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Abstract 

The progress in image super-resolution has seen significant advancements due to the emergence 

of deep convolutional neural networks. While most researchers concentrate on training models 

for specific scales, only a few delve into creating models adaptable to various scales. This study 

builds upon prior research that focuses on achieving arbitrary resolution with a single model. The 

model under consideration employs an auto-encoder structure. The encoder extracts feature maps 

from the input image, while the decoder reconstructs these feature maps to the resolution speci-

fied by the user. Referred to as RRDN-NLIIF (Residual in Residual Dense Networks with Novel 

Local Implicit Image Function), our experimental results demonstrate its superior performance 

over the benchmark model in terms of the PSNR metric.  

Keywords: Arbitrary-scale Super Resolution, Convolutional Neural Networks, Implicit Neural 

Representation, Positional Encoding. 

1 Introduction 

Super resolution involves enhancing the resolution of a low-resolution image by up-sampling it 

to a higher resolution. The advent of deep convolutional neural networks has led to the introduc-

tion of numerous models, all demonstrating outstanding performance. 

Dong et al. proposed SRCNN[11]. It was the first model that used deep learning skills in super 

resolution territory. This model had a simple structure, with merely three convolutional layers.  

Kim et al. found that with extremely high learning rates and residual structure, they can train a 

deeper network and perform better. They proposed VDSR [12]. Later, they also discovered the 

importance of recursive-supervision and brought up a new network DRCN.[13]. 
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Typically, researchers focus on training individual models for specific scales. Although these 

models deliver impressive results, their lack of flexibility is notable. To obtain images at various 

scales, significant time investment is required for training each specific model.  

Hu et al. introduced the initial arbitrary scale up-sampling model, MetaSR[1], which exhibited 

excellent performance on images within the training distribution. However, its effectiveness di-

minished notably when generating large-scale images beyond the training distribution, as indi-

cated by experiments in [2]. 

Building upon this foundation and drawing inspiration from recent advancements in 3D recon-

struction utilizing implicit neural representation [3-8], Chen et al. put forth a novel arbitrary scale 

up-sampling model. They introduced the concept of Local Implicit Image Function (LIIF)[2] as 

a key element in their approach.  

In LIIF representation (Equation 1), each continuous image 𝐼(𝑖)was represented as a 2D feature

map 𝑀(𝑖)𝜖  ℝ𝐻×𝑊×𝐷. z was the feature factors, and x∈X was a 2D coordinate used to query the

predicted RGB signal s∈S in the continuous image domain。Their final model RDN-LIIF 

showed a splendid performance, and became the state-of-the-art (SOTA) work in 2021.  

𝑠 = 𝑓𝜃(𝑧, 𝑥) (1) 

Upon scrutinizing the model RDN-LIIF proposed by Chen et al.[2], we identified areas for po-

tential improvement. In this study, we enhanced the feature extraction model by substituting 

RDN[9] with a more robust alternative capable of capturing finer details. Additionally, we bol-

stered the up-sampling model to effectively leverage these detailed features. Experimental results 
demonstrate that our modified model surpasses the original one in terms of the PSNR (dB) index. 

The contributions made in this work are outlined below.  

1. We replace the original feature extraction model RDN with the Residual in Residual Dense

Block Network (RRDN)[10], as proposed by Wang et al.

2. Drawing inspiration from techniques employed by Xu et al.[11], we enhance the up-sampling

module to create a more potent method, termed NLIIF.

The rest of this paper is organized into the following sections: Section 2 presents a literature 

review on image super-resolution. Section 3 describes our proposed model. Section 4 showcases 

experimental results and discusses encountered challenges. Finally, Section 5 provides conclu-

sions and explores potential future work. 

2 Related Work 

2.1   Single scale super-resolution 

Dong et al. introduced SRCNN [11], the first model to apply deep learning techniques to the field 

of super-resolution. This model had a simple architecture consisting of only three convolutional 

layers. Kim et al. later demonstrated that using extremely high learning rates and a residual struc-

ture allowed for training deeper networks with improved performance, leading to the 
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development of VDSR [12]. They further recognized the significance of recursive supervision 

and proposed a new network, DRCN [13]. 

Some researchers have approached the super-resolution (SR) problem using adversarial methods. 
Ledig et al. were the first to introduce SRGAN [14], a model distinguished not only by its adver-

sarial framework but also by its choice of loss function. While models trained with L2 loss tend 

to achieve high PSNR scores, they often lose fine high-frequency details during reconstruction. 

To address concerns about the limitations of L2 loss, Ledig et al. incorporated perceptual loss 
and adversarial loss into their model. Their experiments showed that for large upscaling factors 

(4x), their model produced images with higher perceptual fidelity, even though its PSNR scores 

were lower. This shift in focus led to greater recognition of perceptual quality in SR research. 
Following the 2018 PIRM-SR challenge [15], the field diverged into two approaches—one pri-

oritizing improvements in PSNR/SSIM scores and the other using the perceptual index (PI) as a 

benchmark. In this paper, we adopt PSNR as our evaluation standard. 

Building on SRGAN [14], Lim et al. refined the architecture by eliminating redundant modules, 

resulting in a larger and more efficient network called EDSR [16]. A key innovation of their work 

was the removal of batch normalization (BN) layers. While BN layers typically accelerate con-
vergence and help prevent overfitting, they were found to degrade the contrast information in 

training images, ultimately hindering performance in super-resolution tasks. Lim et al.’s experi-

ments demonstrated that their model achieved higher PSNR scores compared to previous ap-

proaches.  

Around the same time, Zhang et al. introduced RDN [17], a model that integrated the strengths 
of both residual blocks and dense connection blocks, significantly enhancing super-resolution 

quality. This architecture later became a standard framework for various arbitrary-scale SR mod-

els. 

2.2   Arbitrary-scale super-resolution 

MDSR [16], introduced by Lim et al., was the first model capable of generating images at mul-

tiple resolutions. However, since it was limited to producing only three specific scales, its classi-

fication as an arbitrary-scale SR model is debatable. 

Hu et al. introduced a fully arbitrary-scale super-resolution model consisting of two main com-

ponents: a feature extraction module and an upscaling module. They selected RDN [17] as the 
optimal feature extractor and incorporated MetaSR, an upscaling module leveraging meta-learn-

ing techniques. As a result, their model was aptly named Meta-RDN. 

Similar to Meta-RDN, Chen et al. introduced an autoencoder-based structure, where a feature 
extraction module served as the encoder and a feature reconstruction module acted as the decoder. 

They also utilized RDN [17], as Hu et al. did, to extract image features. However, Chen et al. 

designed a different decoder, LIIF, which bridges discrete images and continuous representations. 
This functionality was achieved using a multi-layer perceptron (MLP). Their experiments 

demonstrated impressive PSNR scores and exceptional performance, enabling upscaling factors 

of up to ×30.  

2.3 Positional encoding in super-resolution 

Initially, positional encoding was simply a technique used in transformer architectures [18] to 

embed positional information into discrete vectors. However, Mildenhall et al. expanded its ap-

plication in NeRF [19], utilizing positional encoding to map coordinate information into a higher-
dimensional space. This allowed the MLP structure in their model to capture high-frequency 
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details more effectively, resulting in more detailed and less distorted 3D reconstructions. Follow-

ing their approach, many researchers [20-23] adopted similar methods and achieved promising 

results. 

Recognizing the link between 3D reconstruction and super-resolution tasks, Xu et al. drew inspi-

ration from LIIF [2] and incorporated the positional encoding technique into their SR model. 

They introduced UltraSR [10], which, according to their experiments, outperformed LIIF [2]. 

3 Proposed Model 

Our proposed model, illustrated in Figure 1, is named RRDN-NLIIF, an abbreviation for Resid-

ual in Residual Dense Networks with Novel Local Implicit Image Function. In comparison to the 

baseline model, our model exhibits two distinct modifications: the alteration of the encoder and 

the enhancement of the decoder. 

3.1   Encoder 

We employ RRDN[10], introduced by Wang et al., as our encoder, and the structural overview is 

depicted in Figure 2. RRDN serves as a feature extraction module within ESGAN[10]. 

Figure 1: Residual in Residual Dense Networks with Novel Local Implicit Image Function. 

ESGAN, an enhanced model derived from SRGAN[12], emerged victorious in the 2018 PIRM-

SR[13] challenge. Both models share the concept of utilizing GAN for solving the SR problem 

and employing perceptual loss to enhance training outcomes. While ESGAN demonstrated re-

markable performance in terms of perceptual indices (PI), it exhibited relatively lower PSNR 

scores compared to other models. 

Our primary focus is on improving PSNR, and research akin to ESGAN, which emphasizes PI, 

may seem unrelated. However, we posit that the feature extraction module is a universal compo-

nent. This implies that a feature extraction module effective in a PI-based model can also enhance 

the performance of a PSNR-based model. Section 3 will provide experimental results validating 

our assumption. 

RRDN bears a resemblance to RDN, leveraging the capabilities of residual and dense blocks. 

Starting with the initial convolutional layer, a feature F0 undergoes 23 RRDBs (details of RRDBs 
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in Section 2.2) to yield F23. After a convolutional layer, F23 is combined with F0 through residual 

learning, resulting in the final feature for reconstruction. 

Figure 2: Residual in Residual Dense Networks Encoder 

3.2   RRDB and DB 

Figure 3 illustrates the processes within the Residual in Residual Dense Block (RRDB). The 

RRDB comprises three Dense Blocks (DBs). The output of a DB is scaled by a factor of 0.2 and 

added to its input for residual learning, subsequently becoming the input for the next DB in the 

sequence. 

As depicted in Figure 4, each DB contains the smallest unit, a Convolutional Block (CB). Similar 

to the Residual Dense Block (RDB) in RDN[9], a CB consists of a convolutional layer and a 
leaky ReLU activation layer. Additionally, akin to the RDB, the output of a CB serves as the input 

for the next CB in sequence and potentially for subsequent CBs. The features generated from all 

CBs undergo dimensional reduction, are scaled by a factor of 0.2, and are then added to the orig-

inal input for residual learning. 

Figure 3: Residual in Residual Dense Block 
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Figure 4: Dense Block 

3.3   Decoder 

Xu et al. introduced UltraSR[11] as an arbitrary-scale super-resolution model, representing an 

enhancement of RDN-LIIF. In this improved version, they integrated the entire decoder while 

incorporating additional operations such as residual learning and positional encoding. 

In our approach, we draw inspiration from UltraSR and construct our version of the decoder. The 

initial modification involves making the positional encoded coordinate the input of a Multi-Layer 

Perceptron (MLP) and each linear layer within the MLP (refer to Figure 1). The implementation 

details are outlined in Equation 2. 

𝑠 =  𝑓𝜃(𝑧, [𝑥, 𝑐], 𝜓(𝑥)) (2) 

𝜓(𝑥) = (sin(𝜔1𝑥ℎ), cos ( 𝜔1𝑥𝑤) …

sin(𝜔48𝑥ℎ), cos(𝜔48𝑥𝑤)) (3)

𝜓(𝑥) denotes the positional encode coordinates. Frequency parameters 𝜔1, 𝜔2… 𝜔48 are set to 

2en, n ∈ 1,2 ……48. x is divided to two parts according to the height and width of the given 

resolution, separately xh and xw. 

 Compared to the MLP from RDN-LIIF, our improved MLP (denoted as NMLP, in short new 

MLP) reaches double the depth of it. We design a BB (in short of basic block), which consists of 

two linear layers and two activation layers. Apart from this, we set a residual learning structure 

for features go through two linear layers. Figure 5 shows what our propose NMLP looks like.  
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Figure 5: New Multi-Layer Perceptron 

4  Experiments 

4.1   Set up 

We adopt identical training parameters as outlined in [2] to maintain consistency and isolate other 

variables, showcasing the robustness of our model. The dataset used is the same as [2], namely 

DIV2K[14], which constituted the dataset for the NTIRE 2017 Challenge[24]. DIV2K comprises 

900 images in 2K resolution, along with their ×2, ×3, and ×4 down-sampled counterparts, gener-

ated using the default bicubic interpolation setting in the imresize function of MATLAB. During 

training, the first 800 high-resolution (HR) images from DIV2K are utilized, while the last 100 

HR images are reserved for testing. Additionally, we employ four standard benchmark datasets, 

namely SET5[25], SET14[26], B100[27], Urban100[28], CelebAHQ [29], and CelebA [30] to 

evaluate the performance of our model. 

To assess the testing results on DIV2K, we directly compute the Peak Signal-to-Noise Ratio 

(PSNR) between the output images and the ground-truth images. For testing on benchmark da-

tasets, we calculate the PSNR specifically on the Y channel and apply the border-shaving tech-

nique, consistent with [2]. Table 1 provides a summary of the training parameters and environ-

mental settings  

Table 1: Training settings 

Epoch 1000 

Batch size 16 

Optimizer Adam 

Loss Function L1 

Initial Learning rate 1*10-4 

Learning rate variation decays by 0.5 every 200 epochs 

LR size 48×48 

The experiments were conducted on Ubuntu 18.04, utilizing Python 3.7 and CUDA 11.3. 

Advancing Arbitrary-Scale Image Super-Resolution 7



 
 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Training of the model was performed using GeForce RTX3090 and RTX4090. 

To evaluate the model's performance on scales encountered during training, we employ the cor-

responding down-sampled datasets provided by DIV2K. For unseen scales, ranging from ×6 to 

×30, we crop the high-resolution (HR) image to dimensions divisible by the scale, down-sample 

it accordingly, and utilize the resulting images as input. The images generated by each model are 

depicted in Figure 6. 

Ground-truth HR LR input RDN-LIIF RRDN-NLIIF 

Ground-truth HR LR input RDN-LIIF RRDN-NLIIF 

Figure 6: Visual result of image 0845x3.png in DIV2K with 3x amplify and image 78.png 

in Urban100 with 4x amplify 

4.2   Result 

Table 4: Comparisons on DIV2K test set. 

Method 
In-distribution Out-of-distribution 

×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30 

Bicubic 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59 

Meta-RDN 35.00 31.27 29.25 26.88 23.73 22.18 21.17 20.47 

RDN-LIIF 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59 

RRDN-NLIIF 35.04 31.32 29.32 27.04 23.93 22.37 21.33 20.62 

Table 5: Comparisons on BENCHMARK datasets 

Dataset Method 
In-distribution Out-of-distribution 

×2 ×3 ×4 ×6 ×8 

Set5 

RDN 38.24 34.71 32.47 - - 

Meta-RDN 38.22 34.63 32.38 29.04 26.96 

RDN-LIIF 38.17 34.68 32.50 29.15 27.14 

RRDN-NLIIF 38.21 34.73 32.57 29.26 27.28 

Set14 

RDN 34.01 30.57 28.81 - - 

Meta-RDN 33.98 30.54 28.78 26.51 24.97 

RDN-LIIF 33.97 30.53 28.80 26.64 25.15 

RRDN-NLIIF 34.02 30.60 28.88 26.66 25.20 

B100 
RDN 32.34 29.26 27.72 - - 

Meta-RDN 32.33 29.26 27.71 25.90 24.83 
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RDN-LIIF 32.32 29.26 27.74 25.98 24.91 

RRDN-NLIIF 

(ours) 
32.35 29.28 27.76 26.00 24.95 

Ur-

ban100 

RDN 32.89 28.80 26.61 - - 

Meta-RDN 32.92 28.82 26.55 23.99 22.59 

RDN-LIIF 32.87 28.82 26.68 24.20 22.79 

RRDN-NLIIF 

(ours) 
33.05 28.92 26.77 24.28 22.87 

 

In line with [2], we designate the outcome generated from the last epoch model as our final result. 

The experimental results presented in Tables 1 and 2 highlight the superior performance of our 

model compared to other models. Notably, on the DIV2K dataset, the x3 scale exhibits the most 

substantial improvement, achieving a 0.06dB higher Peak Signal-to-Noise Ratio (PSNR) com-

pared to the original model. Across the four benchmark datasets, excluding B100, our model 

consistently outperforms the original model by approximately 0.1dB in terms of PSNR. These 

findings demonstrate that our model not only addresses the challenge of low PSNR scores on in-

distribution scales but also maintains strong performance on out-of-distribution scales. 

4.3   Ablation Study 

For the ablation study, we show that both the substitution of encoder and decoder make contribute 

to the improvement of PSNR. Therefore, we make two extra models. RRDN-LIIF (Figure 8) is 

the model that only changes the encoder, and RDN-NLIIF (Figure 9) is the model that only 

changes the decoder. The comparison of PSNR performance is in Table 3 and Table 4. 

Figure 8: RRDN-LIIF 
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Figure 9: RDN-NLIIF 

Table 6: Comparisons on DIV2K test set. 

Method 
In-distribution Out-of-distribution 

×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30 

RRDN-LIIF 35.03 31.29 29.30 27.01 23.89 22.34 21.30 20.59 

RDN-LIIF 35.03 31.30 29.32 27.03 23.93 22.37 21.33 20.62 

RRDN-NLIIF 35.04 31.32 29.32 27.04 23.93 22.37 21.33 20.62 

 

Table 7: Comparisons on BENCHMARK datasets 

Dataset Method 
In-distribution Out-of-distribution 

×2 ×3 ×4 ×6 ×8 

Set5 

RRDN-LIIF 38.22 34.72 32.55 29.28 27.24 

RDN-NLIIF 38.22 34.72 32.54 29.23 27.24 

RRDN-NLIIF 38.21 34.73 32.57 29.26 27.28 

Set14 

RRDN-LIIF 34.09 30.54 28.88 26.67 25.18 

RDN-LIIF 34.02 30.59 28.88 26.68 25.18 

RRDN-NLIIF 34.02 30.60 28.88 26.66 25.20 

B100 
RRDN-LIIF 32.34 29.28 27.75 25.99 24.93 

RDN-LIIF 32.34 29.28 27.76 26.00 24.94 
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RRDN-NLIIF 32.35 29.28 27.76 26.00 24.95 

Urban100 
RRDN-LIIF 33.04 28.91 26.77 24.26 22.84- 

RDN-NLIIF 32.97 28.82 26.78 24.28 22.89 

 

Based on the test outcomes, it is evident that replacing both the encoder and decoder has a bene-

ficial impact on the model. The proposed final model, RRDN-NLIIF, consistently exhibits supe-

rior PSNR performance. 

Nevertheless, it was observed that the improvement in PSNR achieved by RRDN-LIIF and 

RDN-NLIIF did not entirely manifest in our proposed model, RRDN-NLIIF. Further enhance-

ments to the encoder and decoder are imperative to address this discrepancy. 

 

5   Conclusions and Future Work 

In this study, we introduce a novel model, RRDN-NLIIF, inspired by a resilient arbitrary-scale 

super-resolution model developed by Chen et al. [2]. Employing nearly identical parameters and 

training configurations as the original model, our model achieves the highest Peak Signal-to-

Noise Ratio (PSNR) compared to other models across both the DIV2K datasets and the four 

benchmark datasets at various scales. Our model successfully addresses the limitations of the 

original model on in-distribution scales, demonstrating robust performance. 

However, as observed in Figure 7, there are still areas of concern in the images generated by our 

model. Additionally, based on our ablation experiments, the PSNR improvements from both the 

model utilizing the enhanced encoder and the model using only the improved decoder do not 

fully translate into the performance of our final model. Therefore, further enhancements are nec-

essary. 

For future work, we envision two avenues for improvement. First, we consider conducting more 

fine-tuning on our model to refine its performance. Second, we explore the possibility of identify-

ing a more robust feature extraction structure capable of extracting finer details from images. 

Nota-bly, the transformer technique has gained popularity in Single Image Super-Resolution 

(SISR) models, exemplified by HAT [19] proposed by Chen et al. This emerging approach may 

offer a promising pathway to elevate arbitrary-scale SR models to new heights of performance. 
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