d (kernel 3, stride2)
64 x 31

BatchNorm1d
64 x 15

ReLU
64 x 15

Conv1d (kernel 3, stride2)
64 x 15

BatchNorm1d
64 x 7

ReLU
64 x 7

Conv1d (kernel 3, stride2)
64 x 7

BatchNorm1d
64 x 3

ReLU
64 x 3

Flatten
64 x 3

Linear
192

LayerNorm
64

ReLU
64

Linear
64

LayerNorm
8

ReLU
8

Linear
8

Buy/Sell (Logit)
1

Linear
64

LayerNorm
8

ReLU
8

Linear
8

New/Cancel (Logit)
1

Linear
64

LayerNorm
8

ReLU
8

Linear
8

Is MO (Logit)
1

Linear
64

LayerNorm
52

ReLU
52

Linear
52

Price class (Logits)
40

Linear
64

LayerNorm
52

ReLU
52

Linear
52

Volume class (Logits)
40

64

Conditional Layer

Figure 3: The detailed architectures of the generator

Figure 3 shows the details of our generator. In our model, we utilize Convolutional
Neural Networks (CNNs) as the foundational architecture. The conditional layer, which is
responsible for processing the historical data, incorporates average pooling. This is because
in high-frequency trading, the sequence of certain orders may not be as significant. By
employing average pooling, these orders can be buffered effectively.

After concatenating the processed historical data with the current best price, we apply
dilated convolution and circled convolution. These techniques are utilized to ensure an

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi8

History (20 x 7)

Unflatten
20 x 7

Conv2d (kernel 3x3)
1 x 20 x 7

BatchNorm2d
3 x 18 x 5

ReLU
3x 18 x 5

Conv2d (kernel 3x3)
3 x 18 x 5

BatchNorm2d
9 x 16 x 3

ReLU
9 x 16 x 3

Conv2d (kernel 3x3)
9 x 16 x 3

BatchNorm2d
64 x 14 x 1

ReLU
64 x 14 x 1

Flatten
64 x 14 x 1

Conv1d (kernel 3)
64 x 14

BatchNorm1d
64 x 12

AvgPool1d (kernel 3)
64 x 12

Conv1d (kernel 3)
64 x 10

BatchNorm1d
64 x 8

AvgPool1d (kernel 3)
64 x 8

Conv1d (kernel 3)
64 x 6

BatchNorm1d
64 x 4

AvgPool1d (kernel 3)
64 x 4

Flatten
64 x 2

Current Best Price (2)

Linear
2

LayerNorm
16

ReLU
16

Concat
16

Unflatten
144 = 128 + 16

Conv1d (kernel 9, dilation16)
1 x 144 (128 + 16)

BatchNorm1d
64 x 16

ReLU
64 x 16

Conv1d (kernel 3, circ pad 1)
64 x 16

BatchNorm1d
4 x 16

ReLU
4 x 16

Flatten
4 x 16

128

Linear
64

LayerNorm
64

Real/Fake (5)

ReLU
64

Stack
64

Conv1d (kernel 3, circ pad 1)
2 x 64

64

BatchNorm1d
64 x 64

ReLU
64 x 64

Conv1d (kernel 3, stride2)
64 x 64

BatchNorm1d
64 x 31

ReLU
64 x 31

Conv1d (kernel 3, stride2)
64 x 31

BatchNorm1d
64 x 15

ReLU
64 x 15

Conv1d (kernel 3, stride2)
64 x 15

BatchNorm1d
64 x 7

ReLU
64 x 7

Conv1d (kernel 3, stride2)
64 x 7

BatchNorm1d
64 x 3

ReLU
64 x 3

Flatten
64 x 3

Linear
192

LayerNorm
64

ReLU
64

Linear
64

LayerNorm
8

ReLU
8

Linear
8

Hinge Loss
8

Conditional Layer

LayerNorm
5

ReLU
64

Stack
64

Figure 4: The detailed architectures of the critic

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 9

equal mixing of the two inputs. Dilated convolution, as introduced in [39], allows us to
expand the receptive field of the convolutional layer, capturing broader context information.
The circled convolution aids in mixing the concatenated inputs thoroughly.

For the output of our model, we employ logits. This choice is convenient for subsequent
calculation and analysis. The loss function for the generator is calculated as

LG := −(C(x̃)−B) lnPG(z)(x̃) (11)

= (C(x̃)−B) ·NLLG(z)(x̃). (12)

Thus, for compatibility of the negative log-likelihood (NLL), the logits are best for less
computational error. For making actual policies, these logits are put into sigmoid or soft-
max.

As mentioned above, we also set sell/buy, new/cancel, and whether the order is market
order (MO), as two classes of output. However, for the convenience of calculation, the
outputs have one class. Thus, for making the policy, we convert them into two classes.
Moreover, in all layers, spectral normalization [32] is applied.

Contrary, Figure 4 shows the details of the critic. Basic architectures of the critic are
almost the same as the generator, except for the final layers and each dimension.

3.2 Policy Gradient Stock GAN with Hinge Loss (PGSGAN-HL)

Condition
(H

istorical D
ata)

Random Seed

Generator

Policy Fake Order

Real Order

Sampling

Critic Hinge
Loss

Output

Figure 5: The outline of PGSGAN-HL

We also implement the PGSGAN with Hinge loss as shown in Figure 5. Originally,
Hinge loss was used in WGAN in Geometric GAN [40].

Hinge loss is defined as
max(x+1,0) (critic training for fake data)
max(1− x,0) (critic training for real data)
x (generator training)

(13)

and insert into the last of the critic layers.
The others are the same as PGSGAN.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi10

3.3 Comparative Models

3.3.1 Stock GAN (S-GAN)

Stock GAN (S-GAN) was proposed by [1], and based on WGAN-GP [31].
In our study, we aim to replicate S-GAN as a comparative baseline. However, to ensure

a fair evaluation, we modify certain parts of its architecture. The modifications are as
follows:

• Deletion of Continuous Double Auction (CDA) network: The original S-GAN model
incorporated a CDA network to update the best prices after receiving a new order.
However, since our study assumes access to comprehensive market data, there is no
need for the CDA network’s best price estimation. Hence, we remove this network
from our model.

• Deletion of time signal: The original S-GAN model included a time signal input,
which aimed to identify the specific time of the day when an order was placed. It
divided the day into 24 classes for this purpose. However, the stock exchange we are
focusing on, the Tokyo Stock Exchange (TSE), operates with only 2.5-hour sessions
(two sessions per day). Consequently, the need for the time signal input is eliminated,
and we remove it from our model.

• Change in price processing: In the original S-GAN model, absolute price values
were used because it was designed for generating data over a relatively short period,
assuming approximately one day. However, in our study, we target much longer
periods, extending over half a year. To address this, we modify the price inputs
to represent ticks from the best price, thereby normalizing them and accounting for
relative price movements.

• Deletion of time since the previous order: In the tick-time scale, the arrival interval
between orders should be modeled separately since some orders can be published
simultaneously, and the sequence or interval might not be significant. However, to
simplify the problem and focus on our specific objectives, we ignore the prediction
of the order arrival interval.

While we make these modifications, the remaining parts of the S-GAN architecture remain
unchanged.

However, unlike other models, we set the total learning epochs of S-GAN to half of that
for others (About the learning epoch, we have explained the learning epoch in the experi-
ments section). This is because S-GAN employed gradient penalty [31] for 1-Lipschitz con-
straint. Gradient penalty requires an additional backpropagation for calculating the penalty
in the loss. Thus, it requires more computational resources than others.

Moreover, we converted generated output to discrete values for fair evaluation by just
rounding in the evaluation phase because the generated output is continuous numbers.

3.3.2 DCGAN

In addition to replicating the S-GAN model, we also include another well-known compara-
tive model called DCGAN.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 11

The DCGAN is based on CNN architecture and is capable of generating orders with
continuous values, similar to the S-GAN model. However, in order to ensure a fair com-
parison between the models, we convert the generated output of the DCGAN to discrete
values, just like in the S-GAN.

The overall architecture of DCGAN consists of deep convolutional layers, with the
generator network responsible for generating fake orders and the critic network used to
distinguish between real and generated orders.

By including DCGAN as another comparative model, we can assess its performance
alongside S-GAN and gain a better understanding of their respective strengths and weak-
nesses in generating fake orders.

4 Experiments

In our experiments, we randomly select 10 stocks for evaluation purposes under the specific
criteria. These criteria focused on stocks listed on the Tokyo Stock Exchange (TSE), which
is the primary target of our study.

The first criterion was that the stocks must be included in the Nikkei 225 index. The
Nikkei 225 3 is a major index in the TSE and consists of stocks that are carefully selected
based on criteria such as liquidity and sector balance. These stocks are traded frequently and
provide the necessary liquidity for generating realistic tick-scale orders. The composition
of the Nikkei 225 index is periodically updated, and stocks may be replaced if they are
delisted or during the annual renewal in October.

The second criterion was that the selected stocks should not be included in the TOPIX
100 index. The TOPIX 100 is another major index maintained by the Japan Exchange
Group 4. It comprises the top 100 stocks with high liquidity and market value in the TSE.
These stocks have a special status in terms of trading rules, with a smaller minimum order
price unit (price tick size). Due to the challenges and computational resources required to
model these special stocks, we decided to exclude them from our study.

The third criterion was that the chosen stocks should be included in the TOPIX 225
index but not in the TOPIX 100 index consistently during the 2018-2020 period. This
criterion is important as changes in index inclusion or exclusion can significantly impact
trading volume.

The final criterion was that the selected stocks should have the same price tick size
throughout the specified data periods. In the TSE, the price tick size changes based on the
price range of the stock. It typically changes at price levels of N× 10M (N = 1,3,5, and
M = 3,4,5,6,7). Due to current technological limitations, our model cannot account for
changes in price tick size. Thus, we opted for stocks that maintained a consistent price tick
size throughout the data periods, ensuring compatibility with our model.

By adhering to these criteria, we aimed to select a diversified set of stocks that would
enable us to evaluate the performance of our models effectively.

As a data period, we employed January – September in 2019, because we avoid the
periodical updates of indices. Nikkei 225 is periodically renewed on the every first business
day of August, and TOPIX 100 on every last business day of August.

According to these criteria, we obtain 81 stocks. Only 125 stocks are included in Nikkei
225 and not in TOPIX 100. Thus, candidates for random selection are more than half of the

3https://indexes.nikkei.co.jp/en/nkave/index/profile?idx=nk225
4https://www.jpx.co.jp/english/markets/indices/topix/

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi12

stock candidates. From these 81 stocks, we choose 10 at random, which is shown in Table
1. The data are split as train:valid:test = 8:1:1 in temporal sequence.

Table 1: Selected Stocks
Ticker Name Classification (by Bloomberg) # of orders in data

5901 JP Toyo Seikan Group Holdings, Ltd. Containers & Packaging 6,569,563
5333 JP NGK Insulators, Ltd. Auto Parts 6,077,554
8355 JP Shizuoka Bank, Ltd. Banks 5,307,488
5631 JP Japan Steel Works, Ltd. Other Machinery & Equipment 6,787,814
9532 JP Osaka Gas Co., Ltd. Gas Utilities 7,914,464
7012 JP Kawasaki Heavy Industries Diversified Industrials 9,122,778
2501 JP Sapporo Holdings, Ltd. Alcoholic Beverages 4,852,475
4005 JP Sumitomo Chemical Co., Ltd. Basic & Diversified Chemicals 6,319,126
7752 JP Richo Co. Ltd. Consumer Electronics 6,942,513
7911 JP Toppan Inc. Printing Services 6,057,922

The scale of data processed in this study is substantial, with the total volumes of tick
data exceeding 65 million, as shown in Table 1.

This surpasses the data size used in previous prominent works such as S-GAN [1]. In
the S-GAN study, the experiment was conducted using only two selected stocks: Alphabet
Inc. (GOOG) and Patriot National Bancorp Inc. (PNBK). GOOG had a dataset consist-
ing of 230,000 orders, while PNBK had a much smaller dataset with only 20,000 orders.
Moreover, the testing duration for S-GAN was limited to nearly one day.

In contrast, our study spans longer periods, specifically 9 months, and incorporates sig-
nificantly larger datasets. To accommodate the processing of such vast amounts of data,
we developed a backend data preprocessing server using Golang, while the deep learning
tasks were handled by a PyTorch-based Python program. These two components commu-
nicate using gRPC over a 10G Ethernet connection, facilitating efficient data transfer and
processing between them.

By utilizing a combination of optimized data infrastructure and efficient deep learning
frameworks, we were able to handle the substantial data size and duration required for our
study effectively.

The test task is the next order generation. The generation of a long time series is also
a repetition of the prediction of the next order. For simplification, we narrow it down
to the generation of the next order. This is partially reasonable because there has been
no research on generating only long order time series, but it should be addressed in fu-
ture work. For PGSGAN, we calculate and inspect the negative log-likelihood (NLL) for
real order and the entropy of the generated policy. The NLL is NLLG(z)(x) where x is
the real order. This shows how the generator policy successfully fits the real order. Al-
though a low NLL indicates a better fit with the real data, a complete fit is not benefi-
cial as a generator. Thus, our experiments use the log-likelihood as one index for check
learning status, but do not pursue the lowest NLL. Theoretically, the by-chance NLL is
− ln{1/(2×2×2×40×40)} ≈ 9.45. On the contrast, the entropy is defined as

H(G(z)) := ∑x∈X−pG(z)(x) log2 pG(z)(x), (14)

where X is all order classes. This entropy indicates how well the generator policy is learned.
If the policy is learned well, the probability of each class of the generated policy will be
well skewed. Therefore, this index is useful for checking the convergence of PGSGAN.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 13

Theoretically, the by-chance entropy is

∑
x∈X
− 1

2×2×2×40×40
log2

1
2×2×2×40×40

(15)

= log2 (2×2×2×40×40)≈ 13.64. (16)

where X is all order class.
Moreover, we also compare the distribution of generated and real orders, for all the

orders. Here, we employ Kullback–Leibler divergence (KLD) [41] and Mean Square Error
(MSE) for all classes (2×2×2×40×40). Kullback–Leibler divergence is defined as:

DKL(P,Q) = ∑x∈X P(x) log2 (P(x)/Q(x)), (17)

where X is all order class, and P(x) and Q(x) indicate the probability of the real orders
and the generated orders for class x, respectively. Even though P(x) log2 (P(x)/Q(x)) is
calculated as 0 when P(x) = (Q(x) =) 0, KLD would be infinity if ∃x,P(x) ̸= 0,Q(x) = 0
due to some reasons, such as mode collapse of generator. Moreover, for DCGAN and S-
GAN, because the generated output is continuous numbers, we round the output to translate
into the discreate values. Because the generated output should be different based on random
seeds, we evaluate the generator 100 times with different seeds in each situation in test data.

As experiments settings, we employ a batch size of 2048, 5000 epochs maximum, the
learning rate (both the generator and critic) of 10−5, and the Adam optimizer. Moreover,
the balance of learning chance of the generator and critic (two time-scale update rule [42])
is set to 1 : 5. In addition, to improve computational efficiency, models are saved for every
10 epochs, and only those models could be used for tests.

5 Results

The results of the Kullback-Leibler Divergence (KLD) and Mean Squared Error (MSE)
between fake and real distributions are presented in Tables 2 and 3, respectively. Each
row corresponds to a randomly selected ticker representing a listed company. The best
performances for each ticker are indicated in bold. It is worth noting that both S-GAN and
DCGAN exhibit no finite KLD due to a mentioned reason.

Regarding the KLD metric, the performance of PGSGAN and PGSGAN-HL varies
across different tickers. However, our proposed models consistently outperform the oth-
ers. All models achieve successful MSE measurements. Based on the MSE results, our
PGSGAN-HL demonstrates superior performance across all selected tickers. Furthermore,
PGSGAN also outperforms S-GAN and DCGAN for all tickers.

Previous studies have shown that S-GAN outperformed DCGAN. However, when com-
pared to our proposed model, the performance of S-GAN is significantly limited.

To further inspect details of the distribution comparison, as shown in Figures 6 – 15, we
also make detailed figures of the generated orders’ distributions.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi14

Ta
bl

e
2:

A
ll

th
e

re
su

lts
of

K
L

D
Ti

ck
er

PG
SG

A
N

(K
L

D
)

PG
SG

A
N

-H
L

(K
L

D
)

S-
G

A
N

(K
L

D
)

D
C

G
A

N
(K

L
D

)
59

01
JP

0.
20

84
67
±

0.
00

01
07

0.
16

88
23
±

0.
00

01
28

∞
±

N
aN

∞
±

N
aN

53
33

JP
0.

25
74

79
±

0.
00

01
21

0.
20

37
60
±

0.
00

01
21

∞
±

N
aN

∞
±

N
aN

83
55

JP
0.

13
66

12
±

0.
00

00
71

0.
13

99
55
±

0.
00

00
61

∞
±

N
aN

∞
±

N
aN

56
31

JP
0.

21
53

76
±

0.
00

00
64

0.
20

91
26
±

0.
00

00
77

∞
±

N
aN

∞
±

N
aN

95
32

JP
0.

19
89

47
±

0.
00

00
53

0.
19

08
06
±

0.
00

00
78

∞
±

N
aN

∞
±

N
aN

70
12

JP
0.

15
00

13
±

0.
00

00
67

0.
13

88
01
±

0.
00

00
96

∞
±

N
aN

∞
±

N
aN

25
01

JP
0.

24
33

55
±

0.
00

01
08

0.
21

67
68
±

0.
00

01
73

∞
±

N
aN

∞
±

N
aN

40
05

JP
0.

13
61

36
±

0.
00

00
53

0.
14

46
42
±

0.
00

00
71

∞
±

N
aN

∞
±

N
aN

77
52

JP
0.

16
44

98
±

0.
00

00
36

0.
12

32
95
±

0.
00

00
46

∞
±

N
aN

∞
±

N
aN

79
11

JP
0.

22
83

41
±

0.
00

00
83

0.
20

30
80
±

0.
00

01
07

∞
±

N
aN

∞
±

N
aN

Ta
bl

e
3:

A
ll

th
e

re
su

lts
of

M
SE

Ti
ck

er
PG

SG
A

N
(M

SE
)

PG
SG

A
N

-H
L

(M
SE

)
S-

G
A

N
(M

SE
)

D
C

G
A

N
(M

SE
)

59
01

JP
0.

00
04

79
±

0.
00

00
03

0.
00

03
86
±

0.
00

00
03

0.
01

97
59
±

0.
00

00
53

0.
14

89
68
±

0.
00

00
05

53
33

JP
0.

00
21

64
±

0.
00

00
02

0.
00

09
45
±

0.
00

00
05

0.
00

46
11
±

0.
00

00
11

0.
14

32
41
±

0.
00

00
07

83
55

JP
0.

00
05

05
±

0.
00

00
02

0.
00

03
92
±

0.
00

00
01

0.
01

23
47
±

0.
00

00
18

0.
09

39
50
±

0.
00

00
16

56
31

JP
0.

00
04

99
±

0.
00

00
02

0.
00

04
32
±

0.
00

00
03

0.
02

72
00
±

0.
00

00
35

0.
10

74
52
±

0.
00

00
26

95
32

JP
0.

00
03

00
±

0.
00

00
00

0.
00

02
78
±

0.
00

00
03

0.
03

03
83
±

0.
00

00
29

0.
14

54
81
±

0.
00

00
11

70
12

JP
0.

00
03

32
±

0.
00

00
03

0.
00

02
57
±

0.
00

00
03

0.
02

00
80
±

0.
00

00
42

0.
14

51
00
±

0.
00

00
03

25
01

JP
0.

00
04

28
±

0.
00

00
02

0.
00

03
91
±

0.
00

00
03

0.
01

49
47
±

0.
00

00
39

0.
14

63
45
±

0.
00

00
12

40
05

JP
0.

00
05

12
±

0.
00

00
04

0.
00

03
93
±

0.
00

00
03

0.
01

47
15
±

0.
00

00
17

0.
10

96
29
±

0.
00

00
09

77
52

JP
0.

00
08

66
±

0.
00

00
03

0.
00

06
91
±

0.
00

00
04

0.
00

94
58
±

0.
00

00
15

0.
14

14
00
±

0.
00

00
05

79
11

JP
0.

00
05

80
±

0.
00

00
03

0.
00

04
73
±

0.
00

00
04

0.
01

92
75
±

0.
00

00
29

0.
10

76
08
±

0.
00

00
12

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 15

PGGAN 5901 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.492

0.494

0.496

0.498

0.500

0.502

0.504

0.506

0.508

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 3

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

PGGAN-HL 5901 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.485

0.490

0.495

0.500

0.505

0.510

0.515

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 3

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

S-GAN 5901 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.3

0.4

0.5

0.6

0.7

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

Not generated
 in this model

DCGAN 5901 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.492

0.494

0.496

0.498

0.500

0.502

0.504

0.506

0.508

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 3

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0
p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

Figure 6: The results of real and fake data distribution from each models in 5901 JP. An
example of the distribution of real (blue) and generated fake (orange) data. From left to
right, each box shows the distribution of sell/buy, new/cancel, MO (or not), price (ticks from
the opposite best price), and volume (divided by the minimum volume). In the leftmost box,
0.0 and 1.0 in the horizontal axis correspond to sell and buy, respectively. In the second left
box, 0.0 and 1.0 correspond to new and cancel, respectively. In the middle box, 0.0 and 1.0
correspond to non-MO and MO, respectively. In the vertical direction, only the model is
different; therefore, the real data (blue) is the same; only the vertical axis scale is different.

According to the figure, the failure in reproducing the volume and price distributions in
DCGAN is notable.

Further, the failure in reproducing the tiny bumps in the price and volume distributions
of S-GAN is interesting. Unlike PGSGAN/PGSGAN-HL, S-GAN has smoother distribu-
tions of price and volumes, which is the bigger difference from the real distribution than
PGSGAN/PGSGAN-HL

6 Discussion

Our models not only outperform previous studies, but their superiority also suggests that
implementing policy gradient in GANs for stock markets is beneficial. By adhering to the
given rules of financial markets, it is more reasonable to map to a discrete space rather than
a continuous one.

To handle the discrete nature of the problem, we utilize policy gradient to bridge the
gradient gap between the generator and the critic. As supported by the theoretical dis-
cussion, we successfully incorporate the policy gradient into the GAN framework through
experimental validation.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi16

PGGAN 5333 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.48

0.49

0.50

0.51

0.52

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

p

real
fake

PGGAN-HL 5333 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

p

real
fake

S-GAN 5333 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p

real
fake

Not generated
 in this model

DCGAN 5333 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

Figure 7: The results of real and fake data distribution from each models in 5333 JP.

PGGAN 8355 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.48

0.49

0.50

0.51

0.52

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p

real
fake

PGGAN-HL 8355 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.485

0.490

0.495

0.500

0.505

0.510

0.515

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p

real
fake

S-GAN 8355 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.35

0.40

0.45

0.50

0.55

0.60

0.65

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p

real
fake

Not generated
 in this model

DCGAN 8355 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

p

real
fake

Figure 8: The results of real and fake data distribution from each models in 8355 JP.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 17

PGGAN 5631 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.497

0.498

0.499

0.500

0.501

0.502

0.503

p real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

real
fake

PGGAN-HL 5631 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.494

0.496

0.498

0.500

0.502

0.504

0.506

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

real
fake

S-GAN 5631 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.3

0.4

0.5

0.6

0.7

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

real
fake

Not generated
 in this model

DCGAN 5631 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.44

0.46

0.48

0.50

0.52

0.54

0.56

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

p

real
fake

Figure 9: The results of real and fake data distribution from each models in 5631 JP.

PGGAN 9532 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

PGGAN-HL 9532 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

S-GAN 9532 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

Not generated
 in this model

DCGAN 9532 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

Figure 10: The results of real and fake data distribution from each models in 9532 JP.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi18

PGGAN 7012 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

PGGAN-HL 7012 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.485

0.490

0.495

0.500

0.505

0.510

0.515

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575
p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

S-GAN 7012 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.35

0.40

0.45

0.50

0.55

0.60

0.65

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

Not generated
 in this model

DCGAN 7012 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

Figure 11: The results of real and fake data distribution from each models in 7012 JP.

PGGAN 2501 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.492

0.494

0.496

0.498

0.500

0.502

0.504

0.506

0.508

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.44

0.46

0.48

0.50

0.52

0.54

0.56

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 3

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

real
fake

PGGAN-HL 2501 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.48

0.49

0.50

0.51

0.52

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 3

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

real
fake

S-GAN 2501 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

Not generated
 in this model

DCGAN 2501 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.4900

0.4925

0.4950

0.4975

0.5000

0.5025

0.5050

0.5075

0.5100

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.44

0.46

0.48

0.50

0.52

0.54

0.56

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 3

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

Figure 12: The results of real and fake data distribution from each models in 2501 JP.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 19

PGGAN 4005 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

p

real
fake

PGGAN-HL 4005 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.490

0.495

0.500

0.505

0.510

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

p

real
fake

S-GAN 4005 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.3

0.4

0.5

0.6

0.7

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.35

0.40

0.45

0.50

0.55

0.60

0.65

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

p

real
fake

Not generated
 in this model

DCGAN 4005 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.46

0.48

0.50

0.52

0.54

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

p

real
fake

Figure 13: The results of real and fake data distribution from each models in 4005 JP.

PGGAN 7752 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.48

0.49

0.50

0.51

0.52

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p

real
fake

PGGAN-HL 7752 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.48

0.49

0.50

0.51

0.52

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p

real
fake

S-GAN 7752 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.35

0.40

0.45

0.50

0.55

0.60

0.65

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.40

0.45

0.50

0.55

0.60

p real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p

real
fake

0 10 20 30 40
volumes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

p

real
fake

Not generated
 in this model

DCGAN 7752 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

1.0

p

real
fake

Figure 14: The results of real and fake data distribution from each models in 7752 JP.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi20

PGGAN 7911 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.4900

0.4925

0.4950

0.4975

0.5000

0.5025

0.5050

0.5075

0.5100

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

p

real
fake

PGGAN-HL 7911 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.4900

0.4925

0.4950

0.4975

0.5000

0.5025

0.5050

0.5075

0.5100

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575
p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

0.5

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

p

real
fake

S-GAN 7911 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.40

0.45

0.50

0.55

0.60

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
price (ticks)

0.0

0.1

0.2

0.3

0.4

p

real
fake

0 10 20 30 40
volumes

0.0

0.1

0.2

0.3

0.4

p

real
fake

Not generated
 in this model

DCGAN 7911 JP

0.0 0.2 0.4 0.6 0.8 1.0
buy/sell

0.4900

0.4925

0.4950

0.4975

0.5000

0.5025

0.5050

0.5075

0.5100

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
New/Cancel

0.425

0.450

0.475

0.500

0.525

0.550

0.575

p

real
fake

0.0 0.2 0.4 0.6 0.8 1.0
Is MO

10 2

10 1

100

p

real
fake

0 10 20 30 40
price (ticks)

0.0

0.2

0.4

0.6

0.8

p

real
fake

0 10 20 30 40
volumes

0.0

0.2

0.4

0.6

0.8

p

real
fake

Figure 15: The results of real and fake data distribution from each models in 7911 JP.

0 100 200 300 400
epoch

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
ss

(G
)

0 100 200 300 400
epoch

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
ss

(C
)

0 100 200 300 400
epoch

6

7

8

9

nl
l

0 100 200 300 400
epoch

0

2

4

6

8

10

12

14

en
tro

py

0 100 200 300
epoch

0.000

0.005

0.010

0.015

0.020

M
SE

0 100 200 300
epoch

0.5

1.0

1.5

2.0

2.5

3.0

KL
D

Figure 16: An example of the metrics in the learning process. (PGSGAN 5901 JP) From
upper left to upper right, each box shows the loss of generator, loss of critic, and NLL
(NLLG(z)(x) where x is the real order), respectively. From lower left to lower right, each
box shows the entropy of generated policy, the MSE between real and fake distributions,
and the KLD between them, respectively. Horizontal axis represents epochs. Blue and
orange lines correspond to train and valid results, respectively. The MSE and KLD are
calculated only in the valid data. Moreover, a broken red line means the by-chance level
explained previously.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 21

To validate the importance of monitoring the learning status using generated policy
entropy, we conducted experiments and plotted the metrics during the learning process of
PGSGAN (as shown in Figure 16). It became evident that the loss values of the generator
and critic were not suitable for monitoring the learning status because those losses have
adversarial and relative nature. This is consistent with other GAN models, which often rely
on external tasks to evaluate the learning progress.

In the case of image generation, metrics such as the Inception Score [43] and Fréchet
Inception Distance [42] have been introduced to assess the learning status. However, defin-
ing such external tasks for evaluating the learning status can be challenging, especially in
financial markets.

In our experiments shown in Figure 16, we observed that the entropy of the generated
policy exhibited similar patterns to the MSE and KLD results, suggesting that the entropy
can serve as a useful metric for monitoring the learning status.

While it is crucial for the generator to produce a distribution similar to the real dis-
tribution, this alone is not sufficient to determine the quality of the generator. As shown
in our results, PGSGAN exhibits a better fake distribution that closely resembles the real
distribution compared to other models. However, there is a risk of mode collapse, where
the generator may either generate meaningless fake orders or mimic the real distribution
without considering the underlying context.

To investigate the generator’s capability to produce diverse and appropriate fake orders,
we utilized the NLL metric (NLLG(z)(x) where x represents the real order). By changing the
fake seeds 100 times in the test, we assessed the generator’s ability to generate various fake
orders. If the NLL is similar to the by-chance level, the generator is likely to produce only
meaningless fake orders. Conversely, if the NLL is consistently 0, the generator would fail
to generate diverse likely fake orders and would solely produce the real orders. Moreover,
if the NLL remains unchanged for different seeds, it suggests a high probability of mode
collapse in the generated policy.

For PGSGAN/PGSGAN-HL, we computed the mean standard deviation of NLL for
each generation scenario by changing seeds 100 times. The evaluation revealed that both
PGSGAN and PGSGAN-HL exhibit an appropriate level of generation diversity, with an
average standard deviation of NLL ranging from 2.5 to 3.6. This indicates that our proposed
model generates a diverse range of orders without suffering from mode collapse.

In summary, our model satisfies both the necessary and sufficient conditions for good
generation. While there is a possibility of further improving the model, it can be confidently
stated that our model fulfills the requirements of a good generator and outperforms previous
models.

The reason why PGSGAN-HL consistently outperforms PGSGAN in various experi-
ments is the inclusion of Hinge loss. Unlike PGSGAN-HL, the gradient of the generator
in PGSGAN approaches zero during the middle of the learning process. As described in
Equation 10, the gradient of the generator depends on and is proportional to the output of
the critic. If the generator produces fake data that is superior to the critic’s discrimination
ability, the critic’s output becomes zero, resulting in the vanishing gradient problem and
abrupt termination of learning for PGSGAN. The introduction of Hinge loss in PGSGAN-
HL prevents this issue and allows for continued learning for a longer period compared to
PGSGAN.

However, the shorter learning of PGSGAN due to its explicit end of learning may be
beneficial when we use big data, although it is a trade-off for its performance. In the settings
of our experiments, each model took the following learning time:

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi22

• PGSGAN: 3–5 days.

• PGSGAN-HL: About 20 days.

• S-GAN: About 3 months

• DCGAN: About 10 days.

These times are roughly calculated because they depend on the size of the data (stocks)
and computational resources. These values are measured with high-end GPUs of NVIDIA
Geforce RTX 20 series, such as 2080, 2070super, and 2080Ti. Whereas this is not accurate,
it is beneficial for discussing the computational burden. According to these results, PGS-
GAN has a significantly short learning time. It suggests that PGSGAN is possibly beneficial
when we employ significantly huge data for training, even if we sacrifice its performance a
little bit.

As future work, higher performance GANs, evaluation methods better than MSE/KLD,
or application of our GANs, can be pursued. We have only focused on the next orders’
generation to simplify the problem. However, the challenge to make longer time series
needs to be addressed.

7 Conclusion

This study proposes a new GAN framework specifically designed for generating realistic
orders in financial markets. Unlike previous works that generated fake orders in continuous
spaces, our approach recognizes that real orders in financial markets are inherently discrete.
For example, price and volumes have minimum units, and order types such as sell/buy are
categorically distinct. Consequently, it is inappropriate to treat these aspects as continuous
variables and combine them seamlessly in state spaces.

To address this, we modified the generation of fake orders to be discrete, which required
a departure from the traditional GAN learning algorithm. Instead, we leveraged policy gra-
dient, a common technique in reinforcement learning, to train our models. By incorporating
the relationship between the generator and critic into the reinforcement learning framework,
we made policy gradients applicable to stock market GANs.

In our proposed models, the generator produces a policy, and based on that policy,
randomly sampled fake orders are evaluated by the critic. We conducted experiments using
order data from the Tokyo Stock Exchange, consisting of over 65 million order records. To
assess the performance of our models, Policy Gradient Stock GAN (PGSGAN) and Policy
Gradient Stock GAN with Hinge loss (PGSGAN-HL), we compared the distributions of the
generated fake orders to those of the real orders using metrics such as Mean Squared Error
(MSE) and Kullback-Leibler Divergence (KLD). The results demonstrate that our models
outperform previous approaches.

In addition to superior performance, we observed a side benefit of introducing the pol-
icy gradient framework. The entropy of the generated policy can serve as an indicator to
monitor the learning status of the GAN, providing insights into the diversity and quality of
generated orders.

Furthermore, by incorporating Hinge loss in PGSGAN-HL, we mitigate the issue of
gradient vanishing that may occur during learning. This combination proves to be benefi-
cial, enabling more effective learning compared to PGSGAN alone.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 23

As future work, it is worth exploring higher-performing GAN architectures, evaluation
methods beyond MSE and KLD, and potential applications of our GAN models in different
contexts within the field of financial markets.

Acknowledgment

We thank the Japan Exchange Group, Inc. for providing the data. This work was supported
by JSPS KAKENHI Grant Number JP 21J20074 (Grant-in-Aid for JSPS Fellows).

References

[1] J. Li, X. Wang, Y. Lin, A. Sinha, and M. Wellman, “Generating Realistic Stock Market
Order Streams,” AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 727–
734, 2020.

[2] Y. Naritomi and T. Adachi, “Data Augmentation of High Frequency Financial Data
Using Generative Adversarial Network,” in 2020 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). IEEE,
2020, pp. 641–648.

[3] M. HIRANO, H. SAKAJI, and K. IZUMI, “Policy Gradient Stock GAN for Realis-
tic Discrete Order Data Generation in Financial Markets,” in 14th IIAI International
Congress on Advanced Applied Informatics. IEEE, 2023, pp. 361–368.

[4] I. Maeda, D. deGraw, M. Kitano, H. Matsushima, H. Sakaji, K. Izumi, and A. Kato,
“Deep reinforcement learning in agent based financial market simulation,” Journal of
Risk and Financial Management, vol. 13, no. 4, p. 71, 2020.

[5] S. M. Edmonds and Bruce, “Towards Good Social Science,” Journal of Artificial So-
cieties and Social Simulation, vol. 8, no. 4, 2005.

[6] J. D. Farmer and D. Foley, “The economy needs agent-based modelling,” Nature, vol.
460, no. 7256, pp. 685–686, 2009.

[7] S. Battiston, J. D. Farmer, A. Flache, D. Garlaschelli, A. G. Haldane, H. Heesterbeek,
C. Hommes, C. Jaeger, R. May, and M. Scheffer, “Complexity theory and financial
regulation: Economic policy needs interdisciplinary network analysis and behavioral
modeling,” Science, vol. 351, no. 6275, pp. 818–819, 2016.

[8] T. Mizuta, “An Agent-based Model for Designing a Financial Market that Works
Well,” 2019, http://arxiv.org/abs/1906.06000.

[9] T. Mizuta, S. Kosugi, T. Kusumoto, W. Matsumoto, K. Izumi, I. Yagi, and
S. Yoshimura, “Effects of Price Regulations and Dark Pools on Financial Market Sta-
bility: An Investigation by Multiagent Simulations,” Intelligent Systems in Account-
ing, Finance and Management, vol. 23, no. 1-2, pp. 97–120, 2016.

[10] M. Hirano, K. Izumi, T. Shimada, H. Matsushima, and H. Sakaji, “Impact Analysis of
Financial Regulation on Multi-Asset Markets Using Artificial Market Simulations,”
Journal of Risk and Financial Management, vol. 13, no. 4, p. 75, 2020.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi24

[11] X. Zhou, Z. Pan, G. Hu, S. Tang, and C. Zhao, “Stock Market Prediction on High-
Frequency Data Using Generative Adversarial Nets,” Mathematical Problems in En-
gineering, vol. 2018, 2018.

[12] K. Zhang, G. Zhong, J. Dong, S. Wang, and Y. Wang, “Stock Market Prediction Based
on Generative Adversarial Network,” vol. 147, pp. 400–406, 2019.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” Advances in Neural In-
formation Processing Systems, pp. 2672–2680, 2014.

[14] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv, vol.
1411, no. 1784, pp. 1–7, 2014, http://arxiv.org/abs/1411.1784.

[15] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learn-
ing with Deep Convolutional Generative Adversarial Networks,” 2015,
http://arxiv.org/abs/1511.06434.

[16] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares gen-
erative adversarial networks,” in IEEE international conference on computer vision,
2017, pp. 2794–2802.

[17] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative neural samplers
using variational divergence minimization,” in 30th International Conference on Neu-
ral Information Processing Systems, 2016, pp. 271–279.

[18] E. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep Generative Image Models
using a Laplacian Pyramid of Adversarial Networks,” Advances in Neural Information
Processing Systems, vol. 28, pp. 1486–1494, 2015.

[19] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding be-
yond pixels using a learned similarity metric,” in International conference on machine
learning, 2016, pp. 1558–1566.

[20] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with con-
ditional adversarial networks,” in IEEE conference on computer vision and pattern
recognition, 2017, pp. 1125–1134.

[21] C. Chu, A. Zhmoginov, and M. Sandler, “CycleGAN, a Master of Steganography,”
2017, http://arxiv.org/abs/1712.02950.

[22] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for genera-
tive adversarial networks,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4401–4410.

[23] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for im-
proved quality, stability, and variation,” in 6th International Conference on Learning
Representations, 2018.

[24] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence Generative Adversarial
Nets with Policy Gradient,” Thirty-First AAAI Conference on Artificial Intelligence,
2017.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 25

[25] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial Feature Learning,” 2016,
https://arxiv.org/abs/1605.09782.

[26] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsu-
pervised Anomaly Detection with Generative Adversarial Networks to Guide Marker
Discovery,” Lecture Notes in Computer Science, vol. 10265, pp. 146–147, 2017.

[27] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, “Efficient
GAN-Based Anomaly Detection,” 2018, http://arxiv.org/abs/1802.06222.

[28] D. Li, D. Chen, J. Goh, and S.-k. Ng, “Anomaly detection with generative adversarial
networks for multivariate time series,” 2018, https://arxiv.org/abs/1809.04758.

[29] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” 2017,
https://arxiv.org/abs/1701.07875.

[30] M. Arjovsky and L. Bottou, “Towards Principled Methods for Training Generative
Adversarial Networks,” 2017, http://arxiv.org/abs/1701.04862.

[31] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved
Training of Wasserstein GANs Montreal Institute for Learning Algorithms,” Advances
in Neural Information Processing Systems, vol. 30, pp. 5767–5777, 2017.

[32] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for gen-
erative adversarial networks,” in 6th International Conference on Learning Represen-
tations, 2018.

[33] I. H. Witten, “An adaptive optimal controller for discrete-time markov environments,”
Information and control, vol. 34, no. 4, pp. 286–295, 1977.

[34] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE transactions on systems, man,
and cybernetics, vol. SMC-13, no. 5, pp. 834–846, 1983.

[35] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” Advances in neural infor-
mation processing systems, pp. 1057–1063, 2000.

[36] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256, 1992.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in The 32nd International Conference on Machine
Learning, vol. 1, 2015, pp. 448–456.

[38] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” 2016,
http://arxiv.org/abs/1607.06450.

[39] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” 2015,
https://arxiv.org/abs/1511.07122.

[40] J. H. Lim and J. C. Ye, “Geometric GAN,” 2017, http://arxiv.org/abs/1705.02894.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Hirano, H. Sakaji, K. Izumi26

[41] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of math-
ematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[42] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” Advances in
neural information processing systems, vol. 30, 2017.

[43] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved Techniques for Training GANs,” Tech. Rep., 2016.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

PGSGAN: Policy Gradient Stock GAN 27

