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Abstract 

Adversarial attacks using adversarial examples have recently become a significant threat that 

intentionally misleads deep-learning models beyond human recognition. Adversarial examples 

have primarily been studied in the field of image recognition; however, they have recently been 

applied in other fields, including time series data classification. To generate adversarial examples, 

small perturbations unrecognizable by humans are typically added to all the data regions. 

However, adding perturbations to the entire time series data results in time series data that are 

clearly manipulated for time series classification. In this case, adversarial attacks are immedi-

ately apparent to humans and do not pose a significant threat. This study shows that unidentifi-

able adversarial examples of time series can be identified as adversarial examples in time series 

data classification by adopting partial perturbations. The fast gradient sign method (FGSM) and 

projected gradient descent (PGD) attack methods, which are originally proposed for generating 

adversarial examples of image data, are applied to time series data classification models. In this 

study, partial-FGSM and partial-PGD attacks are proposed which utilize only a part of the per-

turbations to generate fewer unreliable adversarial examples of time series data that are easily 

recognized as adversarial examples. To evaluate partial-FGSM and partial-PGD attacks, the 2 

Class-Based-Detecting adversarial detection method is employed, as its effectiveness for pro-

tecting adversarial attacks against time series classification has been proven. The performance is 

evaluated, and the results show that attacks are possible with a small degradation in attack per-

formance for some datasets, even if the perturbation ratio is 1/10. 
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1 Introduction 

Deep learning is a machine learning method that reproduces the mechanism of human neurons, 

and it has become an indispensable high-performance technology for various applications in-

cluding, image recognition, speech recognition, natural language processing, and time series data 

analysis [1]. However, deep learning is vulnerable to attacks that employ adversarial examples, a 

threat with a highly probability of causing model misclassifications [2][3]. Adversarial examples 

are data created by adding extremely small perturbations to input data that are imperceptible to 
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humans, intended to mislead the output of a deep learning model. Adversarial attacks using 

adversarial examples have been extensively studied in the context of image recognition 

[4][5][6][7]. Recently, researchers have analyzed the threat with regard to other deep learning 

applications, including speech recognition [8], natural language processing [9], and time series 

data classification [10][11][12][13]. The vulnerability of this model poses a threat when deep 

learning is applied to an actual system. 

This study focuses on adversarial attacks using adversarial examples for time series data 

classification, which is the task of predicting class labels for unclassified time series data. Ad-

versarial examples for time series data classification can be generated in the same manner as 

those for image recognition [10]. In addition, studies have evaluated attack performance and 

methods for defense against adversarial examples [11][12][13]. Time series data are common in 

several contexts, including sensor observations, biometric signals, and motion data. As time 

series data classification is an important task, the identification of adversarial examples of time 

series data is essential in order to mitigate the risk their potential exploitation poses to sens-

ing-centric applications. 

Methods for generating adversarial examples that are commonly used in image recognition 

can be used to easily generate manipulated time series data. In the case of image data, perturbing 

the entire dataset does not facilitate the easy determination of whether perturbations have been 

introduced because the noise is minute and difficult to detect. However, in the case of time series 

data classification, the addition of perturbations generates adversarial examples that are easy to 

detect, including perturbations that are perceptible to humans. This is because noise added to 

pixels in image data cannot be recognized because it is a small change in tint, but noise added to 

time series data can be easily recognized by comparing it with normal data. 

This study demonstrates that adversarial examples for time series data classification generated 

by methods commonly used in image recognition can be easily identified. Additionally, if partial 

perturbations are used to generate adversarial examples, then adversarial examples that are 

seemingly indistinguishable from adversarial examples that are perturbed can be generated [14]. 

In our previous study [14], only one model of the attack target was used, and the evaluation of 

individual data was not sufficiently demonstrated. In this study, another model was added as an 

attack target, and its attack capability was demonstrated via evaluation experiments using indi-

vidual datasets. To the best of our knowledge, no previous studies have focused on the percep-

tibility of these attacks to humans. The effectiveness of using partial perturbations as a practical 

and potentially threatening attack method is evaluated.  

The remainder of this paper is organized as follows: Section 2 describes the assumptions in-

troduced in this study. Section 3 discusses adversarial examples of timeseries data. Section 4 

describes adversarial attacks in the context of time series data classification using partial per-

turbations. Section 5 presents the experimental evaluation. Section 6 concludes the paper. 
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2 Preliminaries 

This section outlines the prerequisite knowledge for adversarial attacks using adversarial exam-

ples. First, the prerequisite knowledge of the attacker and attack types are described as the attack 

settings. Next, typical methods for generating adversarial examples are presented. Finally, de-

fense methods against adversarial attacks that use adversarial examples for time series data 

classification are described. 

2.1   Attack Setting 

2.1.1   Adversary’s Knowledge 

Adversarial attacks using adversarial examples are classified into two categories based on the 

adversary’s knowledge: white-box and black-box attacks. This classification is established be-

cause the way adversarial examples are generated depends on prerequisite knowledge. 

White-box attacks assume that the adversary possesses all information regarding the target 

model, such as the training data, model structure, hyperparameters, and network weights. It is 

relatively easy to create adversarial examples that result in erroneous outputs if the model 

structure and weight parameters are known. Therefore, these adversarial examples represent a 

more significant threat to the model than those generated via black-box attacks.  

Conversely, black-box attacks assume that the adversary has no information regarding the 

target model and knows only the input and output. Although most attack methods are white-box 

attacks, the black-box assumption is applicable. This is because studies have demonstrated that 

an adversary example generated for one model is valid for another with different training data 

and structures [15]. 

2.1.2   Attack Categories 

There are two categories of attack objectives: targeted and non-targeted attacks. 

Targeted attacks aim to direct the prediction of a model toward a specific class. In general, 

adversarial examples can be generated by reducing the loss of a targeted class during an attack. 

For example, a targeted attack manipulates data classified under classification label 1 into data 

classified under classification label 2. In general, the adversarial examples generated for this type 

of attack constitute a significant threat to real-world applications. 

Non-targeted attacks aim to mislead the predictions of a model, regardless of the classes. In 

general, adversarial examples can be generated by increasing the losses of the correct answer 

classes during attacks. Typically, an adversarial example that is more powerful than the target 

attack can be generated. 
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2.2   Attack Methods 

2.2.1   FGSM  

The FGSM is a typical adversarial example generation method proposed by Goodfellow et al. 

[3]. In deep learning, the gradient of the loss function is used to update the weights of the network 

to ensure that the loss decreases. However, the FGSM does not update the weights of the network 

but varies the input data such that the loss increases. Using the FGSM, a hostile sample x ̃ can be 

expressed as follows: 

�̃� = 𝒙 + 𝜖𝑠𝑖𝑔𝑛(𝛻𝒙 𝐽(𝜽, 𝒙, 𝑦)), (1) 

where 𝒙 denotes the input data, 𝜖 denotes a parameter for adjusting the perturbation magnitude, 

𝜽 denotes a parameter of the model, 𝑦 denotes the correct label for 𝒙, and 𝐽(𝜽, 𝒙, 𝑦)  denotes the 

loss function. 

Although the FGSM is proposed as an attack for image classification models, it can be applied 

to time series data classification models by using time series data instead of image data for 𝒙 . 

Whereas images are perturbed pixel-by-pixel, and time series data can be perturbed for each 

element of the series to generate adversarial examples. 

2.2.2   Projected Gradient Descent (PGD) 

PGD is an effective attack method proposed by Madry et al. [16]. Whereas the FGSM only ap-

plies perturbation to the input data once, PGD generates an adversarial example by using the 

FGSM repeatedly with a step size of 𝛼. The PGD is expressed as follows: 

�̃�𝑡+1 = 𝐶𝑙𝑖𝑝(�̃�𝑡+𝜖,�̃�𝑡−𝜖) (�̃�𝑡 + 𝛼𝑠𝑖𝑔𝑛 (𝛻𝒙�̃�
 𝐽(𝜽, �̃�𝑡 , 𝑦))) , (2) 

where 𝐶𝑙𝑖𝑝(�̃�𝑡+𝜖,�̃�𝑡−𝜖) is a transformation process that ensures the magnitude of the perturbation

does not exceed 𝜖. FGSM and PGD methods are inherently white-box and non-targeted attack 

methods, but they can be extrapolated to black-box or targeted attacks. 

2.3   Defense Methods 

The implementation of defense mechanisms against adversarial attacks using adversarial exam-

ples can be approached in two ways: 1) adversarial training, which improves the robustness of 

the system by including adversarial examples in the training data [3][6][16] and 2) adversarial 

detection, which detects adversarial examples based on differences in the model behavior or 

input data characteristics [7][12][13]. Compared with other methods, adversarial training can 

achieve greater robustness against various types of adversarial attacks using adversarial exam-

ples. However, this requires the modification of the target model, decreases the classification 

accuracy of the original samples, and can cause overfitting. Adversarial detection is disadvan-

tageous when compared with adversarial training because its performance is easily affected by 

the type of attacker and adversarial example; however, it does not degrade the classification 

J. Teraoka, K. Tamura4



 
 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

accuracy. 

The 2 Class-Based-Detecting (2CB) adversarial detection method was used in this study [13]. 

This method is based on differences in the characteristics of the input data. This approach con-

structs a deep learning model for detection that performs 2 class classification if the sample is an 

adversarial example, in addition to the model used for prediction. 

3 Adversarial Examples of Time Series 

In this section, we discuss the characteristics of time series adversarial examples. An adversarial 

example of image data is extremely difficult for humans to identify, as shown in Figure 1 [17]. 

Time series data from the UCR time series classification archive [18] show the motion data of 

gun pointing, with the horizontal and vertical axes representing the time and position, respec-

tively, as shown in Figure 2. The human eye can easily distinguish an adversarial example of 

time series data if the data are smooth, even with slight perturbations, as shown in Figure 2. As in 

the FGSM, imposing perturbations of a certain magnitude on the entire sample can cause dis-

criminable changes that are specific to adversarial examples and oscillate at a certain amplitude. 

Thus, in cases involving time series data, adversarial examples generated using methods such as 

the FGSM and PGD, which apply perturbations to the entire dataset, generate data that appear 

unnatural, even under slight perturbations. 

Figure 1: Image adversarial example Figure 2: Time series adversarial example 

4 Attacks with Partial Perturbations 

Two attacks with partial perturbations are proposed in this section: partial-FGSM and par-

tial-PGD. These attacks utilize only some perturbations to generate fewer unnatural adversarial 

examples for time series data. 

4.1   Partial-FGSM 

The partial-FGSM uses only part of the perturbation generated by the FGSM to generate an 

adversarial example, which is expressed as follows: 

�̃� = 𝒙 + 𝜖 𝒎 ∘ 𝑠𝑖𝑔𝑛(𝛻𝒙 𝐽(𝜽, 𝒙, 𝑦)), (3) 

where 𝒎  denotes a mask matrix or vector that determines the part of the perturbation 

𝜖𝑠𝑖𝑔𝑛(∇𝒙 𝐽(𝜽, 𝒙, 𝑦)) that is added to the original sample of the same size as the input data 𝒙 and
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takes on a value of either 0 or 1. 

 

4.2   Partial-PGD 

The partial-PGD generates an adversarial example by repeating the partial-FGSM multiple times 

with a step size of 𝛼. As with the PGD, the perturbation is clipped by 𝐶𝑙𝑖𝑝(�̃�𝑡+𝜖,�̃�𝑡−𝜖) such that 

the magnitude of the perturbation is not greater than 𝜖 owing to repetition. The same 𝒎 was used 

for all the steps. The partial-PGD is expressed as follows: 

�̃�𝑡+1 = 𝐶𝑙𝑖𝑝(�̃�𝑡+𝜖,�̃�𝑡−𝜖) (�̃�𝑡 + 𝛼𝒎 ∘ 𝑠𝑖𝑔𝑛 (𝛻𝒙�̃�
 𝐽(𝜽, �̃�𝑡, 𝑦))) (4) 

where 𝒎  denotes a mask matrix or vector that determines the part of the perturbation 

𝜖𝑠𝑖𝑔𝑛 (𝛻𝒙�̃�
 𝐽(𝜽, �̃�𝑡, 𝑦)) that is added to the original sample of the same size as the input data 𝒙 

and takes on a value of either 0 or 1. 

4.3   Creating Partial Perturbation 

The 𝒎 that determines the interval to be partially perturbed results in the best attack perfor-

mance. As a simple example of determining 𝒎 for a single zone, the data can be partitioned into 

𝑠 equal zones when the perturbation range is 1/𝑠 of the data size, and the best zone can be de-

termined by applying perturbation to each zone. Here, 𝒎 can be searched easily in multiple 

zones by repeatedly adding perturbations to 1/𝑠 random points.  

 

5 Experiment 

The experimentally evaluated performances of the two attacks are presented in this section. First, 

the experimental setup is described. Next, adversarial examples of time series data generated 

using the existing and proposed methods are compared. Finally, the attack performance and 

effectiveness of 2CB detection as a defense method against adversarial examples are evaluated. 

5.1   Experimental Setup 

5.1.1   Dataset 

The UCR time-series classification archive (2018) dataset, which is a benchmark for time series 

data classification problems, was used in this study [18]. The UCR time series classification 

archive was categorized into old and new archives, which contained 85 and 43 datasets, respec-

tively. Only old archives were used in this experiment. The UCR time-series classification ar-

chive provides separate training and test sets. The data were shuffled in each set; however, the 

default division was not changed. 

5.1.2   Model 

The fully convolutional network (FCN) and residual network (ResNet), which are typical 

time-series data classification models using deep learning, were used in this study [19].  
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The FCN comprises three convolution layers, each with batch normalization and a rectified 

linear unit (ReLU) activation function. Furthermore, the FCN replaces the typical final fully 

convolutional layer with a global average pooling (GAP) layer. Meanwhile, ResNet comprises 

three residual blocks, a GAP layer, and a softmax classifier. Each residual block comprises three 

convolutions, each with batch normalization and ReLU activation functions. Unlike the FCN, 

ResNet features linear shortcuts between the residual blocks, thus rendering it difficult for the 

gradient to vanish. 

The model parameters and source code for the experiment were obtained from [20]. Table 1 

lists the architecture and optimization hyperparameters of each model. 

 

Table 1: Architecture and optimization hyperparameters for each model 

Methods Layers Conv Epochs Batch Learning rate Decay 

FCN 5 3 2000 16 0.001 0.0 

ResNet 11 9 1500 16 0.001 0.0 

 

5.2   Generating Adversarial Examples 

The existing FGSM and PGD methods as well as the proposed partial-FGSM and partial-PGD 

methods were used to generate adversarial examples. For all attack methods, the perturbation 

magnitude was set to 0.1. The number of iterations was set to 40 for both the PGD and partial 

-PGD methods. In this experiment, the perturbation ranges of the partial-FGSM and partial-PGD 

methods were set to 1/10 of the data length. The data were partitioned into ten equal-length 

zones, and the zone with the highest misclassification probability for each dataset was adopted. 

The experiment was conducted using CleverHans, which is a library of adversarial examples 

[21]. Parameters other than those for the FGSM and PGD were obtained from the default pa-

rameters of CleverHans. 

Figures 3 and 4 show adversarial examples from the OliveOil dataset generated from the UCR 

time series classification archives. These graphs represent the food spectrograms of olive oil, 

where the horizontal and vertical axes represent time and frequency, respectively. Figure 3 pre-

sents a comparison of adversarial examples based on the FGSM and partial-FGSM. Figure 4 

shows adversarial examples of PGD and partial-PGD. Noise can be easily identified for the 

FGSM and PGD methods that apply all perturbations, as shown in Figures 3 and 4, respectively. 

However, the noise for the partial-FGSM and partial-PGD methods could not be easily identified 

because most of the data remained unchanged from the original data. 

Figures 5(a) and 5(b) show graphs comparing the values of the mean absolute error of the 

original data and the adversarial example for each of the 85 datasets in the UCR based on FGSM, 

partial-FGSM, PGD, and partial-PGD. The mean absolute error (MAE) values for the par-

tial-FGSM were smaller than those for the FGSM, and the overall MAE values for the PGD 

were smaller than those for the partial-PGD, thus rendering identification difficult when partial 

perturbations are applied, as shown in Figures 3 and 4. 
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Figure 3: Adversarial example for FGSM (left) and partial-FGSM (right) 

 

 

 

Figure 4: Adversarial example for PGD (left) and partial-PGD (right) 

 

(a) MAEs of FGSM and partial-FGSM 

 

(b) MAEs of PGD and partial-PGD 

Figure 5: Comparison of MAEs 
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5.3   Performance of Attacks 

The accuracies of each adversarial example generated with all perturbations and those generated 

with partial perturbations for all datasets were compared. The classification accuracy for each 

dataset using the adversarial input model is plotted in Figures 6 and 7. Adversarial inputs with all 

perturbations are on the horizontal axis, and those with partial perturbations are on the vertical 

axis. A comparison between the FGSM and partial-FGSM methods is shown in Figure 6, while a 

comparison between the PGD and partial-PGD methods is shown in Figure 7. The attack per-

formances of the adversarial examples with all perturbations were higher for most datasets, as 

shown in Figures 5 and 6. However, the detailed results indicate that the attack performance of 

the partial perturbation was not sufficiently low and could be ignored for several datasets, as 

listed in Tables 2 and 3. The number of datasets for which the accuracy against partial perturba-

tions (denoted by P-FGM and P-PGD in Tables 2 and 3) was less than half of that against the 

original data (denoted by ORG in Tables 2 and 3) was 23 for FCN and 15 for ResNet. This poses 

a significant threat to the majority of systems. In some datasets, such as OliveOil and Strawberry, 

the partial perturbation achieved the same attack performance as the entire perturbation. 

 
(a) FCN 

 
(b) ResNet 

Figure 6: Accuracy comparison between FGSM and partial-FGSM (%) for: (a) FCN and (b) 
ResNet 

 
(a) FCN 

 
(b) ResNet 

Figure 7: Accuracy comparison between PGD and partial-PGD (%) for: (a) FCN and (b) ResNet 
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Table 2: Accuracy of each dataset (%). (ORG denotes original samples, P-FGM denotes par-

tial-FGSM, and P-PGD denotes partial-PGD) (1/2) 

Dataset 
FCN ResNet 

ORG FGSM PGD P-FGM P-PGD ORG FGSM PGD P-FGM P-PGD 

Adiac 83.89 1.79 0.77 46.88 34.02 85.42 3.33 1.28 74.22 54.69 

ArrowHead 84.57 37.71 10.86 72.66 60.16 83.43 25.71 9.71 62.50 43.43 

Beef 73.33 33.33 3.33 36.67 36.67 73.33 26.67 13.33 40.00 43.33 

BeetleFly 95.00 30.00 5.00 75.00 75.00 85.00 25.00 15.00 80.00 80.00 

BirdChicken 90.00 65.00 10.00 90.00 90.00 90.00 50.00 15.00 75.00 75.00 

CBF 99.56 88.56 86.89 98.63 98.63 99.22 92.67 92.00 99.02 98.44 

Car 90.00 21.67 6.67 38.33 30.00 95.00 21.67 5.00 53.33 25.00 

ChlorineConcentration 81.93 14.06 12.14 39.06 34.38 85.13 10.70 8.05 25.00 14.06 

CinCECGTorso 82.97 24.93 6.38 65.63 46.35 84.13 25.44 7.90 70.31 45.31 

Coffee 100.00 3.57 0.00 82.14 78.57 100.00 53.57 39.29 96.43 96.43 

Computers 80.40 43.60 20.80 73.44 70.83 80.80 38.80 20.40 72.40 68.75 

CricketX 80.51 22.31 8.21 71.88 68.75 78.72 31.28 9.74 72.56 70.83 

CricketY 77.18 16.67 8.21 68.49 64.06 81.79 22.31 6.67 70.31 62.11 

CricketZ 79.74 21.28 10.51 65.63 62.50 81.28 29.23 8.21 64.06 59.38 

DiatomSizeReduction 30.07 42.16 36.28 27.34 27.34 54.90 35.29 6.54 34.38 29.69 

DistalPhalanxOutlineAge-

Group 
71.94 24.46 20.86 46.88 43.75 75.54 29.50 20.86 57.81 51.56 

DistalPhalanxOutlineCor-

rect 
75.36 30.44 25.00 50.00 48.91 78.26 34.06 21.74 59.38 53.13 

DistalPhalanxTW 68.35 22.30 8.63 58.27 56.84 68.35 15.83 10.79 57.55 48.44 

ECG200 89.00 38.00 19.00 82.81 82.81 89.00 48.00 36.00 84.38 84.38 

ECG5000 94.11 72.11 38.11 92.04 91.78 93.44 70.22 61.09 90.62 87.62 

ECGFiveDays 98.14 34.03 2.56 84.38 84.38 94.43 11.03 5.58 60.94 62.50 

Earthquakes 73.38 33.09 31.66 68.35 68.35 74.10 40.29 36.69 70.31 68.75 

ElectricDevices 69.69 45.46 31.35 41.41 26.56 72.22 51.06 27.31 40.63 23.44 

FaceAll 95.03 68.11 54.08 92.88 92.54 82.54 74.32 69.76 81.43 80.89 

FaceFour 92.05 18.18 6.82 85.94 87.50 95.45 65.91 43.18 93.75 92.19 

FacesUCR 94.59 70.63 59.22 92.97 92.97 95.56 83.76 79.37 92.97 92.97 

FiftyWords 64.18 9.45 7.91 53.13 50.00 70.55 12.09 8.35 64.06 59.38 

Fish 96.00 12.57 0.57 61.72 35.16 98.86 12.57 0.00 85.94 68.75 

FordA 91.67 51.59 46.29 60.94 55.06 93.56 45.91 13.41 90.63 87.20 

FordB 78.64 47.65 22.72 67.19 50.00 82.35 28.40 19.26 75.00 73.44 

GunPoint 100.00 18.67 5.33 89.06 81.25 99.33 52.00 1.33 89.84 83.59 

Ham 68.57 31.43 31.43 64.76 60.00 72.38 27.62 27.62 67.62 67.62 

HandOutlines 88.11 35.95 34.32 31.25 18.38 93.24 35.95 6.76 34.38 10.94 

Haptics 47.73 18.51 15.91 30.73 21.35 51.30 19.16 13.31 41.15 22.27 

Herring 51.56 59.38 48.44 46.88 48.44 56.25 60.94 46.88 53.13 53.13 

InlineSkate 33.82 9.64 7.27 17.97 16.41 39.09 17.27 11.82 21.88 14.06 

InsectWingbeatSound 39.29 12.48 7.58 26.56 20.31 47.78 16.36 15.05 35.94 37.50 

ItalyPowerDemand 95.92 87.85 86.30 93.75 93.75 95.92 91.45 89.70 95.31 95.31 

LargeKitchenAppliances 89.07 59.47 15.73 82.03 80.94 89.60 69.87 38.93 77.34 78.91 

Lightning2 75.41 27.87 26.23 72.13 72.13 75.41 55.74 50.82 68.85 68.85 

Lightning7 82.19 30.14 16.44 68.75 70.31 83.56 27.40 24.66 75.00 75.00 

Mallat 96.46 17.57 3.28 85.55 56.64 97.27 24.39 2.60 92.29 83.38 

Meat 45.00 50.00 48.33 43.33 45.00 95.00 3.33 1.67 70.00 23.33 

MedicalImages 79.87 35.66 11.58 67.19 67.19 75.26 49.34 35.79 67.19 65.63 

MiddlePhalanxOutlineAge-

Group 
56.49 23.38 27.92 28.13 23.44 57.79 38.31 24.68 37.50 29.69 

MiddlePhalanxOutlineCor-

rect 
82.13 20.28 18.21 51.56 29.69 82.82 25.77 16.84 56.25 40.63 

MiddlePhalanxTW 50.65 22.08 14.94 23.44 25.78 48.05 9.74 16.88 30.47 21.88 

MoteStrain 92.65 71.57 64.86 90.63 90.63 92.49 74.60 68.45 90.10 90.10 
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Table 3: Accuracy of each dataset (%). (ORG denotes original samples, P-FGM denotes par-

tial-FGSM, and P-PGD denotes partial-PGD) (2/2) 

Dataset 
FCN ResNet 

ORG FGSM PGD P-FGM P-PGD ORG FGSM PGD P-FGM P-PGD 

NonInvasiveFe-

talECGThorax1 
95.93 2.09 2.09 39.06 9.72 95.22 4.73 0.56 51.56 25.00 

NonInvasiveFe-

talECGThorax2 
95.32 3.46 0.46 51.56 17.03 95.01 2.49 0.61 59.38 20.31 

OSULeaf 98.35 13.22 0.00 83.59 67.97 97.93 13.22 0.83 94.53 89.06 

OliveOil 76.67 3.33 3.33 3.33 3.33 80.00 16.67 3.33 20.00 6.67 

PhalangesOutlinesCorrect 81.00 34.15 18.53 51.43 38.70 82.52 38.23 17.60 57.81 51.30 

Phoneme 32.44 16.61 12.40 9.38 9.38 32.07 15.40 9.28 12.50 10.94 

Plane 100.00 37.14 0.95 100.00 100.00 100.00 69.52 57.14 99.05 99.05 

ProximalPhalanxOutlin-
eAgeGroup 

83.90 48.78 7.32 42.19 42.19 82.93 32.68 10.24 62.50 54.69 

ProximalPhalanxOut-

lineCorrect 
89.35 14.09 10.65 51.04 35.40 90.38 23.02 9.97 71.82 42.96 

ProximalPhalanxTW 76.59 23.90 4.39 55.12 39.06 76.10 6.83 5.37 64.06 42.19 

RefrigerationDevices 50.93 32.27 25.33 47.47 47.20 50.93 34.13 30.13 50.40 50.67 

ScreenType 61.87 28.80 25.07 48.44 45.31 63.20 28.00 22.40 46.09 33.59 

ShapeletSim 61.67 48.89 45.56 20.31 21.88 88.33 11.67 11.67 73.44 73.44 

ShapesAll 89.50 3.17 0.67 81.25 70.17 91.50 3.67 0.83 87.95 85.07 

SmallKitchenAppliances 78.40 45.60 15.47 72.80 53.33 78.93 40.00 17.60 72.00 49.87 

SonyAIBORobotSurface1 96.34 83.03 81.20 94.87 94.87 97.17 77.87 76.54 94.27 94.27 

SonyAIBORobotSurface2 97.17 87.83 87.09 93.75 93.75 98.22 90.14 89.19 96.35 96.35 

StarLightCurves 96.87 57.72 40.21 85.94 76.56 97.26 57.94 46.90 76.56 65.63 

Strawberry 97.57 61.08 2.43 3.13 3.13 97.84 2.70 2.16 6.25 1.56 

SwedishLeaf 97.12 21.60 3.20 92.00 89.44 95.84 35.04 16.32 92.19 90.63 

Symbols 94.87 42.01 4.52 91.74 90.18 91.86 31.26 10.15 89.06 87.19 

SyntheticControl 98.67 96.33 96.00 98.67 98.67 99.67 95.67 95.67 98.67 98.67 

ToeSegmentation1 96.49 33.33 17.98 93.75 93.23 95.61 67.11 44.30 90.63 90.63 

ToeSegmentation2 93.08 34.62 27.69 83.59 83.59 89.23 56.15 49.23 87.50 85.94 

Trace 100.00 74.00 26.00 96.88 85.94 100.00 64.00 26.00 92.00 89.06 

TwoLeadECG 100.00 6.85 1.84 96.88 96.88 99.91 11.50 3.25 90.10 90.10 

TwoPatterns 86.95 56.65 39.65 84.67 84.25 99.23 86.03 82.30 96.88 95.31 

UwaveGestureLibraryAll 81.91 14.66 0.87 54.69 23.44 84.51 17.09 1.87 65.63 26.56 

UwaveGestureLibraryX 75.60 25.94 4.83 59.38 46.88 76.49 26.41 8.29 62.50 60.94 

UwaveGestureLibraryY 63.90 26.91 11.64 43.75 37.50 65.49 25.29 12.48 45.31 39.06 

UwaveGestureLibraryZ 72.53 20.66 9.58 58.85 47.40 74.85 28.50 9.07 64.06 57.81 

Wafer 99.74 1.10 0.41 89.06 73.44 99.76 13.60 0.93 97.32 96.65 

Wine 50.00 50.00 50.00 50.00 50.00 61.11 38.89 38.89 38.89 38.89 

WordSynonyms 55.96 8.31 8.15 40.63 31.25 62.54 15.05 10.66 51.56 45.31 

Worms 77.92 19.48 7.79 58.44 48.05 81.82 10.39 14.29 74.03 57.14 

WormsTwoClass 76.62 31.17 23.38 60.94 59.38 72.73 36.36 27.27 64.06 62.50 

Yoga 83.63 43.80 16.43 61.72 32.81 85.47 46.43 14.53 64.06 43.61 

 

5.4   Effectiveness of 2CB detection 

The effectiveness of the 2CB detection method was evaluated using adversarial examples with 

partial perturbations. The same structure was used for the detection and prediction models. Ad-

versarial examples generated using FGSM were used as training data for the adversarial example 

class. For the evaluation, adversarial examples were generated in the same manner as in the other 

experiments. 

The results demonstrating the accuracy of the 2CB detection model for each dataset are listed 
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in Tables 4 and 5, and an accuracy comparison between complete perturbation and partial per-

turbation is shown in Figures 8 and 9. Tables 4 and 5 show the detection rates of whether the 

adversarial examples generated for the 85 datasets in the UCR were identified via 2CB detection. 

For example, for the “Adiac” dataset, the FGSM and PGD showed 100%, thus indicating that all 

adversarial examples were detected via 2CB detection, whereas partial-FGSM (denoted by 

P-FGM in Tables 4 and 5) and partial-PGD (denoted by P-PGD in Tables 4 and 5) showed 0%, 

thus indicating that they were not detected. These values were the same as the detection rates 

when focusing on values other than the original data (denoted by ORG in Tables 4 and 5). The 

detection rate was the highest for the FGSM, which was used to train the detection model, fol-

lowed by PGD, which was not used for training but utilized complete perturbations, as summa-

rized in Tables 4 and 5. Conversely, the partial-perturbation methods, i.e., partial-FGSM and 

partial-PGD, were almost undetectable most of their data were exactly the same as those of the 

original samples. Thus, partial perturbation can be more difficult to defend than complete per-

turbation, particularly when the method is based on input data features, such as 2CB detection. 

Table 4: Accuracy for 2CB detection models on each dataset (%). (ORG denotes original 

samples, P-FGM denotes partial-FGSM, and P-PGD denotes partial-PGD) (1/2) 

Dataset 
FCN ResNet 

ORG FGSM PGD P-FGM P-PGD ORG FGSM PGD P-FGM P-PGD 

Adiac 99.74 100.00 100.00 0.00 0.00 98.98 100.00 73.15 0.00 0.00 

ArrowHead 100.00 100.00 88.57 0.00 0.00 100.00 100.00 90.86 0.00 0.00 

Beef 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

BeetleFly 100.00 100.00 45.00 0.00 0.00 100.00 100.00 85.00 0.00 0.00 

BirdChicken 100.00 100.00 80.00 0.00 0.00 100.00 100.00 95.00 0.00 0.00 

CBF 56.22 63.11 57.56 42.97 42.97 56.44 63.44 61.78 39.84 39.06 

Car 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

ChlorineConcentration 100.00 99.04 81.51 0.03 0.03 100.00 99.84 94.12 0.00 0.00 

CinCECGTorso 99.93 89.35 55.94 0.00 0.00 99.78 100.00 99.06 0.00 0.00 

Coffee 100.00 100.00 100.00 0.00 0.00 100.00 100.00 96.43 0.00 0.00 

Computers 99.60 94.80 98.40 0.78 6.40 99.60 96.80 70.80 0.00 0.00 

CricketX 95.64 92.05 90.26 4.43 5.21 97.69 97.44 85.39 2.31 3.08 

CricketY 98.21 93.59 85.39 0.00 0.00 95.90 98.97 84.10 3.91 3.13 

CricketZ 88.97 98.46 93.85 7.81 9.38 91.03 97.44 89.23 10.00 7.81 

DiatomSizeReduction 99.02 100.00 100.00 0.78 0.78 99.02 100.00 99.02 0.78 0.78 

DistalPhalanxOutlineAgeGroup 100.00 100.00 89.21 0.00 0.00 100.00 100.00 92.81 0.00 0.00 

DistalPhalanxOutlineCorrect 100.00 100.00 99.64 0.00 0.00 99.64 100.00 76.45 0.00 0.00 

DistalPhalanxTW 100.00 100.00 95.68 0.00 0.00 100.00 99.28 85.61 0.00 0.00 

ECG200 90.00 88.00 84.00 12.00 12.00 92.00 93.00 82.00 7.81 7.81 

ECG5000 97.96 96.42 76.47 2.58 2.44 97.31 99.51 84.53 2.82 2.76 

ECGFiveDays 99.77 99.07 95.94 0.00 0.00 99.77 100.00 71.43 0.00 0.00 

Earthquakes 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

ElectricDevices 94.40 70.80 84.89 0.00 0.00 94.76 97.34 78.47 0.00 0.00 

FaceAll 97.40 89.35 81.01 0.00 0.00 97.52 93.08 82.54 0.00 0.00 

FaceFour 94.32 70.46 67.05 4.69 6.25 96.59 80.68 68.18 3.41 3.13 

FacesUCR 85.71 96.73 90.98 15.18 14.06 85.95 86.59 74.10 12.50 12.50 

FiftyWords 100.00 99.78 99.78 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

Fish 99.43 100.00 100.00 0.00 0.00 99.43 100.00 100.00 0.00 0.00 

FordA 100.00 99.92 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

FordB 100.00 99.38 100.00 4.95 12.50 100.00 99.75 100.00 0.00 0.00 

GunPoint 99.33 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

Ham 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

HandOutlines 100.00 100.00 97.57 0.00 0.00 100.00 100.00 0.00 0.00 0.00 

Haptics 100.00 99.68 100.00 0.00 0.00 99.68 100.00 80.84 0.00 0.00 
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Table 5: Accuracy for 2CB detection models on each dataset (%). (ORG denotes original 

samples, P-FGM denotes partial-FGSM, and P-PGD denotes partial-PGD) (2/2) 

Dataset 
FCN ResNet 

ORG FGSM PGD P-FGM P-PGD ORG FGSM PGD P-FGM P-PGD 

Herring 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

InlineSkate 100.00 100.00 64.00 0.00 0.00 100.00 100.00 98.73 0.00 0.00 

InsectWingbeatSound 100.00 99.55 99.95 0.00 0.00 100.00 99.85 99.95 0.00 0.00 

ItalyPowerDemand 87.27 70.94 72.60 35.73 82.81 85.03 74.05 64.53 0.00 0.00 

LargeKitchenAppliances 96.00 95.47 100.00 35.73 79.69 96.53 97.33 100.00 8.53 12.50 

Lightning2 93.44 93.44 75.41 9.84 8.20 90.16 77.05 47.54 9.84 9.84 

Lightning7 87.67 89.04 84.93 12.33 12.33 94.52 89.04 76.71 5.48 5.48 

Mallat 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

Meat 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

MedicalImages 99.74 100.00 98.95 0.00 0.00 100.00 100.00 99.74 0.00 0.00 

MiddlePhalanxOutlineAge-

Group 
100.00 100.00 99.35 0.00 0.00 100.00 100.00 85.07 0.00 0.00 

MiddlePhalanxOutlineCorrect 100.00 100.00 100.00 0.00 0.00 100.00 100.00 90.03 0.00 0.00 

MiddlePhalanxTW 100.00 100.00 98.70 0.00 0.00 100.00 100.00 79.22 0.00 0.00 

MoteStrain 85.06 77.72 79.63 12.34 12.66 85.30 90.18 83.55 12.50 12.50 

NonInvasiveFetalECGThorax1 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

NonInvasiveFetalECGThorax2 100.00 100.00 99.85 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

OSULeaf 100.00 100.00 84.71 0.00 0.00 100.00 100.00 88.02 0.00 0.00 

OliveOil 100.00 100.00 100.00 0.00 0.00 100.00 100.00 90.00 0.00 0.00 

PhalangesOutlinesCorrect 100.00 100.00 91.26 0.00 0.00 99.88 100.00 58.97 0.00 0.00 

Phoneme 90.67 83.81 57.96 6.59 6.86 89.66 90.08 76.53 5.94 5.94 

Plane 100.00 100.00 87.62 0.00 0.00 100.00 100.00 99.05 0.00 0.00 

ProximalPhalanxOutlineAge-

Group 
100.00 100.00 75.12 0.00 0.00 100.00 100.00 94.63 0.00 0.00 

ProximalPhalanxOutlineCorrect 100.00 100.00 100.00 0.00 0.00 100.00 100.00 38.49 0.00 0.00 

ProximalPhalanxTW 100.00 100.00 60.00 0.00 0.00 100.00 100.00 83.42 0.00 0.00 

RefrigerationDevices 98.13 97.33 96.80 0.00 0.00 98.13 94.93 90.13 0.00 0.00 

ScreenType 99.73 88.00 94.93 1.56 9.38 98.13 97.87 74.67 9.38 6.25 

ShapeletSim 93.33 3.33 2.78 3.13 3.13 76.11 32.22 17.22 18.75 14.06 

ShapesAll 100.00 100.00 67.17 0.00 0.00 100.00 100.00 54.33 0.00 0.00 

SmallKitchenAppliances 98.67 52.00 60.27 0.00 0.00 98.67 98.93 6.67 0.00 0.00 

SonyAIBORobotSurface1 73.88 59.24 56.91 21.88 21.88 70.05 65.39 59.40 24.22 25.00 

SonyAIBORobotSurface2 63.48 75.13 72.82 25.00 26.56 63.27 64.64 58.76 34.38 34.38 

StarLightCurves 100.00 100.00 92.39 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

Strawberry 100.00 100.00 94.60 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

SwedishLeaf 100.00 98.72 81.76 0.00 0.00 99.36 99.52 79.84 0.00 0.00 

Symbols 99.80 100.00 100.00 0.00 0.78 99.80 100.00 96.48 0.00 0.00 

SyntheticControl 59.33 53.67 53.67 38.54 39.06 56.33 64.00 66.67 41.67 41.67 

ToeSegmentation1 74.56 96.49 82.90 10.94 12.50 74.12 93.86 76.75 12.50 10.94 

ToeSegmentation2 99.23 90.00 80.77 0.00 0.00 99.23 98.46 93.08 0.00 0.00 

Trace 100.00 72.00 97.00 0.00 0.00 100.00 100.00 88.00 0.00 0.00 

TwoLeadECG 99.21 99.74 88.67 0.52 0.39 98.68 99.65 84.02 0.00 0.00 

TwoPatterns 100.00 100.00 99.95 1.56 1.56 99.95 99.65 98.93 3.96 3.44 

UwaveGestureLibraryAll 100.00 99.97 99.67 0.00 0.00 99.97 99.97 100.00 0.00 0.00 

UwaveGestureLibraryX 99.97 99.97 100.00 0.00 0.00 99.97 99.94 99.97 0.00 0.00 

UwaveGestureLibraryY 99.97 99.97 100.00 0.00 0.00 99.97 100.00 100.00 0.00 0.00 

UwaveGestureLibraryZ 100.00 99.97 100.00 0.00 0.00 100.00 99.97 100.00 0.00 0.00 

Wafer 100.00 99.81 100.00 0.00 0.00 100.00 99.94 99.48 0.00 0.00 

Wine 100.00 11.11 96.30 0.00 0.00 100.00 100.00 100.00 0.00 0.00 

WordSynonyms 100.00 100.00 100.00 0.00 0.00 99.84 99.84 99.84 0.00 0.00 

Worms 98.70 100.00 84.42 2.60 3.90 98.70 100.00 25.97 1.30 1.30 

WormsTwoClass 97.40 96.10 53.25 2.60 2.60 97.40 100.00 84.42 2.60 2.60 

Yoga 100.00 100.00 99.90 0.00 0.00 100.00 100.00 100.00 0.00 0.00 
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(a) FCN 

 

(b) ResNet 

Figure 8: Comparison of accuracy for the 2CB detection between FGSM and partial-FGSM 

(%) for: (a) FCN and (b) ResNet 

 

 

(a) FCN 

 

(b) ResNet 

Figure 9: Comparison of accuracy for the 2CB detection between PGD and partial-PGD (%) for: 

(a) FCN and (b) ResNet 

 

6 Conclusion 

This study focuses on adversarial attacks using adversarial examples for time series data classi-

fication. The findings show that adversarial examples of time series data that cannot be identified 

as adversarial examples in time series data classification can be generated using partial pertur-
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bations. The perturbation of an entire dataset exhibits clear indicators of data perturbation, which 

is not encountered when using image data. Therefore, partial-FGSM and partial-PGD methods 

were proposed, and these methods use only partial perturbations, thus rendering them simpler 

and more realistic attack methods. Furthermore, the effectiveness of the proposed methods was 

evaluated experimentally. Datasets for which the attack performance did not sufficiently degrade 

existed and were negligible, even when the perturbation range was reduced to 1/10. Furthermore, 

we verified the effectiveness of the 2CB detection method, which detects adversarial examples 

based on the differences in data characteristics. These results indicate minimal protection. 

Therefore, the findings of this study show that the threat of partial perturbations was significant 

in terms of abnormalities and the difficulty in defending against them, particularly in time series 

data. In the future, defense methods against the partial-FGSM and partial-PGD methods will be 

studied, and a feature analysis of the datasets for which partial perturbation is effective will be 

conducted. 
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