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Abstract

In Japan, the electric power market has been fully deregulated since April 2016, and many
Independent Power Producers have entered the market. Companies participating in the
market conduct transactions between market participants to maximize their profits. When
companies consider maximization of their profit, it is necessary to optimize the operation of
generators in consideration of market transactions. However, it is not easy to consider trad-
ing in the market because it contains many complex and uncertain factors. The number of
participating companies continues to increase, and research on the operation of generators
in consideration of market transactions is an important field. The power market comprises
various markets such as the day-ahead and adjustment markets, and various transactions
are performed between participants. We discuss the day-ahead market trading. In such a
market, electricity prices and demands vary greatly depending on the trends in electricity
sell and purchase bidding. It is necessary for business operators to set operational schedules
that take fluctuations in electricity prices and demand into account. We consider an opti-
mization model of generator operation considering market transactions and apply stochastic
programming to solve the problem. In addition, we demonstrate that scheduling based on
the stochastic programming method is better than conventional deterministic planning.

Keywords: Market transaction, Optimization, Stochastic programming, Unit commitment

1 Introduction

The electric power market has been fully deregulated in Japan, and many independent power
producers have entered the market. Companies conduct transactions between market partic-
ipants to maximize their profits. When companies consider maximization of their profits, it
is necessary to optimize the operation of generators in consideration of market transactions.

Cerisola et al.[1] proposes a method for optimizing generator operations for electric util-
ities in electricity deregulation markets. Also, Shiina and Watanabe[2] propose a method
to solve the unit commitment (UC) problem considering the market transactions using the
Lagrangian relaxation method. Also, Fukuba et al.[3] proposes a method to solve an opti-
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mization model for operation planning using stochastic programming by introducing pho-
tovoltaic power generation as renewable energy.

However, it is not easy to consider trading in the market because it contains many com-
plex and uncertain factors. The number of participating companies continues to increase,
and research on the operation of generators in consideration of market transactions is an
important field.

The power market comprises various markets such as the day-ahead and adjustment
markets, and various transactions are performed between participants. We assume the day-
ahead market trading at Japan Electric Power Exchange (JEPX). In such a market, electric-
ity prices and demands vary greatly depending on the trends in electricity sell and purchase
bidding. It is necessary for business operators to set operational schedules that consider
fluctuations in electricity prices and demand. Depending on the shortage or excess of power
according to the plan, the electricity supplier buys or sells power in the market. In the case
of a shortage of power in the market, the price may rise, and the supplier has to pay a
substantial amount to buy the power.

In the day-ahead market, the daily market is divided into 30-minutes zones, and the
supply side and the demand side bid at each time zone in a situation where the market status
of other participants is unknown. A demand and a supply curve are created by accumulating
the bidding amount of each company in the price. The price and the electric energy at the
intersection of the curves are the transactions actually performed in the market; the price is
termed as the contract price, and the transaction volume at that time is the contract volume.

Offer bids with a price lower than the contract price and a purchase bid with a price
higher than the contract price are traded at the contract price, and offer bids with a price
higher than the contract price and purchase bids with a price lower than the contract price
are rejected. The demand curve moves right when the volume of bids rises. The supply
curve moves left when the volume decreases. In these cases, the contact price rises.

Further, fuel prices are affected by various factors in the market. We consider the total
bidding volume on the demand and supply sides, the fuel cost and the effect of the passage
of time, and the fluctuations in the contract price and volume due to the fluctuation of the
total bidding volume in a short period of time. Also, the electricity demand are are affected
by various factors such as temperature, weather and disaster. Therefore, estimation of the
electricity demand is so difficult.

We consider an optimization model of generator operation taking market transactions
into account and applying stochastic programming to solve the problem. In addition, we
show that scheduling based on the aforementioned method is better than conventional de-
terministic planning. Mikami et al. [6] proposed a solution to unit commitment problem
considering market transaction .In this model, we improve computational efficiency with
L-shaped method based on stochastic linear programming problem with recourse and lin-
ear approximation.

2 Demand and Supply Curves

The contract price and volume are determined from the demand curve formed by the buying
bid on the demand side and the supply curve formed by the selling bid on the supplier side.
However, JEPX discloses the total bid volume, contract volume, and contract price in each
market every hour, but does not disclose the bidding volume and price of each participant.
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Therefore, actual demand and supply curve data cannot be obtained. The demand and
supply curves are estimated based on the data released by JEPX[9], and we present the
supply and demand curve model of JEPX obtained by the estimation. This study uses the
model by Yamaguchi [9].

Random variable

qM
b Total purchase bidding volume[MWh/h]

Variable

prices Offer bid price[$ /MWh]

priceb Purchase bid price[$ /MWh]

qs Offer bid volume[MWh/h]

qb Purchase bid volume[MWh/h]

Parameter

qM
s Total offer bidding volume[MWh/h]

f Fuel price[$ /t](use LNG price for fuel price)

t Trend term (natural number that increases by 1 with the passage of business days)

a0 Constant term in the supply curve

a1 Coefficient of offer bidding volume in the supply curve

a2 Coefficient of total offer bidding volume in the supply curve

a3 Coefficient of fuel cost in the supply curve

b0 Coefficient of constant term in the demand curve

b1 Coefficient of bidding purchase volume in the demand curve

b2 Coefficient of total purchase bidding volume in the demand curve

b3 Coefficient of trend term in the demand curve

b4 Coefficient of fuel price in the demand curve

Supply curve

prices = a0 +a1 ·qs −a2 ·qM
s +a3 · f (1)

Demand curve
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priceb = b0 +b1 ·bs −b2 ·qM
b +b3 · t +b4 · f (2)

Price and volume

price =
b1(a2 ·qM

s −a0 −a3 · f )−a1(b2 ·qM
b −b0 −b3 · t −b4 · f )

a1 −b1
(3)

volume =
(a0 −a2 ·qM

s +a3 · f )− (b0 −b2 ·qM
b +b3 · t +b4 · f )

b1 −a1
(4)

We derive the contract price and volume based on the estimated demand and supply curves.
By identifying the intersection point of the curves, the price at the point where qs = qb
becomes the contract price, and the volume of transactions at that time becomes the contract
volume. Fig.1 shows the relationship between demand and supply curves.

Figure 1: Demand and supply curves

3 Model Formulation

The purpose of the generator operation plan in consideration of market transactions is to sat-
isfy the operation constraints of the generators while taking fluctuations in electricity prices
and demand into account, calculating the costs necessary for the operation of the generators,
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such as fuel and startup costs, from the revenues of the company, and maximizing (profit)
excluding electricity purchase costs.

The conventional UC problem without considering the market requires that all the elec-
tricity demands be met by the own generator. In such a case, a new generator is often
operated additionally to meet the peak demand, which leads to an increase in the total cost.
When considering market transactions, the company can purchase electricity from other
businesses. Depending on the value of the demand, the total cost can be reduced by sup-
plementing the electricity demand by purchasing electricity from the market rather than by
starting a new generator. Therefore, when the total output of the generators operated by the
utility is less than the demand, the shortage can be purchased from the market. The genera-
tor commitment pattern is the same for all scenarios, and the generator output and electricity
changes for scenario s. The formulation and definition of symbols used is described in the
following subsections.

3.1 Definition

Variable

xs
it Output of unit i at time period t in scenario s

ys
t Power purchase amount at time t in scenario s

uit Variable indicating the commitment state of unit i at time t

Parameter

I Number of units

T Time

S Number of scenarios

ps Probability of scenario s (∑S
s=1 ps = 1)

Ks
t Electricity price at time t in scenario s

ds
t Electricity demand at time t in scenario s

Qi Maximum output of unit i

qi Minimum output of unit i

Ri Upper limit of the output fluctuation of unit i

ri Lower limit of the output fluctuation of unit i

Li Minimum time that must be continuously on when unit i starts

li Minimum time that must be continuously off when unit i stops

Function

fi(xs
it) Fuel cost in unit i(quadratic function of xs

it)

gi(ui,t−1,ui,t) Startup cost for unit i(function of uit)
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3.2 Formulation

(UC) min
S

∑
s=1

ps

(
T

∑
t=1

Ks
t ys

t +
I

∑
i=1

T

∑
t=1

fi(xs
it)uit

)
+

I

∑
i=1

T

∑
t=1

gi(ui,t−1,ui,t) (5)

s.t.
I

∑
i=1

xs
it + ys

t ≥ ds
t , t = 1, · · · ,T,s = 1, · · · ,S (6)

ys
t ≥ 0, t = 1, · · · ,T,s = 1, · · · ,S (7)

qiuit ≤ xs
it ≤ Qiuit , i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (8)

ri ≤ xs
it − xs

it−1 ≤ Ri, i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (9)

uit −ui,t−1 ≤ uiτ ,τ = t +1, · · · ,min{t +Li −1,T}, i = 1, · · · , I, t = 2, · · · ,T (10)

ui,t−1 −uit ≤ 1−uiτ ,τ = t +1, · · · ,min{t + li −1,T}, i = 1, · · · , I, t = 2, · · · ,T (11)

uit ∈ {0,1}, i = 1, · · · , I, t = 1, · · · ,T (12)

The objective of (5) is the minimization of the expected value of the cost. Cost is the
sum of the electricity purchase, fuel, and startup costs. Since the commitment state does
not change for each scenario, the startup cost does not consider the occurrence probabil-
ity of each scenario. On the contrary, the fuel and electricity purchase costs consider the
occurrence probability of each scenario since these values change for each scenario.

Inequality (6) is a constraint that the sum of the total output of the units and the elec-
tricity purchase amount at time t in scenario s satisfies the electricity demand.

Inequality (7) is a constraint that the electricity purchase amount at time t in scenario s
is greater than or equal to 0.

Inequality (8) are the upper and lower limits of generator output, while inequality (9)
indicates those of the output fluctuation of the generator.

Inequality (10) indicates the minimum time that must be continuously on after unit i is
turned on, and inequality (11) indicates the minimum time that must be continuously off
after unit i is turned off.

Constraint (12) represents the 0–1 condition of the decision variable uit . If the total
power output by unit i is less than the demand at time t in scenario s, it is assumed that the
demand is compensated by purchasing electric power.

4 Solution

4.1 L-shaped method

We used the L-shaped method, which is used to efficiently obtain a solution to a stochas-
tic programming problem including second decision variables, to solve the UC problem.
Muckstadt and Koenig [7] used a deterministic model for the UC problem, while Takriti et
al. [8] showed a model that considered the variation in electricity demand.
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We first form the basic two-stage stochastic linear programming problem with recourse
as (SPR).

(SPR): min c⊤x+Q(x)
subject to Ax = b

x ≥ 0
where Q(x) = Eξ̃ [Q(x, ξ̃ )]

Q(x,ξ ) = min{q⊤y(ξ ) |Wy(ξ )≥ ξ −T x,y(ξ )≥ 0},ξ ∈ Ξ

In the formulation of (SPR), c is a known n1-vector, b a known m1-vector, q(> 0) a
known n2-vector, and A and W are known matrices of size m1×n1 and m2×n2, respectively.
The first stage decisions are represented by the n1-vector x. We assume the m2-random
vector ξ̃ is defined on a known probability space. Let Ξ be the support of ξ̃ , i.e. the
smallest closed set such that P(Ξ) = 1.

Given a first stage decision x, the realization of random vector ξ of ξ̃ is observed. The
second stage data ξ become known. Then, the second stage decision y(ξ ) must be taken
so as to satisfy the constraints Wy(ξ ) ≥ ξ −T x and y(ξ ) ≥ 0. The second stage decision
y(ξ ) is assumed to cause a penalty of q. The objective function contains a deterministic
term c⊤x and the expectation of the second stage objective. The symbol Eξ̃ represents the

mathematical expectation with respect to ξ̃ , and the function Q(x,ξ ) is called the recourse
function in state ξ . The value of the recourse function is given by solving a second stage
linear programming problem.

It is assumed that the random vector ξ̃ has a discrete distribution with finite support
Ξ = {ξ 1, . . . ,ξ S} with Prob(ξ̃ = ξ s) = ps,s = 1, . . . ,S. A particular realization ξ of the
random vector ξ̃ is called a scenario. Given the finite discrete distribution, the problem
(SPR) is restated as (DEP), the deterministic equivalent problem for (SPR).

(DEP): min c⊤x+
S

∑
s=1

psQ(x,ξ s)

subject to Ax = b
x ≥ 0

where Q(x,ξ s) = min{q⊤y(ξ s) |Wy(ξ s)≥ ξ s −T x,y(ξ s)≥ 0},s = 1, . . . ,S

To solve (DEP), an L-shaped method (Van Slyke and Wets) has been used. This ap-
proach is based on Benders decomposition. The expected recourse function is piecewise
linear and convex, but it is not given explicitly in advance. In the algorithm of the L-shaped
method, we solve the following problem (MASTER). The new variable θ denotes the upper
bound for the expected recourse function such that θ ≥ ∑S

s=1 psQ(x,ξ s).

(MASTER): min c⊤x+θ
subject to Ax = b

x ≥ 0
θ ≥ 0

Let x∗,θ ∗ be the optimal solution of (MASTER), then the following second stage problem
is solved for s = 1, . . . ,S.

Q(x∗,ξ s) = min{q⊤y(ξ s) |Wy(ξ s)≥ ξ s −T x∗,y(ξ s)≥ 0} (13)

= max{(ξ s −T x∗)⊤π(ξ s) | π(ξ s)⊤W ≤ q⊤,π(ξ s)≥ 0} (14)
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If minimization problem (13) is infeasible for some scenario ξ s, the optimal objective value
of maximization problem (14) is infinite above or problem (14) is infeasible. Leaving out
the latter case, we have a dual solution π̄(ξ s)≥ 0 which satisfies the following inequalities.

(ξ s −T x∗)⊤π̄(ξ s)> 0 and π̄(ξ s)⊤W ≤ 0 (15)

To cut off solution x∗, the feasibility cut (16) is added to the formulation of (MASTER).

(ξ s −T x)⊤π̄(ξ s)≤ 0 (16)

If minimization problem (13) is feasible for ∀ξ ∈ Ξ and θ ∗ < ∑S
s=1 psQ(x∗,ξ s), let π∗(ξ s)

be the solution of problem (14). In this case, the optimality cut (17) is added as an outer
approximation of ∑S

s=1 psQ(x,ξ s).

θ ≥
S

∑
s=1

ps(ξ s −T x)⊤π∗(ξ s) (17)

As can be seen from Fig. 2, by repeating this, the optimality cuts are added to the master
problem. The feasible region of the first decision variable is limited in order to calculate the
exact value of the objective function, which is a piecewise linear convex function. The opti-
mal solution of the stochastic programming problem including the second decision variable
can be obtained by repeating these iterations.

Figure 2: Optimality cut

Moreover, a linear approximation can be applied to the formulation to reduce the solu-
tion time. Since the function of fuel cost is a convex quadratic function, the calculation time
can be reduced by converting it from a quadratic programming problem to a mixed-integer
programming problem using linear approximation.

4.2 Formulation

Parameters to add

NCUT Total number of optimality cuts
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φ Total fuel and electricity purchase costs

φs Sum of fuel and electricity purchase costs in scenario s

θ s
it Linear approximation of fuel cost of unit i at time period t in scenario s

αs,ncut
it Coefficient of uit in the optimality cut

β s,ncut
it Constant term in the optimality cut

a1
i ,a

2
i Coefficient of xs

it in the linear approximation

b1
i ,b

2
i Constant term in the linear approximation

Master problem (First stage)

min
I

∑
i=1

T

∑
t=1

fi(0)uit +
I

∑
i=1

T

∑
t=1

gi(ui,t−1,ui,t)+φ (18)

s.t.

uit −ui,t−1 ≤ uiτ ,τ = t +1, · · · ,min{t +Li −1,T}, i = 1, · · · , I, t = 2, · · · ,T (19)

ui,t−1 −uit ≤ 1−uiτ ,τ = t +1, · · · ,min{t + li −1,T}, i = 1, · · · , I, t = 2, · · · ,T (20)

uit ∈ {0,1}, i = 1, · · · , I, t = 1, · · · ,T (21)

φ ≥
S

∑
s=1

psθs,s = 1, · · · ,S (22)

φs ≥
I

∑
i=1

T

∑
t=1

αs,ncut
it uit +β ncut

s ,ncut = 1, · · · ,NCUT,s = 1, · · · ,S (23)

φ,φs ≥ 0,s = 1, · · · ,S (24)

Second stage

Cs(u) = min
T

∑
t=1

Ks
t ys

t +
I

∑
i=1

T

∑
t=1

θ s
it (25)

s.t.
I

∑
i=1

xs
it + ys

t ≥ ds
t , t = 1, · · · ,T,s = 1, · · · ,S (26)

ys
t ≥ 0, t = 1, · · · ,T,s = 1, · · · ,S (27)

qiuit ≤ xs
it ≤ Qiuit , i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (28)

ri ≤ xs
it − xs

it−1 ≤ Ri, i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (29)

θ s
it ≥ a1

i xs
it +b1

i , i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (30)

θ s
it ≥ a2

i xs
it +b2

i , i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (31)

θ s
it ≥ 0, i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (32)

Costs that do not vary with the scenario and those that vary with the scenario are divided
into the master problem and second problem, respectively.
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(22) is the overall optimality cut, and (23) is the optimality cut in scenario s. (24) is a
constraint that the sum of the fuel and electricity purchase costs in scenario s is greater than
or equal to 0. (30) indicates the linear approximation of unit i at time t in scenario s at the
minimum output, and (31) indicates the linear approximation of unit i at time t in scenario
s at the maximum output. (32) is a constraint that the linear approximation of the function
of the fuel cost of unit i at time t in scenario s is greater than or equal to 0.

Also, the algorithm of L-shaped method in this study is shown in Table 1.

Table 1: Algorithm of L-shaped method
Step1 Set the provisional value of objective function z̄ := ∞, the lower bound value z := 0

Step2 Solving master problem obtains optimal solution ûit and φ̂

Step3 If ∑I
i=1 ∑T

t=1 fi(0)ûit +∑I
i=1 ∑T

t=1 gi(ûi,t−1, ûi,t)+ φ̂ > z,
set z := ∑I

i=1 ∑T
t=1 fi(0)ûit +∑I

i=1 ∑T
t=1 gi(ûi,t−1, ûi,t)+ φ̂ .

If ∑I
i=1 ∑T

t=1 fi(0)ûit +∑I
i=1 ∑T

t=1 gi(ûi,t−1, ûi,t)+∑S
s=1Cs(û)< z̄,

set z̄ := ∑I
i=1 ∑T

t=1 fi(0)ûit +∑I
i=1 ∑T

t=1 gi(ûi,t−1, ûi,t)+∑S
s=1Cs(û).

Step4 If z̄ ≤ (1+ ε)z, the algorithm terminates.

Step5 If θ̂ s
it <Cs(û), ∀s ∈ S, add optimality cut to master problem and return to Step2.

4.3 Optimality Cut

After obtaining the first decision variable ûit by solving the master problem, the second
stage problem for each scenario is solved to obtain the second decision variable x̂s

it ,ŷ
s
t ,θ̂ s

it .
The optimality cut is calculated using the optimal dual solution π̂s

t , λ̂ s
it , µ̂s

it , ρ̂s,1
it , ρ̂s,2

it of (26),
(28), (30), (31). The dual problem is as follows.

max
λ s

it ,µs
it ,πs

t ,ρ
s,1
it ,ρs,2

it

min
xs

it ,y
s
t ,θ s

it

I

∑
i=1

T

∑
t=1

(θ s
it + fi(0))uit +

I

∑
i=1

T

∑
t=1

gi(ui,t−1,ui,t)+

I

∑
i=1

T

∑
t=1

(b1
i ρs,1

it +b2
i ρs,2

it )+
T

∑
t=1

πs
t ds

t +
I

∑
i=1

T

∑
t=1

(µs
itqi −λ s

itQi)uit (33)

s.t.

λ s
it ,µs

it ,πs
t ,ρ

s,1
it ,ρs,2

it ≥ 0, i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (34)

xs
it ,y

s
t ,θ s

it ≥ 0, i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (35)

ri ≤ xs
it − xs

it−1 ≤ Ri, i = 1, · · · , I, t = 1, · · · ,T,s = 1, · · · ,S (36)

Using these dual solutions, the following inequality becomes a valid inequality for the mas-
ter problem.

φs ≥
I

∑
i=1

T

∑
t=1

(b1
i ρs,1

it +b2
i ρs,2

it )+
T

∑
t=1

π̂s
t ds

t +
I

∑
i=1

T

∑
t=1

(µ̂s
itqi − λ̂ s

itQi)uit (37)
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The coefficients α ,β of (23) can be defined as follows.

αs,ncut
it = µ̂s

itqi − λ̂ s
itQi (38)

β ncut
s =

I

∑
i=1

T

∑
t=1

(b1
i ρs,1

it +b2
i ρs,2

it )+
T

∑
t=1

π̂s
t ds

t (39)

4.4 Linear Approximation

Mikami et al.[6] calculated the fuel cost as a quadratic function; in this study, the fuel cost
is approximated linearly to reduce the calculation time. The function of the fuel cost is
expressed as fi(xs

it) = Aixs
it

2 +Bixs
it +Ci, so θ s

it can be calculated by linear approximation
at the lower and upper limits of the output. The largest difference between the linear ap-
proximation and the quadratic function is 0.3%; therefore, approximation does not make a
significant difference to the problem. Fig. 3 shows the linear approximation of the fuel cost
function. By linear approximation, the fuel cost function is approximated from quadratic
function to linear function.

Figure 3: Linear approximation

5 Computional Experiments

The contract price and the fixed volume are affected by the total bid volume. We assume
a four days operation plan for the experiment. Due to the short period, fluctuations in fuel
prices are not considered in this study. The scenario of electricity price and demand is rep-
resented by a scenario tree that branches into two every day. The experimental period was
four days; the number of scenarios therefore becomes eight, and the occurrence probability
of each scenario s is (1/8).

When considering market transactions, the electricity price and demand fluctuate ac-
cording to the tender trends of market participants. Since the daily JEPX market is divided
into 30 minutes zone, the number of time zones per day is 48 with 30 minutes as one unit.
Similarly, numbers are assigned in the order of time zone 1 from 0:00 to 0:30 and time zone
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2 from 0:30 to 1:00. For the experiment, we refer to the transaction data for December 2005
published by JEPX. Since the generator operation plan period is four days, the number of
time zones is 192.

The electricity price and demand are created with reference to the average total bid
amount and that for each time period of the day in December in 2005. A scenario of
contract price and contract quantitative change is generated using demand and supply curves
to consider the fluctuation of electricity price and demand in the market. Knowledge of
the contract price and contracted volume allows us to predict the demand for the individual
business operator. We assume that there will be a certain ratio of the demand for the personal
business operator to the contracted amount. Fig. 4 shows the scenario tree in this model.
This scenario tree is divided into two per day.

Figure 4: Scenario tree

6 Result

6.1 Effectiveness of Stochastic Programming

We compare a model based on stochastic programming with a deterministic model. Birge
and Louveaux [5] defined the evaluation of stochastic programming solutions. For the value
of the solution of the stochastic programming problem, VSS, the value of the stochastic so-
lution is used. For the cost minimization problem, VSS is defined as VSS = EEV−RP.
Recourse problem (RP) is the optimal objective function value of the stochastic program-
ming problem. The expected result of using the expected value problem (EVV) solution
is an optimal objective function value when a plan is made based on the average value of
random variables.

In the case of a UC problem, the EEV uses the unit’s state of each time zone of the gen-
erator obtained when solving the problem with the average value of the random variable.
Using the solution of the problem with average data, the EEV can be obtained. The starting
and stopping states of the generator at each time zone obtained when solving the problem
based on the average value of the random variables are not optimal for stochastic problem.
Therefore, from the relationship between RP and EEV, RP ≤ EEV, VSS ≥ 0 holds. Assum-
ing that the electricity demand that the operator must meet in each time zone will be 50% to
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150% of the contract volume, the generator operation plans for each demand is compared.
The LNG price used for the fuel price, which is a parameter included in the demand and
supply curves during the operation planning period, is assumed to be 400 [$/t]. In addition,
we assume the company has eight generators. Table 2 shows the relationship between RP
and VSS. As the ratio increases, VSS becomes larger. We solved the problem using CPLEX
12.10.0.0.

Table 2: Cost of RP and EEV
Ratio of demand to

RP($) EEV($) VSS($)
a contract volume

50% 59,160 60,892 1,732
75% 86,941 91,038 4,097

100% 11,385 115,712 4,327
125% 131,071 138,153 7,082
150% 157,584 166,921 9,337

A model using stochastic programming that considers electricity demand and price fluc-
tuations has higher profits than a deterministic model and is suitable for operation in an
actual market where electricity demand and price fluctuations occur. Furthermore, since
the schedule of units is fixed regardless of scenario s, the amount of electricity purchased
increased as the ratio of demand to a contract volume increased.

6.2 Efficiency of the Solution

We compared the problem solved using the L-shaped method and linear approximation with
the direct method. It can be seen that solving the problem in this way leads to a significant
reduction in calculation time. Further, the objective function value can be calculated with a
certain degree of accuracy.

Table 3: L-shaped solution
Number Number of Solution Time

of scenarios time zones Direct (s) L-shaped (s)
1 48 891 200
2 96 6990 41
4 144 10665 277
8 192 64176 498

Table 3 indicates that for all the problems, the L-shaped method, which is more efficient
in terms of calculation time, has a shorter calculation time than the direct method. Com-
paring the computation time of the direct and L-shaped methods, the computation speed
is approximately 4.5 times faster when the number of scenarios is 1. However, when the
number of scenarios is 8, the computation speed is approximately 130 times faster. This
indicates that as the number of scenarios per time period increases, the effect of reducing
the calculation time for the direct method becomes greater. While we set up a scenario with
two branches in one day.
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However, if we set up a scenario with more branches in a shorter period of time and
increase the number of scenarios in relation to the number of time periods, the computation
time of the proposed model will be more efficient.

7 Conclusion

We proposed a UC model that considers the market transactions required after electricity
liberalization. Cost was lower than the generator operation planning model that did not
consider market transactions, indicating that it was an excellent model for operators aiming
to minimize cost. 8 scenarios are not enough to consider realistic uncertainty so we need
to consider larger model than this model. The L-shaped method and linear approximation
lead to a significant reduction in calculation time. In the future, we would like to extend
on a solution method that can handle large-scale problems with an increased number of
scenarios and facilities.
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