
International Journal of Smart Computing and Artificial Intelligence
International Institute of Applied Informatics
2024, Vol. 8, No. 2, IJSCAI846

Rotation Weight Update: Another Way Different from
Dropout to Introduce Lazy Neurons in Image Recognition
Tasks

Tetsuya Hori ∗ , Yuki Sekiya † , Yoichi Takenaka *

Abstract

Numerous approaches have been developed to enhance the capabilities of deep learning
in image recognition. We propose a method called ”Rotational-update,” which cyclically
updates the weight of neurons. This approach segments the neurons in a fully connected
layer into groups of equal size, each containing

√
N neurons, with N representing the total

neuron count in the layer. It selectively updates the weights of one group at a time per
mini-batch. This selective updating mechanism aims to curb excessive learning, potentially
reducing overfitting and enhancing validation accuracy. A notable aspect of this method is
its compatibility for concurrent use with other techniques, including batch-normalization
and dropout.

We used the CIFAR10 dataset for image recognition tasks to validate the method’s
efficacy, employing three neural network architectures: VGG-16, ResNet-110, and ResNet-
152. Our findings indicate that integrating our proposed method with batch normalization
outperforms the accuracy of the combination of dropout and batch normalization. Specif-
ically, the proposed Rotational-update method achieved an accuracy improvement of up
to 5 percentage points in VGG-16 and one percentage point in ResNet-110 compared to
traditional methods. Thus, we deduce that substituting dropout with our proposed method
enhances image recognition task performance and reduces overfitting.
Keywords: Deep Learning, Drop out, Image Recognition, Rotational-update

1 Introduction

Since Hinton et al.’s victory in the ILSVRC 2012 competition [12], deep learning has
emerged as a prominent machine learning technique. This method involves using complex,
multi-layered artificial neural networks designed to replicate the function of the human
cerebral cortex. Deep learning finds diverse applications in several fields, including image
recognition [12], natural language processing [21], audio processing [2], and computational
biology [3], demonstrating its wide-ranging impact and utility.

∗ Kansai University, Osaka, Japan
† Amazon WEB service Japan, Tokyo, Japan 



Object detection, a subset of image recognition, focuses on identifying and locating ob-
jects within an image. It is crucial for automating tasks like self-driving cars. Various meth-
ods, including R-CNN, have been developed for real-time object detection [6]. Later, Fast
R-CNN [5] and Faster R-CNN [18] improved R-CNN’s speed. Redmon then introduced
YOLO (You Only Look Once), which further accelerated the process, enabling quicker and
more efficient detection of multiple objects by employing grid cells [15][16][17][1].

Image Generation, a facet of image recognition, involves creating new images not found
in the training dataset. Generative Adversarial Networks (GAN), introduced by Goodfel-
low [7], and its extension, Deep Convolutional Generative Adversarial Networks (DCGAN)
[14], are vital algorithms for this task. This technology has been widely applied in various
fields, including super-resolution by Ledig et al. [13] and artistic style transformation by
Zhu et al.[24]. These advancements and applications have made deep learning an indis-
pensable tool in the field of image recognition.

In the field of deep learning, foundational research is crucial. The key to building an
effective neural network is carefully adjusting and optimizing hyperparameters, including
structural and training variables [9][23]. Structural variables typically involve the number of
hidden layers and the choice of activation functions. In contrast, essential training variables
encompass the learning rate, the total number of training epochs, batch size, and momentum
settings.

Batch Normalization, developed by Loffe and Szegedy, normalizes layer inputs by ad-
justing their center and scale [10]. This technique enhances the network’s resilience to ini-
tial weight values, accelerating training and boosting performance and stability. Dropout,
introduced by Srivastava et al., randomly omits neurons in each mini-batch during training,
effectively preventing overfitting and enhancing validation accuracy [20]. Momentum, on
the other hand, utilizes gradients from previous steps to stabilize neuron output fluctuations.

We propose a“Rotational-update”method, which cyclically updates neuron weights.
The method divided neurons in a fully connected layer into

√
N equally sized groups, with

N being the total neuron count in the layer. For each mini-batch, only one of these groups
undergoes a weight update. This selective updating mechanism aims to curb excessive
learning, potentially reducing overfitting and enhancing validation accuracy.

While Rotational-update is akin to dropout, their differences are notable. In a neu-
ral network’s training, encompassing forward propagation, backpropagation, and weight
updating, Rotational-update functions solely during weight updating without influencing
the other two phases. All neurons partake in both forward and backpropagation. Con-
versely, dropout excludes neurons from all three phases. Another distinction lies in neuron
selection; Rotational-update assigns neuron groups before training, while dropout selects
neurons randomly.

A parallel strategy also exists, restricting the number of neurons engaging in weight
adjustment within the Hopfield neural network. This network operates on a single-layer
framework, with all neurons interlinked. This approach, referred to as ”N-parallel mode,”
has shown enhancements in resolving combinatorial optimization problems [22][4]. How-
ever, its application in convolutional networks and the realm of deep learning remains un-
explored.

The remainder of this paper is organized as follows. Section 2 overviews deep neural
networks, including their structure and learning process. Section 3 introduces the proposed
Rotational-update method, detailing its mechanism and comparison with dropout. Section
4 presents the experiments to evaluate the Rotational-update method, including conditions,
results, and discussion. Section 5 concludes the paper by summarizing the findings and

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka2



discussing future research directions.

2 Deep Neural Network

Typically, a Deep Neural Network (DNN) is composed of several layers: convolutional,
pooling, and fully connected layers. Each layer consists of a group of neurons functioning
in unison at a particular neural network’s structure level.

2.1 Layers

A fully connected layer in a deep neural network is a critical component where all neurons
from a previous layer are connected to every neuron in the next layer. This structure en-
ables the neural network to capture complex patterns and relationships in the data, as each
neuron in the fully connected layer can receive signals from all neurons in the preceding
layer. DNNs often use the fully connected layers towards the end of the network, especially
in tasks like image classification, where they interpret and combine features extracted by
earlier layers to make final predictions or classifications. The fully connected layer’s abil-
ity to integrate learned features across the entire network is a crucial factor in the overall
performance of deep learning models.

Let W be the weights and b for biases. With X as the input from the preceding layer,
the layer generates output Y , depicted in equation (1). In the equation, f () is a non-linear
transformation such as sigmoid, tanh, and ReLU. The final fully connected layer applies a
non-linear transformation tailored to its specific function, such as using the softmax func-
tion in classification tasks.

Y = f (X ·W ) (1)

A convolutional layer in a deep neural network is primarily used for processing data
with a grid-like topology, such as images. This layer consists of a set of learnable filters
(or kernels) that slide (convolve) over the input data to produce a transformed output. As
each filter moves across the input, it performs element-wise multiplication with the part of
the input it covers and sums up the results, producing a feature map. This process helps
the network detect spatial hierarchies in the data by learning from local spatial features,
making convolutional layers especially effective for tasks like image and video recognition
and other areas involving spatial data.

A pooling layer in a deep neural network reduces the spatial dimensions (height and
width) of the input image or feature map. It works by partitioning the input image into
non-overlapping rectangles and summarizing the features within each rectangle. The most
common forms are max pooling, which takes the maximum value from each rectangle, and
average pooling, which calculates the average value. This layer decreases the computa-
tional load, memory usage, and the number of parameters, helping to reduce overfitting by
providing an abstracted representation.

2.2 Neural Network Architectures

A neural network architecture is the structural framework of a neural network, defining the
arrangement and interconnections of layers and neurons within the network. It includes

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Rotation Weight Update: Another Way Different from Dropout to Introduce Lazy Neurons in Image Recognition Tasks 3



the type, sequence, and configuration of layers and the methods of processing data through 
these layers.

AlexNet, VGG, and ResNet are distinguished neural network architectures in image 
recognition.

AlexNet, pioneering in its structure, comprises five convolutional layers and three fully 
connected layers and is recognized for introducing key elements like ReLU activation and 
dropout [12].

VGG, identified for its uniform design, utilizes repetitive blocks of convolutional layers, 
culminating in 16 or 19 layers in its most known forms [19]. They performed better than 
AlexNet [19].

ResNet, famous for its deep structure facilitated by residual connections, effectively 
addresses the vanishing gradient issue, allowing for the training of networks with an un-
precedented depth of up to 152 layers [8]. These architectures have significantly advanced 
the capabilities of deep learning models, particularly in image processing tasks.

2.3 Learning Process

The learning process for Deep Neural Networks (DNNs) involves a three-step procedure: 
forward propagation, backpropagation, and the updating of weights. Detailed explanations 
of these critical stages in the learning process are provided in subsequent sections.

2.3.1 Forward propagation

Forward propagation in a neural network refers to the process where input data traverses 
from the initial layer through the network in a forward direction. It begins at the first 
layer, where each subsequent hidden layer receives and processes the data based on its 
specific function, and then transfers the processed output to the next layer. This propagation 
continues sequentially through the network until the final layer is reached, resulting in the 
final output of the neural network.

2.3.2 Backpropagation

Backpropagation assesses the deviation between the neural network’s output and the actual 
data label by determining the loss function’s gradient. This algorithm processes one layer 
at a time, moving backward from the end layer. It uses dynamic programming to streamline 
the process, reducing the need for recalculating intermediate variables in the chain rule 
during its reverse iteration through the network.

2.3.3 Weights updating

Neuron weights are updated using the computed gradients as per the equation (2):

W ←W −η
∂L
∂W

(2)

,where W is weights, ∂L
∂W is gradients, and η is learning rate, respectively.

Additionally, when momentum is incorporated, the weight update becomes equation
(3).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka4



W ←W −η
∂L
∂W

+α∆W (3)

where ∆W is previous updated value and α is momentum parameter.

2.4 Techniques at Learning

2.4.1 Minibatch

Batch learning utilizes the entire training dataset simultaneously, whereas minibatch learn-
ing updates neuron weights using smaller portions of the training set. The training data are 
randomly divided into several subsets, known as minibatches. This approach enables the 
model to learn incrementally from these subsets, assisting in escaping from local optima 
during training.

2.4.2 Dropout

In DNN model training, overfitting is a common issue where models perform poorly on 
new data despite fitting well to the training set. Dropout, introduced to mitigate overfitting, 
randomly omits neurons within a layer during training [20].

This technique involves a probability parameter p. For a layer with m neurons receiving 
an n-sized input and producing a non-linear output Yn×m, Dropout generates a ’mask’ matrix 
maskn×m with Bernoulli random variables. The layer then forwards Ỹ , an element-wise 
product, as detailed in (5).

maskn×m ∼ Bernoulli(p) (4)

Ỹ = Y ◦mask (5)

During the inference phase with the model, the Dropout technique does not drop neu-
rons. Instead, to incorporate all neurons, the output from each neuron is scaled by multi-
plying with the probability p. This scaling ensures that the average output during inference
aligns with what was learned during the training phase.

2.4.3 Batch Normalization

Training Deep Neural Networks (DNNs) often face the challenge of internal covariate shift,
where distributional changes in the activation functions occur due to weight adjustments,
impacting training efficiency, effectiveness, and DNN stability. This issue intensifies with
an increase in layers. Batch normalization, which normalizes the inputs by adjusting their
mean and variance, thereby maintaining a more stable distribution across different layers in
the network, was proposed to mitigate this [10].

In Batch Normalization, each layer initially sets parameters γ = 1 and β = 0. During
forward propagation, the layer input transforms Batch Normalization as defined in (6), using
uout as the input value.

uout = γ û+β (6)

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Rotation Weight Update: Another Way Different from Dropout to Introduce Lazy Neurons in Image Recognition Tasks 5



, where û is the normalized value by re-centering and re-scaling.
During backpropagation and weight update phases, the method calculates the gradients

for γ and β and then updates γ and β .

3 Rotational-update

We propose a method called Rotational-update that limits the number of neurons updated
during the learning process. In a fully connected layer with N neurons, this method initially
divides these neurons into

√
N groups, forming a set G = g1, . . .g√N . Each group contains√

N neurons, ensuring each neuron is exclusively one group member.
Throughout the learning phase, this method updates neuron weights for only one group,

gi, from the set G = g1, . . .g√N per minibatch. The selection of groups occurs sequentially,
cycling through from g1 to g√N , and upon reaching g√N , it restarts with g1.

Coping with momentum

The momentum technique in neural networks is proven to enhance training speed and accu-
racy. This paper outlines how to integrate momentum effectively with Rotational-updates.
The approach is straightforward: apply each method independently. While momentum is
applied across all neurons, Rotational-update targets the weight gradient component. When
Rotational-update selects a neuron group gi, the following equations define the weight up-
date.

neuron in gi

W ←W −η
∂L
∂W

+α∆W (7)

neuron not in gi

W ←W +α∆W (8)

Rotational-update in multiple layers

Initially explained for a single layer, Rotational-update is also applicable to multiple layers
in a neural network. It can be implemented independently across various layers. The tech-
nique creates distinct neuron groups, G, for each layer. Since the number of neurons varies
across layers, the count of these groups differs accordingly. Consequently, the method inde-
pendently selects a group from each layer’s set of groups, G, to facilitate Rotational-update
across different layers in the network.

Differences with Dropout

Rotational update and dropout limit the number of neurons that update their weights, but
significant differences exist between them. The main distinction lies in the application
phase of neuron selection and weight update within the learning process. This differenti-
ation is critical for understanding how each method impacts the neural network’s learning
and performance.

The fundamental distinction between Rotational-update and Dropout lies in the specific
stage of the learning process where neuron numbers are limited. Rotational-update only

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka6



restricts neurons during the weight update phase, meaning all neurons participate in for-
ward propagation and backpropagation. In contrast, neurons excluded via Dropout are not 
involved at any stage of the learning process.

Additional distinctions between dropout and Rotational-update include their approaches 
to neuron selection. Dropout randomly removes neurons, while Rotational-update pre-
defines neuron groups before learning and uses these groups consistently throughout the 
process.

Although Rotational-update and dropout are similar, they can be combined in a layer as 
follows.

Before training, Rotational-update organizes neurons into groups (G), and dropout sets 
its drop probability. During forward and backpropagation, only Dropout functions. In the 
weight updating phase, neurons get updated only if they are in a group (gi in G) and not 
being excluded by dropout, where Rotational-update selects gi.

4 Experiments

We conducted three experimental approaches to assess the efficacy of Rotational-update. 
The first approach involved integrating this method into an existing image classification 
neural network and monitoring its test accuracy over 100 epochs. Next, we compared the 
performance of Rotational-update against other leading methods regarding test accuracy. In 
the final phase of our study, we examined the performance of our method when synergis-
tically combined with state-of-the-art techniques. For the benefit of the academic commu-
nity and to foster further research, the source codes pertaining to these experiments have 
been made publicly accessible on the GitHub platform.https://github.com/ryhoh/
Rotational_update/tree/bn_dropout. The proposed method is also provided as a 
library on pip (pip install rotational update).

4.1 Rotational-update Only

4.1.1 Conditions

We integrated the Rotational-update method into the VGG-16 convolutional network ar-
chitecture [19] to classify the CIFAR10 image set [11]. VGG-16 is a convolutional net-
work architecture having 13 convolutional layers, followed by three fully connected layers. 
CIFAR10 is a commonly used dataset in machine learning comprising 60,000 images of 
32 × 32 size across ten classes, where 50,000 are for training (5,000 images/class) and 
10,000 for the test.

Adjustments were made to VGG-16 and the CIFAR10 dataset. We resized the images in 
CIFAR10 to 224 × 224 using bicubic interpolation and normalization, as well as modifying 
the output layer of VGG-16 to represent the ten classes in CIFAR10.

The Rotational-update was explicitly applied to the fully connected layers of VGG-16,
excluding the final classification output layer. The Rotational-update divided 4096 neurons
in each fully connected layer into

√
4,096 = 64 groups, each containing 64 neurons. We

used the following hyperparameters to train the neural network: a learning rate of 0.001, a
momentum rate of 0.9, and a minibatch size 32. We trained them for 100 epochs.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Rotation Weight Update: Another Way Different from Dropout to Introduce Lazy Neurons in Image Recognition Tasks 7



Figure 1: Transitions of testing accuracy rate on CIFAR10. Dashed line denotes previous
method, and solid line denotes rotational-update. The whiskers indicate ± SD.

4.1.2 Results

Figure 1 illustrates the test accuracy progression for the naı̈ve VGG-16 and VGG-16 with
Rotational-update. The dashed and solid lines represent the accuracy of the the naı̈ve and
VGG-16 with Rotational-update, respectively. The lines’ whiskers depict the ± SD sam-
pling standard deviation over four runs.

Initially, the naı̈ve VGG-16’s accuracy increases rapidly, but by the 10th epoch, it lev-
els with the Rotational-update model. Post this point, while the naı̈ve VGG-16’s accuracy
shows marginal improvement, the Rotational-update model demonstrates a steady, albeit
slight, increase. By the 100th epoch, the Rotational-update model outperforms its counter-
part.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka8



Table 1: Testing Accuracy of six models at the 50th epoch.

Accuracy
1) Naı̈ve VGG-16 0.757
2) Rotational-update 0.772
3) Dropout 0.778
4) BN (Fully connected） 0.822
5) BN (Convolution) 0.866
6) BN (Fully connected and Convolution) 0.819

4.2 Comparison with Other Methods

We conducted a comparison of Rotational-update with dropout and batch normalization 
techniques. Like Rotational-update, dropout restricts the number of neurons updated, as we 
mentioned before. Batch normalization is a crucial method for enhancing the efficacy and 
stability of convolutional network architectures.

4.2.1 Conditions

We established a set of six distinct neural network models for comparative analysis to evalu-
ate the image recognition accuracy as outlined in section 4.1.1. These models are described 
as follows.

1. Naı̈ve VGG-16

2. VGG-16 with Rotational-update

The two models are the same used in section 4.1.1.

3. VGG-16 with dropout at the two fully connected layers except the last.

4. VGG-16 with batch normalization in the fully connected layers except the last

5. VGG-16 with batch normalization in all the convolutional layers

6. VGG-16 with batch normalization in the fully connected layers except the last and
all the convolutional layers

In this part of the research, while the hyperparameters remained consistent with those
detailed in section 4.1.1, the duration of the training was set at 50 epochs. The model
accuracies were compared at the 50th epoch, marking the point where further accuracy
improvements had ceased.

4.2.2 Results

Table 1 presents the test accuracies of six models at their 50th epoch. The abbreviation
”BN” within the table stands for Batch Normalization.

The table reveals that VGG-16 equipped with batch normalization in its convolutional
layers attained the highest level of accuracy. The Rotational-update model outperformed
the naı̈ve VGG-16, yet it did not surpass the accuracy of the remaining four models.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Rotation Weight Update: Another Way Different from Dropout to Introduce Lazy Neurons in Image Recognition Tasks 9



4.3 Combinational Use

It is possible to implement Rotational-updates, dropout, and batch normalization concur-
rently in a neural network architecture, prompting an evaluation of their combined efficacy.
The neural network architecture incorporating batch normalization in its convolutional lay-
ers demonstrated superior performance as indicated in table 1 of section 4.2. Therefore,
we verified the performance improvement by introducing Rotational-updates, dropouts, or
both into the neural network architecture with batch normalization.

4.3.1 conditions

We used four types of neural network models as follows.

1. Naı̈ve neural network architecture with batch normalization in all the convolutional
layers (BN model)

2. BN model with Rotational-update

3. BN model with dropout

4. BN model with rotational-update and dropout

We implemented Rotational-update and dropout in the two fully connected layers, exclud-
ing the final one.

We employed Resnet-110 [8] and Resnet-152 [8] as naı̈ve neural network architectures
in addition to VGG-16. ResNet-110 and ResNet-152 are variations of the ResNet (Residual
Network) architecture used in deep learning. These architectures are known for their depth,
with ResNet-110 having around 110 layers and ResNet-152 having approximately 152. The
critical feature of ResNet architecture is using ”residual connections” or ”skip connections,”
which help mitigate the vanishing gradient problem in deep networks. These connections
facilitate direct gradient passage across the network, enabling it to skip over one or more
layers.

The hyperparameters remained as outlined in section 4.1.1, with a modification to the
number of epochs, set at 50, aligning with section 4.2.1. We compared model accuracies at
the 50th epoch, identified as the point at which accuracy enhancements ceased.

4.3.2 Results

Table 2 displays the testing accuracy of four types of combinational use on VGG16, ResNet-
110, and ResNet-152. The table lists the average accuracy and the sample standard devia-
tion, calculated from ten repetitions of the image classification task for each architecture.

For each neural network, we observed the best combination of methods. For VGG16
and ResNet-110, the neural network with both Rotational-update and dropout resulted in
the highest accuracy. In the case of ResNet-152, the best performance was achieved with
Rotational-update and without dropout. The second-best performance was obtained with
dropout but without Rotational-update, indicating that using Rotational-update and dropout
exclusively was more beneficial in this case.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka10



Table 2: Testing Accuracy of the combinational models

without Rotational Update with Rotational Update
Naı̈ve NN without Dropout with Dropout without Dropout with Dropout
VGG16 0.7633 ± 0.0064 0.8197 ± 0.0037 0.7897 ± 0.0052 0.8680 ± 0.0057
ResNet-110 0.7534 ± 0.0100 0.7620 ± 0.0071 0.7576 ± 0.0103 0.7706 ± 0.0060
ResNet-152 0.7961 ± 0.0089 0.8019 ± 0.0082 0.8026 ± 0.0106 0.7984 ± 0.0085

4.4 Discussion

The three experiments have shed light on various characteristics of the Rotational-update
method.

As detailed in Section 4.1.1, this method impacts image recognition tasks significantly
when applied independently. It enhances accuracy in distinguishing images but at the ex-
pense of slower learning rates. The decrease in learning speed aligns with our expectations
because Rotational-Update decreases the number of neurons updated in each mini-batch.
The increase in final accuracy is linked to preventing overfitting, a principle also underlying
the effectiveness of Dropout [20].

In Section 4.2.1, a comparison was made between Rotational-update, dropout, and
batch normalization. Batch normalization emerged as the most accurate, followed by dropout,
while Rotational-update method showed the most minor performance. However, we can use
all three methods simultaneously.

In Section 4.3.1, an experiment was conducted to test the combined effectiveness of
these methods. The result shows that using Rotational-update and batch normalization to-
gether yielded the highest performance. Conversely, pairing Rotational-update with dropout
sometimes led to decreased accuracy, despite both methods improving accuracy when used
alone or with batch normalization.

The results from the experiments suggest that Rotational-update could substitute dropout
to enhance the performance of neural networks. Consequently, this method is anticipated
to become a fundamental technology in deep neural networks.

5 Conclusion

In our research, we concentrated on the weight updating process in deep learning train-
ing, introducing the concept of Rotational-updating. This technique involves rotating the
weight updates among neuron groups. It divides Neurons in a fully-connected layer into√

N groups of equal size, where N is the total number of neurons. Only the weights of
neurons in one group are updated during each mini-batch. A notable aspect of this method
is its compatibility with other techniques like batch normalization and dropout.

Rotational-update, similar to dropout, has distinct differences, which were clarified.
Training a neural network involves a three-stage process: the initial phase of forwarding
propagation, followed by backpropagation and concluding with updating neuron weights.
Rotational-update operates exclusively during the neuron weight update without impacting
the first two stages. Thus, all neurons participate in both forward and backpropagation. In
contrast, Dropout excludes neurons from all three stages. Additionally, neuron selection

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Rotation Weight Update: Another Way Different from Dropout to Introduce Lazy Neurons in Image Recognition Tasks 11



differs: Rotational-update pre-determines neuron groups before training, whereas Dropout
randomly selects neurons.

We employed the three neural networks VGG16, ResNet-110, and ResNet-152 for
CIFAR-10 image classification to assess the Rotational-update’s effectiveness. This ex-
periment revealed that integrating Rotational-update with Batch Normalization led to the
highest performance. However, combining Rotational-update with Dropout resulted in a
reduction of accuracy in ResNet-152. Based on these findings, we deduced that Rotational-
update could be a more effective alternative to dropout in improving neural network perfor-
mance.

In this study, we applied the Rotational-update method to relatively small-scale neural
networks. In future work, we plan to verify its effectiveness on larger-scale neural net-
works to assess its potential for broader applications. Additionally, in Rotational-update,
we divided N neurons in the fully connected layer into

√
N groups, which is analogous to

the dropout rate in the dropout technique. In dropout, tuning the dropout rate is essential
for performance improvement, and similar adjustments may be necessary for Rotational-
update. Therefore, we intend to investigate how changing the number of groups affects per-
formance, examining whether further optimization can enhance the efficacy of our method.

Acknowledgments

This research was financially supported by the Kansai University Fund for Research 2000,
and Domestic and Overseas Research Fund 2021.

References

[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934, 2020.

[2] W. Dai, C. Dai, S. Qu, J. Li, and S. Das. Very deep convolutional neural networks
for raw waveforms. In 2017 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 421–425. IEEE, 2017.

[3] N. Erfanian, A. A. Heydari, A. M. Feriz, P. Iañez, A. Derakhshani, M. Ghasemigol,
M. Farahpour, S. M. Razavi, S. Nasseri, H. Safarpour, et al. Deep learning appli-
cations in single-cell genomics and transcriptomics data analysis. Biomedicine &
Pharmacotherapy, 165:115077, 2023.

[4] N. Funabiki, Y. Takenaka, and S. Nishikawa. A maximum neural network approach
for n-queens problems. Biological Cybernetics, 76(4):251–255, 1997.

[5] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pp. 1440–1448, 2015.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 580–587, 2014.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural in-
formation processing systems, 27, 2014.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka12



[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

[9] I. Ilievski, T. Akhtar, J. Feng, and C. Shoemaker. Efficient hyperparameter optimiza-
tion for deep learning algorithms using deterministic rbf surrogates. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 31-1, 2017.

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp.
448–456. PMLR, 2015.

[11] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[13] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution using
a generative adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4681–4690, 2017.

[14] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

[16] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 7263–7271, 2017.

[17] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[18] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

[19] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[21] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Rotation Weight Update: Another Way Different from Dropout to Introduce Lazy Neurons in Image Recognition Tasks 13



[22] S. N. Yoichi Takenaka, Nobuo Funabiki. Maximum neural network algorithms for n-
queen problems. Journal of Information Processing (Information Processing Society
of Japan), 37(10):1781–1788, 1996.

[23] T. Yu and H. Zhu. Hyper-parameter optimization: A review of algorithms and appli-
cations. arXiv preprint arXiv:2003.05689, 2020.

[24] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

T. Hori, Y. Sekiya, Y. Takenaka14




