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Abstract

Data clustering is an unsupervised learning method that finds groups of similar features in 
a dataset without defining class labels. With the growing interest in big data, there is a need 
for techniques to speed up clustering algorithms. One clustering method that is well-known 
in the database domain is density-based spatial clustering of applications with noise (DB-
SCAN). Since the DBSCAN algorithm was first proposed, several speed-up methods have 
been introduced, such as the cell-based DBSCAN algorithm. The cell-based DBSCAN al-
gorithm divides the whole dataset into smaller cells and connects them to form clusters. In 
this paper we propose a novel clustering algorithm called the anytime cell-based DBSCAN 
algorithm. The proposed algorithm connects some randomly selected cells and calculates 
the clustering result at high speed. The process is then repeated to improve the clustering 
accuracy and obtain accurate results. In this paper, we report experimental results on syn-
thetic and real datasets showing that the proposed algorithm can calculate clustering results 
with high accuracy at high speed.

Keywords

1 Introduction

The widespread popularity of big data has resulted in the need for speed-up techniques 
for data clustering. Data clustering is an unsupervised learning method that can determine 
groups with similar features as clusters from given datasets. It is an important technique 
that is universally used in big data analysis because it can discover characteristic groups 
from datasets whose characteristics are unknown.

Density-based clustering algorithms are some of the simplest but most robust clustering 
techniques, automatically extracting an arbitrary number of clusters. Density-based spatial 
clustering of applications with noise (DBSCAN) has been proposed as a typical density-
based clustering algorithm [1, 2]. The key concept of the DBSCAN algorithm is that for 
each data point in a cluster, the neighborhood with a user-defined radius must contain at 
least a given number of points, i.e., the neighborhood density must exceed a predefined
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threshold MinPts. If the number of data points in the neighborhood of a data point exceeds 
the threshold MinPts, that data point is called a core data point. The DBSCAN algorithm 
then forms clusters by connecting these core data points. The DBSCAN algorithm is used 
in various applications to automatically extract clusters of any shape without setting the 
number of clusters in advance.

The DBSCAN algorithm has two computationally expensive processes: (1) range queries 
to determine the neighborhood of each data point and (2) label propagation to form clus-
ters by connecting the core data points. When the DBSCAN algorithm uses a non-indexed 
dataset, the computation time required for an exact algorithm is O(n2). Therefore, a num-
ber of DBSCAN algorithm speed-ups have been developed. Such works can be categorized 
as exact algorithms, approximate algorithms, or anytime algorithms. Recently, cell-based 
DBSCAN algorithms [3, 4, 5] have been developed as exact and approximate algorithms, 
and AnyDBC [6, 7] was developed as an anytime algorithm. These algorithms are sped up 
versions of the DBSCAN algorithm.

In a cell-based DBSCAN algorithm, the entire dataset is divided into cells. For two-
dimensional data, each cell is a ε/

√
2× ε/

√
2 square. If the number of data points in a

cell is larger than MinPts, all data points in the cell are automatically determined to be core
data points. This cell division significantly reduces the number of range queries required
to determine the core data points. A cell-based DBSCAN algorithm connects cells to form
clusters. Two cells are connected if and only if there is a pair of core data points within
distance of ε in the cell. In a cell-based DBSCAN algorithm, clusters are formed based
on the cells, which results in faster label propagation. In our previous work, we used a
minimum bounding rectangle (MBR) to speed up the process of connecting cells [8, 9].
However, in this case, the clustering results cannot be output until all the processing is
completed.

AnyDBC is a kind of anytime DBSCAN algorithm. An anytime algorithm outputs
approximate results quickly and improves them continuously [10]. An anytime algorithm
for data clustering can output clustering results of a certain accuracy at any time, finally
outputting exact clustering results. AnyDBC performs a range query on randomly selected
data points and calculates the clustering result at that time. It then executes range queries on
some data points again to form clusters, and the accuracy of the clustering results increases
as the process progresses. However, the processing time of AnyDBC is unstable, as it can
be large depending on the distribution of data and randomly selected data points.

In this study, we developed an anytime cell-based DBSCAN algorithm under Euclidean
distance. The anytime cell-based DBSCAN algorithm is fast, stable, and can output clus-
tering results with consistent accuracy at any time. The contributions of this paper are as
follows;

• We propose a novel clustering algorithm called the anytime cell-based DBSCAN
algorithm. The proposed algorithm connects several randomly selected cells and
calculates the clustering result at high speed. The proposed algorithm repeats the
process of connecting randomly selected cells and calculating the clustering result to
improve the accuracy of the clustering result and finally obtain the exact clustering
result.

• Through evaluations on synthetic and real datasets, we demonstrate that the proposed
algorithm outperforms conventional algorithms.

The remainder of this paper is organized as follows. In Section 2, related work is
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reviewed. In Sections 3 and 4, we explain DBSCAN and cell-based DBSCAN, respectively.
In Section 5, we present the proposed anytime cell-based DBSCAN algorithm. In Section
6, we report our experiments. Finally, Section 7 concludes the paper.

2 Related Work

Clustering techniques play an important role in the analysis of big data, and there has been
much research on speeding up the process. The DBSCAN algorithm was first introduced by
Ester et al. [1, 2] and applies the concept of density-based clusters. The DBSCAN algorithm
has two computationally expensive processes: (1) range queries to determine the neighbor-
hood of each data point and (2) label propagation to connect core data points to form clus-
ters. Therefore, various DBSCAN speed-up algorithms have been developed. Works related
to speeding up the DBSCAN algorithm include exact algorithms [11, 12], which guarantee
exact clustering results, approximate algorithms [13, 14, 15, 16, 17, 18, 19], which yield
approximate clustering results, and anytime algorithms, which quickly output approximate
clustering results and finally output exact clustering results. In general, approximate algo-
rithms are faster than exact algorithms, but the clustering results obtained may differ from
the exact clustering results, depending on the parameters and data distribution.

Recently, the cell-based DBSCAN algorithm [3, 4, 5, 8, 9] has been developed as an
exact and approximate algorithm. The cell-based DBSCAN algorithm can significantly
reduce the number of range queries and speed up label propagation because it forms clusters
based on cells. However, the clustering results cannot be output until all the processing is
complete. Therefore, the usability must be improved by outputting provisional clustering
results even if the processing is not completed.

AnyDBC was proposed as an anytime DBSCAN algorithm [6, 7]. AnyDBC performs
range queries on a few randomly selected data points and calculates the clustering results
at that time. It then repeats this process efficiently to form clusters. The clustering results
of AnyDBC become increasingly accurate as the process is repeated. Moreover, AnyDBC
shows that by not performing a range query on a data point that does not change the clus-
tering result, the number of range queries can be reduced and the exact clustering result can
be approached efficiently.

However, the processing time of AnyDBC is unstable and can be large depending on the
distribution of the dataset and randomly selected data points. In addition, AnyDBC requires
a large number of range queries, so it is necessary to construct an index structure such as
a kd-tree. In other words, AnyDBC requires more memory than the cell-based DBSCAN
algorithm. In this paper, we propose a novel anytime cell-based DBSCAN algorithm with
fast and stable processing time. To the best of our knowledge, this is the first time cell-based
DBSCAN has been extended to an anytime algorithm.

3 DBSCAN

In this section, the definitions used for DBSCAN are briefly reviewed. Let DP be a set of
data points in a d-dimensional space. In DBSCAN, the ε-neighborhood of a data point is
defined as the data points in the neighborhood of a user-defined radius ε .

Definition 1 (ε-neighborhood Nε(d p)). The ε-neighborhood of data point d p, denoted by
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Density-based cluster

Figure 1: Example of definitions (|Nε(d p1)|= 4，|Nε(d p2)|= 5，|Nε(d p4)|= 3)

Nε(d p), is defined as

Nε(d p) = {dq ∈ DP|dist(d p,dq)≤ ε}, (1)

where the function dist returns the Euclidean distance between data points d p and dq.

Definition 2 (Core data point and Border data point). A data point d p is called a core 
data point if there is at least a given number of data points, MinPts, in the ε -neighborhood 
Nε (d p) (|Nε (d p)| ≥ MinPts). Otherwise, if |Nε (d p)| < MinPts, d p is called a border data 
point.

Definition 3 (ε -Density-based reachable). Suppose that there is a data point sequence 
(d p1,d p2, · · · ,d pn). Data point d pn is ε -density-based reachable from d p1 if there is a 
sequence such that

(1) d p1,d p2, · · · ,d pn−1 are core data points and

(2) d pi+1 is in the ε -neighborhood of d pi (d pi+1 ∈ Nε (d pi)).

An illustrative example of the above definitions is shown on Figure 1. Suppose that 
MinPts = 4. In Figure 1, data points d p1 and d p2 are core data points because Nε (d p1) = 4 
and Nε (d p2) = 5. Therefore, dt2 is ε -densely-based reachable from dt1, and dt3, which is 
in the ε -neighborhood of dt2, is also ε -densely-based reachable from dt1. In contrast, the 
data point d p4 is a border data point because Nε (d p4) = 3. It is ε -density-based reachable 
from dt1 to dt4, but not ε -density-based reachable from dt1 to dt5.

In DBSCAN, density-based clusters are formed by recursively connecting data points 
that are ε -density-based reachable from the core data point. Data points that are not ε -
density-based reachable from any core data point are called noise. A density-based cluster
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consists of two types of data: core data points, which are mutually density-based reachable,
and border data points, which are in the ε-neighborhood of the core data point. A density-
based cluster is defined as follows.

Definition 4 (Density-based cluster). A density-based cluster DC in a data point set satisfies
the following restrictions:

(1) ∀d p, dq ∈ DP, dq is in DC if and only if d p ∈ DC and dq is ε-density-based reachable
from d p.

(2) ∀d p, dq, do ∈ DC, d p and dq are ε-density-based reachable from do.

In the example of Figure 1, the data points surrounded in blue form a density-based
cluster.

4 Cell-based DBSCAN

In this section, we present cell-based DBSCAN.

4.1 Overview

Cell-based DBSCAN is divided into four main steps: cell division, determining the core
data points, connecting cells, and determining the border data points or noise. When all
steps are complete, all data points are classified into a cluster or as noise. An outline of
these four main steps is as follows:

• In the cell division step, the whole dataset is divided into cells. Cell-based DBSCAN
performs clustering based on the divided cells.

• In the core data point determination step, each data point is analyzed to verify if it is
a core or non-core data point.

• In the connecting cells step, cell-based DBSCAN connects the neighborhood cells to
form clusters.

• In the border data point or noise determination step, all non-core data points are
analyzed to verify if they are border data points or noise.

4.2 Cell Division

In the first step, cell-based DBSCAN divides the whole dataset into small cells, where each
cell is a ε/

√
d × ε/

√
d square. This cell size is chosen because it facilitates the determi-

nation of whether a cell is dense. Then, the algorithm assigns each data point to a cell.
Figure 2 shows an example of cell-based DBSCAN. In Figure 2, the dataset is divided into
ε/

√
2× ε/

√
2 because d = 2.
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Output clustering result

Cluster 2

Cluster 1

Figure 2: Example of cell-based DBSCAN

4.3 Core Data Point Determination

This step determines whether each data point is a core or non-core data point. If the number
of data points in a cell Ci is |Ci| ≥ MinPts, all data points in Ci are determined to be core
data points automatically because the distance between data points in the same cell is at
most ε . In contrast, if |Ci|< MinPts, data points belonging to cell Ci will be determined as
core or non-core by calculating the distance to the data points in the neighborhood cells. In
Figure 2, where MinPts = 4, there are 12 cells that exceed the value of MinPts, as indicated
by gray shading. All data points in these cells are determined to be core data points. A data
point in another cell is determined to be a core or non-core point by calculating the distance
between itself and the data points in the neighborhood cells.

4.4 Connecting Cells

In this step, neighborhood cells are connected to form clusters. These cells are connected
if and only if an arbitrary pair of core data points in two cells are within ε . Cell-based
DBSCAN checks whether cells are connected for all cells containing core data points. The
data points in two connected cells are ε-densely-based reachable, and the data point set
is a density-based cluster. In Figure 2, two clusters are formed on the upper left side and
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Step 1Step 0 Step 2

Cluster 1 Cluster 2

Calculate provisional clustering result Output final clustering result

Cluster 1 Cluster 2

Figure 3: Example of connecting randomly selected cells

lower right side. Our proposed algorithm performs high-speed checking using an MBR, as
proposed in [8, 9].

4.5 Border Data Point or Noise Determination

Finally, cell-based DBSCAN determines if the non-core data points are border data points
or noise. If there is at least one core data point in the ε-neighborhood of a data point
Nε(d pi), it belongs to the cluster of the core data point because d pi is a border data point.
In contrast, a data point d pi is noise if there are no core data points in Nε(d pi). In Figure 2,
a core data point d p3 can be observed in Nε(d p1). That is, d p1 belongs to the cluster of the
core data point d p3. In contrast, there are no core data points in Nε(d p2). Therefore, d p2
does not belong to a cluster and is deemed to be noise. After processing this step, cell-based
DBSCAN outputs the clustering result, as shown in Figure 2.

5 Proposed Algorithm

In this section, we present the proposed anytime cell-based DBSCAN algorithm.

5.1 Overview

The proposed anytime cell-based DBSCAN algorithm connects some randomly selected
cells. Then, it determines whether the data points in the cells other than the connected cells
are border data points or noise and calculates a clustering result. This process is repeated
multiple times; with each repetition, the clustering accuracy improves, and it finally yields
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Algorithm 1 Anytime cell-based DBSCAN algorithm
Input: DP, d, ε , MinPts, p
Output: ClusterList，NoiseList

1: /*Cell division*/
2: Create CellList by dividing a set of data points into cells, where each cell is an ε/

√
d×

ε/
√

d square
3: /*Core data point determination*/
4: for i = 0 to |CellList| do
5: Determine whether each data point in a cell Ci is a core or non-core data point
6: end for
7: Create a cell pair list CellPairList
8: for i = 0 to p do
9: ClusterList = ϕ，NoiseList = ϕ

10: /*Connecting randomly selected cells*/
11: for j = 0 to |CellPairList|/p do
12: Randomly select a cell pair CP from CellPairList
13: If it is determined that the cell pair CP can be connected, then it is connected
14: end for
15: Create ClusterList, i.e., a cluster set based on data points in the connected cells
16: /*Border data point or noise determination*/
17: for j = 0 to |DP| do
18: if d p j does not belong to a cluster and Nε(d p j) has a core data point belonging to

a cluster then
19: Add d p j to the cluster of the core data point
20: else
21: Add d p j to NoiseList
22: end if
23: end for
24: Save ClusterList and NoiseList as the current clustering result
25: end for
26: return ClusterList，NoiseList

the exact clustering result. If the user stops the algorithm to get the clustering result during
the repetitions, the clustering result calculated at that instance is given as the output.

5.2 Connecting Randomly Selected Cells

In this section, we describe our method to connect the randomly selected cells used by the
proposed algorithm. Let p be a parameter denoting the number of times that the clustering
result is calculated. First, the proposed algorithm creates a cell pair list CellPairList. Then,
a cell pair is randomly selected from CellPairList, and the proposed algorithm determines
whether the cell pair can be connected. If the cell pair can be connected, it is. Each cell pair
is selected |CellPairList|/p times, and the proposed algorithm determines whether it is a
data point or noise; finally, it calculates the clustering result. The clustering result calculated
at the p-th instance has already checked the connection between all cells of CellPairList;
therefore, it outputs the exact clustering result.

Figure 3 shows an example of connecting randomly selected cells. In this example,
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Table 1: Detail of datasets

Dataset Dimensions Number of Data Points
SSD2 2 10,000,000
SSD3 3 10,000,000
SSD5 5 10,000,000
SSD7 7 10,000,000

PAMAP2 4 3,850,505
FARM 5 3,627,086

HOUSEHOLD 7 2,049,280

p = 2. Some randomly selected cells are connected to form two clusters in Step 1. The
proposed algorithm determines the border data points or noise from the remaining data
points in Step 1, and outputs the provisional clustering result. During Step 2, if the user
stops the algorithm, the provisional clustering result calculated in Step 1 is output. In Step
2, all cell pairs have been checked and connected, and the final exact clustering result is
obtained.

5.3 Algorithm

In this section, we describe the overall flow of the proposed algorithm, as shown in Algo-
rithm 1. Algorithm 1 receives a set of data points DP in a d-dimensional space, along with
the parameters ε , MinPts, and p. Then, it outputs a cluster list ClusterList and noise list
NoiseList. First, the proposed algorithm divides a set of data points into cells, where each
cell is a ε/

√
d×ε/

√
d square (line 2). Next, the core data points are determined (lines 4 to

6). Then, the algorithm creates CellPairList (line 7). After that, it connects the randomly
selected cells, and creates ClusterList, which is a cluster set based on data points in the
connected cells (lines 8 to 15). Finally, it determines the border data points and noise and
creates NoiseList (lines 17 to 23). The proposed algorithm repeats this process p times
(lines 8 to 25). If the user stops the algorithm to get the clustering result during the process-
ing, ClusterList and NoiseList saved at that instance (line 24) are given as outputs. If the
algorithm is executed the completion, the final exact ClusterList and NoiseList are given as
outputs (line 26).

6 Experiments

In this section, we report our experiments.

6.1 Setups

To evaluate the proposed algorithm, we conducted experiments using synthetic and real
datasets. We compared the results obtained using the proposed anytime cell-based DB-
SCAN algorithm (denoted by AnyCDBC), exact cell-based DBSCAN algorithm with the
MBR criteria (denoted by CDBC) [9], and the anytime algorithm with single processing for
DBSCAN (denoted by AnyDBC) [6]. We analyzed the processing times and normalized
mutual information (NMI) [20] to compare them with the ground truths. We implemented
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Figure 4: Experimental results of AnyCDBC and CDBC using synthetic datasets

AnyCDBC and CDBC using C++, g++ 7.4.0 as the compiler, and -O3 as the option on a
PC with an Intel Core i7-8700 @3.2 GHz CPU and 16 GB RAM. We used the binary file
of AnyDBC provided by the authors.

In the experiments, we used both synthetic datasets generated by the data generator
scheme of [4] and real datasets. Table 1 lists the details of each dataset. We used syn-
thetic datasets SSD2, SSD3, SSD5, and SSD7 of dimensions d = 2, 3, 5, and 7, respec-
tively, each with 10,000,000 data points. Real datasets PAMAP2[21], FARM[22], and
HOUSEHOLD[23] of dimensions d = 4, 5, and 7, respectively, were used. The distri-
bution of synthetic datasets has some dense parts, and the amount of noise is small. The
distribution of the real datasets is relatively sparse, and the amount of noise is large. The pa-
rameters of AnyCDBC, CDBC, and AnyDBC were set to MinPts = 100, and ε was varied
from 5,000 until the clustering result was a single cluster. The parameter p of AnyCDBC
was set to p = 10.

6.2 Experimental Results using Synthetic Datasets

Figure 4 shows the experimental results of AnyCDBC and CDBC using the synthetic
datasets with ε = 5,000. The experimental results of AnyCDBC show transitions in the
NMI score of the clustering result calculated ten times because p = 10. From the exper-
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Figure 5: Experimental results of AnyCDBC and CDBC using synthetic datasets under the 
influence of ε

imental results of CDBC, the NMI score was 1.00 because CDBC is the exact DBSCAN 
algorithm. In Figure 4, it can be observed that AnyCDBC could calculate the eighth cluster-
ing result of SSD2, while for the other datasets, it could calculate the ninth clustering result 
faster than CDBC. The eighth clustering result of SSD2 and ninth clustering result of other 
datasets are already the exact clustering results. That is, these results demonstrate that Any-
CDBC could calculate the exact clustering results faster than CDBC. Moreover, the NMI 
score of the first clustering result for SSD3 was low; the first to sixth results for SSD2 were 
also low. However, the other clustering results were the same as the exact clustering results, 
or the NMI score was over 0.98. Owing to the use of synthetic datasets, it was found that 
AnyCDBC can calculate almost exact clustering results at high speed.

Figure 5 shows the experimental results of AnyCDBC and CDBC using synthetic datasets 
under the influence of ε . The experimental results of AnyCDBC show the processing time 
to calculate the clustering results for the first, fifth, and final tenth times. In Figure 5, the 
processing time for calculating the first and fifth results of AnyCDBC is faster than the 
processing time of CDBC. In addition, there is no significant difference in processing time 
when comparing the final tenth results of AnyCDBC and CDBC. Even when ε is varied, 
AnyCDBC is able to calculate clustering results close to the exact clustering result at high

Copyright c⃝ by IIAI. Unauthorized reproduction of this article is prohibited.

Anytime Cell-based DBSCAN Algorithm that Connects Randomly Selected Cells and Its Performance Evaluation 11



0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 10 20 30 40 50

N
M

I 
sc

o
re

Processing time [s]

AnyCDBC CDBC

PAMAP2

0.98

0.984

0.988

0.992

0.996

1

1.004

0 200 400 600 800

N
M

I 
sc

o
re

Processing time [s]

AnyCDBC CDBC

FARM

0.984

0.988

0.992

0.996

1

1.004

0 100 200 300 400 500 600

N
M

I 
sc

o
re

Processing time [s]

AnyCDBC CDBC

HOUSEHOLD

Figure 6: Experimental results of AnyCDBC and CDBC using real datasets

speed, while the final clustering result is almost equal to CDBC in processing time.
In the experimental results on SSD2 with ε = 16250 in Figure 5, the processing time of

the first clustering result of AnyCDBC is almost equal to that of the tenth clustering result.
The reason for this is that there was a pair of cells that took 407s to determine if the cells
were connected or not. This connecting decision occupied most of the total processing time,
and the connecting decision was performed before the first clustering result was calculated.
In this manner, when a large amount of processing time is required for a pair of cells, there
is no difference in processing time between the provisional and final clustering results.

6.3 Experimental Results using Real Datasets

Figure 6 shows the experimental results with ε = 5000 for AnyCDBC and CDBC using real
datasets. In Figure 4, it can be observed that AnyCDBC can calculate the fourth clustering
results for PAMAP2 and FARM and the third clustering result for HOUSEHOLD faster
than CDBC. The NMI scores of the fourth clustering results for PAMAP2 and FARM and
the third clustering results for HOUSEHOLD are over 0.99. In this case, totals of 271, 12,
and 16 data points were misclassified as noise on PAMAP2, FARM, and HOUSEHOLD,
respectively. AnyCDBC showed that almost exact clustering results can be calculated at
high speed.
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Figure 7: Experimental results of AnyCDBC and CDBC using real datasets under the in-
fluence of ε

However, on the real datasets, the processing time for the final clustering results us-
ing AnyCDBC was much slower than that using CDBC. Significant processing time was
required to determine border data points and noise, which is performed every time the clus-
tering result is calculated because the real datasets are sparsely distributed and contain a
large amount of noise. If the number of times p to calculate the clustering result is small,
this problem can be solved, but the usefulness of anytime clustering algorithm will decrease.
In the proposed algorithm, the clustering result is calculated by connecting some cells.

Figure 7 shows the experimental results of AnyCDBC and CDBC using real datasets
under the influence of ε . In Figure 7, the processing time for calculating the first clustering
results of AnyCDBC is faster than that of CDBC, and there is no significant difference
between the fifth clustering results of AnyCDBC and CDBC. Moreover, the larger ε is, the
smaller the difference between the final clustering results of AnyCDBC and CDBC. This
is because the larger ε is, the less noise there is, and the processing time for the border
data points and noise process is reduced. AnyCDBC proved that more effective for larger ε
when the dataset is sparsely spread over the whole space, such as in real datasets.
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Table 2: Experimental results of AnyDBC

SSD2 SSD3 SSD5 SSD7 PAMAP2 FARM HOUSEHOLD
1 5900.6 44406 86.25 634.71 67.48 207.26 41.07
2 5995.1 44407 86.76 636.92 67.12 206.33 40.93
3 92694 50878 29.31 300.05 66.75 13855 40.18
4 201.06 47579 27.49 224.09 65.78 238.69 40.34
5 29248 51683 584.92 350.95 67.09 126.01 42.19
6 2066.0 81659 67.03 321.90 71.01 115.11 39.95
7 902.57 41263 33.09 348.08 73.52 112.51 40.44
8 861.77 61320 84.07 461.15 72.85 145.40 44.34
9 795.89 40832 35.72 351.06 65.41 107.74 41.33
10 792.21 42476 113.95 104.06 70.20 129.32 40.57

6.4 Experimental Results of AnyDBC

Table 2 lists the processing times using ε = 5000 required to calculate the final clustering
results for AnyDBC. In Table 2, the processing time for AnyDBC is for ten runs because
the processing times varied significantly between runs. AnyDBC is faster than AnyCDBC
on the HOUSEHOLD dataset, but its processing time for other datasets is either faster or
slower. For example, the processing times on SSD2, SSD3, and FARM are not stable for
each run because if a large amount of data cannot be covered by a range query performed
by randomly selecting the data, the number of range queries increases and more processing
time is required. In particular, the processing time required by AnyDBC on SSD2 and SSD3
was significantly greater than that required by AnyCDBC. AnyCDBC randomly selects cell
pairs for connecting, but because the number of cell pairs to be connected is equal for each
execution of the algorithm, there is no significant difference in the final processing time
for each run of the algorithm. Thus, AnyCDBC can execute the anytime algorithm for
DBSCAN faster and more stable than AnyDBC.

7 Conclusion

This paper proposed a novel clustering algorithm called anytime cell-based DBSCAN. The
proposed algorithm connects some randomly selected cells and calculates the clustering re-
sult at high speed. It repeats this process, and with each subsequent repetition, the accuracy
of the clustering result improves until it becomes exact. The previous cell-based DBSCAN
algorithm [9] cannot output until all the processing is complete. The proposed algorithm
improves the usability by outputting provisional clustering results even if the processing is
not completed.

Experimental results showed that the proposed algorithm can quickly calculate cluster-
ing results close to the exact ones when using synthetic datasets, while the final clustering
results can be calculated in almost the same processing time as the previous exact cell-based
DBSCAN algorithm [9]. The proposed algorithm using real datasets was able to quickly
calculate clustering results close to the exact ones, but the final clustering results took much
more processing time to obtain than for the previous exact cell-based DBSCAN. However,
the larger the parameter ε is, the more effective the proposed algorithm is on real datasets.
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The processing time of the previous anytime DBSCAN algorithm [6] is unstable and can
be large depending on the distribution of the dataset and randomly selected data points, but
the proposed algorithm was faster and more stable than the previous anytime DBSCAN
algorithm.

In our future work, we intend to evaluate the proposed algorithm using other real
datasets and develop an algorithm to calculate the final clustering result using real datasets
at high speed. If the algorithm can determine noise early in the process, the algorithm will
be faster. Moreover, we intend to develop a parallel processing method for the proposed
algorithm.
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