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Abstract 

This study proposes an epidemic model using person trips and treats the SEIR model as the re-

search model, which extends the SIR model. The study analyzes the actual spread of the Omicron 

strain of the coronavirus, which occurred throughout Japan around the beginning of the fiscal 

year 2022. After obtaining the epidemic model based on the SEIR model, the study divides a 

single epidemic area into four groups to reproduce diverse infections through person trips. Using 

the records of the number of infected individuals and commuters in Saitama, Tokyo, Kanagawa, 

and Chiba prefectures from January to April 2022, the study estimates the parameter values of 

infection rate, recovery rate, and mobility rate. The study discusses epidemic control by applying 

the estimated parameter values and compares the newly infected data of Saitama, Tokyo, Kana-

gawa, and Chiba prefectures used in parameter estimation with the infection data to evaluate the 

utility of the model. Additionally, the study examines the simulation results by varying the mo-

bility rates through several patterns. 

Keywords: SEIR model, Epidemic model, Person trip, Covid_19, 

1 Introduction 

The COVID-19 pandemic has wreaked havoc globally, including in Japan, with a total of 

33,803,572 infections and 74,694 deaths recorded as of December 31, 2023. As of January 

2024, although the momentum of infections has diminished compared to the early stages of 

the outbreak, measures still need to be taken. 

The SIR (Susceptible-Infectious-Recovered) model, formulated by Kermack and 

McKendrick in 1927, represents the short-term epidemic process of infectious diseases 

through classical model equations (1). The SIR model assumes the absence of immunity to 

the novel infectious disease, no population movement between external cities, population 

density with contact with an unspecified large number of people, and a rapid and short-term 

outbreak like the plague. The name is derived from the initials of the susceptible individuals 

(S), infected individuals (I), and recovered or removed individuals (R). On the other hand, 

the SEIR model extends the SIR model by considering exposed individuals (E) due to the 

infectious disease (2). During the Ebola virus outbreak in West Africa from 2014 to 2015, an 

extension of the SIR model was applied to epidemic analysis to suppress infection spread (3). 
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The differential equations for each model are as follows: 

Figure 1: Differential equations of the SIR model 

 Figure 2: Differential equations of the SEIR model 

The investigation of human mobility within specific regions, such as between cities, is 

referred to as a "person trip survey." Previous research (3) employed this concept to conduct 

numerical calculations targeting influenza. The research examined multiple intercity move-

ments from the perspective of a person trip survey, determining the next-generation matrix 

and calculating the basic reproduction number and city-specific basic reproduction numbers. 

However, considering that the previous research primarily focused on influenza, there may 

be some differences in the context compared to the current focus on COVID-19. The SIR 

model assumes that susceptible individuals (S) are infected by infectious individuals (I). 

However, in reality, infectious individuals (I) are isolated upon being diagnosed positive, 

making it unlikely for them to directly impact susceptible individuals (S). Therefore, this 

study assumes that the impact on susceptible individuals (S) is exerted by exposed individu-

als (E). Additionally, this study assumes that human mobility only occurs between the four 

groups to examine how human movement affects the spread of infection. 

H. Matsumoto, Y. Yamauchi, S. Matsumoto2



 
 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Many studies employing the SIR model assume a constant contact rate, denoted as α. 

However, in human societies engaged in social activities, the assumption of a constant con-

tact rate at all times does not align with reality. Thus, this study constructs a SEIR model 

incorporating population movement only during daytime hours. The study determines pa-

rameters such as the infection rate and initial values based on real data from Saitama, Tokyo, 

Kanagawa, and Chiba prefectures, and compares and analyzes them against real-world trends. 

Furthermore, the study investigates how the number of new infections changes due to the 

movement of individuals among four groups with different infection rates α, and discusses 

what measures may be effective in preventing the spread of infectious diseases based on the 

results. 

2 Concept

This section provides a detailed explanation of the SEIR model used in the study, incorporating 

person trips and variations in contact rates due to diurnal human mobility. The equations derived 

in this section form the basis for the numerical computations and simulations performed in the 

study to analyze the spread of the COVID-19 Omicron variant in Japan. 

2.1   Prerequisite 

The period referenced in devising this model coincides with the period of epidemic prevention 

measures, presuming minimal outings beyond necessary errands such as commuting or attending 

school. Thus, considerations exclude travelers from abroad or other prefectures. Parameters such 

as re-infection or demographic changes like births and deaths are not encompassed due to the 

utilization of the SEIR model. Effects such as immune enhancement from vaccination or prior 

infection are not factored in. Furthermore, asymptomatic carriers, being difficult to observe, and 

their potential impact on non-carriers remain uncertain and hence are not considered. 

All initial values utilized in this model are sourced exclusively from national or local government 

data. 

The authors deliberate on the impact of human mobility on infection spread within this model. 

2.2   Epidemic Model 

This section formulates the extension of the SIR model using person trips. The Kermack-

Mckendrick SIR model serves as the foundation of this epidemic model. The SIR model 

categorizes the population of an epidemic region into three compartments: "susceptible," 

"infectious," and "recovered." The SIR model employs a system of coupled differential equa-

tions to represent transitions between these compartments. S, I, and R represent susceptible, 

infectious, and recovered individuals, respectively, where S denotes the number of suscepti-

ble individuals, I denotes the number of infectious individuals, and R denotes the number of 

recovered individuals. The difference between S and I is proportional to the number of sus-

ceptible individuals in contact with infectious individuals. Additionally, the difference 
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between I and R is proportional to the number of infectious individuals. Therefore, the dif-

ferences among S, I, and R are expressed by the following equations.  

To resolve these issues using the SEIR model, the epidemic area is partitioned into four 

groups, defining the susceptible, infected, and recovered individuals of Group 1 as S1, E1, 

I1, R1. 

Furthermore, this framework accommodates different infectious diseases per person trip. 

α₁ denotes the infection rate of Group 1, β₁ signifies the recovery rate of Group 1, N₁ repre-

sents the total population in that group (S1 + E1 + I1 + R1), and T12 denotes the migration 

rate from Group 1 to Group 2. 

Let λ represent the number of new infections during the daytime in Group 1. The number 

of susceptible individuals in Group 1 during the daytime is denoted as 𝑆1
𝑑(𝑡)

𝑇1,1

𝑁1
𝑑 . The count 

of infected individuals in Group 1 during the daytime is given by 𝑆1
𝑑(𝑡)

𝑇1,1

𝑁1
𝑑 , obtained from 

the migration rate from Group 1 to Group 1, denoted as T1.1, and the daytime population 

N₁ of Group 1. The number of latent individuals moving to Group 1 during the daytime is 

provided for Groups 1 through 4, denoted as𝑇
1～４,1

𝐸
1～４

 and the total number of latent 

individuals moving from all groups to Group 1 is given as (𝑇1,1𝐸1(𝑡) + 𝑇2,1𝐸2(𝑡) +

𝑇3,1𝐸3(𝑡) + 𝑇4,1𝐸4(𝑡)). Denoting the infection rate of Group 1 as α1, the expression for 

susceptible individuals in Group 1 becoming infected and becoming new infections is 

𝑆1
𝑑(𝑡)

𝑇1,1

𝑁1
𝑑 𝛼1 (𝑇1,1𝐸1(𝑡) + 𝑇2,1𝐸2(𝑡) + 𝑇3,1𝐸3(𝑡) + 𝑇4,1𝐸4(𝑡)). 

By substituting the above expressions from Groups 1 through 4, the following equations 

are derived. 

𝜆1
𝑑 = 𝑆1

𝑑(𝑡)
𝑇1.1

𝑁1
𝑑

𝛼1 (𝑇1,1𝐸1(𝑡) + 𝑇2,1𝐸2(𝑡) + 𝑇3,1𝐸3(𝑡) + 𝑇4,1𝐸4(𝑡)) 

+𝑆1
𝑑(𝑡)

𝑇1,2

𝑁2
𝑑

𝛼2 (𝑇1,2𝐸1(𝑡) + 𝑇2,2𝐸2(𝑡) + 𝑇3,2𝐸3(𝑡) + 𝑇4,2𝐸4(𝑡)) 

+𝑆1
𝑑(𝑡)

𝑇1,3

𝑁3
𝑑

𝛼3 (𝑇1,3𝐸1(𝑡) + 𝑇2,3𝐸2(𝑡) + 𝑇3,3𝐸3(𝑡) + 𝑇4,3𝐸4(𝑡)) 

+𝑆1
𝑑(𝑡)

𝑇1,4

𝑁4
𝑑 𝛼4 (𝑇1,4𝐸1(𝑡) + 𝑇2,4𝐸2(𝑡) + 𝑇3,4𝐸3(𝑡) + 𝑇4,4𝐸4(𝑡))                   (1) 

 

Let 𝜆1
𝑛 denote the number of new infections during the nighttime. Assuming no inter-group 

movement during the nighttime, the susceptible individuals present at night are denoted as 
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𝑆1
𝑛 . They are determined by the infection rate α₁, the latent individuals E1, the total nighttime 

population N1 of Group 1, and the secondary infection rate within household contacts h(4). 

The secondary infection rate within households is referenced from data provided by the 

National Institute of Infectious Diseases. The institute calculates the secondary infection rate 

within households (PCR positivity rate among close contacts) based on the basic attributes 

and contact history of infected individuals and close contacts within households (including 

non-family members). 

The following equation calculates the number of new infections during the nighttime in 

Group 1. 

𝜆1
𝑛 =  𝛼1ℎ

𝑆1
𝑛(𝑡)

𝑁1
𝑛 𝐸1(𝑡)     (2) 

 

To determine the number of new infections 𝜆1 in Group 1, the following equation is de-

rived by calculating the average of the sum of the daytime new infections 𝜆1
𝑑in Group 1 and 

the nighttime new infections 𝜆1
𝑛 in Group 1. 

𝜆1(𝑡) =  
1

2
(𝜆1

𝑑 + 𝜆1
𝑛)   (3) 

 

Let S₁ represent the susceptible individuals in Group 1, and as susceptible individuals in 

Group 1 transition to newly infected individuals, the number of susceptible individuals de-

creases, denoted as −𝜆1(𝑡). 
𝑑𝑆1

𝑑𝑡
(𝑡) =  −𝜆1(𝑡)   (4) 

 

The latent period of the COVID-19 Omicron variant, the subject of this study, has been 

disclosed to be approximately 3 days, according to the data published by the National Insti-

tute of Infectious Diseases (5). Therefore, it is assumed that individuals who are susceptible 

in this study will develop symptoms precisely 3 days after being infected by latent individu-

als. Consequently, the number of latent individuals, denoted as 𝐸1 (t) in Group 1, is the sum 

of individuals in latent period 1 ( 𝐸1.1 (t)), latent period 2 (𝐸1.2 (t)), and latent period 3 (𝐸1.3 

(t)). The following is a list of 

𝐸1(𝑡) = 𝐸1.1(𝑡) + 𝐸1.2(𝑡) + 𝐸1.3(𝑡)   (5) 

 

Let 𝐸1.1 denote individuals in Group 1 on the first day of the latent period. There is no data 

available on latent individuals in the data disclosed by the government or prefectures. This 

is because latent individuals have not yet developed symptoms, making it difficult to observe 

them as latent individuals. In my SEIR model, as mentioned earlier, susceptible individuals 

are assumed to become infectious three days after infection. Therefore, in the data disclosed 

by the government or prefectures, it is assumed that the number of new infections corre-

sponds to the first day of the latent period two days prior to symptom onset. 

Furthermore, since we are interested only in individuals on the first day of the latent period 

(𝐸1.1), the formula for𝐸1.1is derived by subtracting the number of individuals on the first day 

of the latent period from the number of new infections disclosed daily, obtained by subtract-

ing the number of individuals on the first day of the latent period from the number of new 

infections disclosed daily. 
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𝑑𝐸1.1

𝑑𝑡
(𝑡) = 𝜆1(𝑡) − 𝐸1.1(𝑡)   (6) 

 

(7) coincides with the aforementioned content, yet designates individuals in Group 1 on 

the second day of the latent period as E₁.2. Individuals on the first day of the latent period 

transition to those on the second day of the latent period the following day. Hence, subtract-

ing the number of old second-day latent individuals from the number of new second-day 

latent individuals results in the count of second-day latent individuals on day t. 
𝑑𝐸1.2

𝑑𝑡
(𝑡) = 𝐸1.1(𝑡) − 𝐸1.2(𝑡)   (7) 

 

(8) overlaps with the aforementioned information, designating individuals in Group 1 on 

the third day of the latent period as E₁.3. Individuals on the second day of the latent period 

transition to those on the third day of the latent period the following day. Therefore, subtract-

ing the number of old third-day latent individuals from the number of new third-day latent 

individuals results in the count of third-day latent individuals on day t. 
𝑑𝐸1.3

𝑑𝑡
(𝑡) = 𝐸1.2(𝑡) − 𝐸1.3(𝑡)   (8) 

 

Let I₁ represent the infected individuals in Group 1. The infected individuals in Group 1 

are those who were in the third day of the latent period the previous day. Additionally, among 

the infected individuals, there are those who recover from the infection and no longer remain 

infected. Those who have recovered from the infection are designated as recoveries (σ₁ or 

R₁). Infected individuals continue to accumulate as such until they recover from the infection. 
𝑑𝐼1

𝑑𝑡
(𝑡) =  𝐸1.3(𝑡 − 1) − 𝜎1 = 𝐼1(𝑡) − 𝜎1   (9) 

 

R₁ represents the daily number of recoveries in Group 1, where β denotes the recovery 

rate, and I₁(t) represents the number of infected individuals. Multiplying these two yields the 

daily number of recoveries for Group 1. This is illustrated below. 
𝑑𝑅1

𝑑𝑡
(𝑡) =  𝜎1(𝑡)   (10) 

 

 𝛽 represents the recovery rate, and I₁(t) denotes the infected individuals. These two vari-

ables allow us to calculate the daily number of recoveries for Group 1. This is illustrated 

below. 

𝜎1(𝑡) =  𝛽𝐼1(𝑡)   (11) 

 

The above elucidates equations (1) through (11) for Group 1. The equations for Groups 2, 

3, and 4 involve merely substituting parameters such as initial values and coefficients with 

the values from Group 1, hence, explanation is omitted. The following is a list of 
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Figure 3: SEIR model for Group 1         Figure 4: SEIR model for Group 2 

Figure 5: SEIR model for Group 3       Figure 6: SEIR model for Group 4 

 

3 Methods 

This section provides a clear and detailed explanation of the parameter estimation process 

used in the study, including the sources of data, the calculation of specific parameters, and 

the tools and techniques used for the experiments and numerical computations 

In estimating parameters such as initial values, data from various sources were utilized, 

including the publicly available data from the National Institute of Infectious Diseases (4), 

population and daytime mobility data from Saitama, Tokyo, Kanagawa, and Chiba prefec-

tures (5), and newly infected data from Saitama, Tokyo, Kanagawa, and Chiba prefectures 

(6). These data were used to determine coefficients such as infection rate, recovery rate, and 

mobility rate. This study employed numerical data regarding nationwide infections from Jan-

uary 3, 2022, to April 10, 2022. This period was chosen because the COVID-19 outbreak 

during this time was attributed to the BA.1 lineage of the Omicron variant, and the BA.2 

lineage, with different characteristics, was expected to emerge after this date. Different var-

iants of COVID-19 may have varying infection rates, recovery rates, and latent periods, even 
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though they are all referred to as COVID-19. Therefore, this study focuses on the BA.1 lin-

eage of the Omicron variant, which surged from the first to the fourteenth week of 2022. 

 

Table 1: Parameters such as infection rates 

character meaning numerical 
value 

α1 Group 1 infection rate 0.213 

α2 Group 2 infection rate 0.149 

α3 Group 3 infection rate 0.168 

α4 Group 4 infection rate 0.145 

T₁.₁ of those who stay in group 1 0.967 

T₁.₂ Movement rate from Group 1 to Group 2 0.01 

T₁.₃ Movement rate from Group 1 to Group 3 0.006 

T₁.₄ Movement rate from Group 1 to Group 4 0.017 

T₂.₁ Movement rate from Group 2 to Group 1 0.148 

T₂.₂ of those who stay in group 2 0.842 

T₂.₃ Movement rate from Group 2 to Group 3 0.004 

T₂.₄ Movement rate from Group 2 to Group 4 0.006 

T₃.₁ Movement rate from Group 3 to Group 1 0.118 

T₃.₂ Movement rate from Group 3 to Group 2 0.001 

T₃.₃ of those who stay in group 3 0.879 

T₃.₄ Movement rate from Group 3 to Group 4 0.002 

T₄.₁ Movement rate from Group 4 to Group 1 0.143 

T₄.₂ Movement rate from Group 4 to Group 2 0.008 

T₄.₃ Movement rate from Group 4 to Group 3 0.845 

T₄.₄ of those who stay in group 4 0.004 

h Prevalence of secondary infections within cohabiting 
families 

0.35 

β recovery rate 0.1 

 

The parameters mentioned above are computed as follows. Initially, the daily new infection 

numbers for Saitama, Tokyo, Kanagawa, and Chiba prefectures are compiled in Excel, and 

the average of these new infection numbers is determined. Subsequently, the differential 

equations of the SEIR model are rearranged such that only the infection rate remains on the 

left-hand side. By substituting the actual data from Tokyo for Group 1, Saitama for Group 2, 

Kanagawa for Group 3, and Chiba for Group 4, α₁, α₂, α₃, and α₄ are calculated. 

The determination of the mobility rate T is based on data on the population and daytime 

mobility from Saitama, Tokyo, Kanagawa, and Chiba prefectures. 

The secondary infection rate within households h is referenced from the announcement data 
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of the National Institute of Infectious Diseases. 

Regarding the recovery rate β, considering the Omicron variant prevalent around January, 

the recovery period was estimated to be 10 days. Assuming symptoms resolve definitively 

10 days after onset, the daily recovery rate is set at 0.1(7). 

Experiments were performed using Python. RK45 was used to solve the simultaneous dif-

ferential equations. 

 

4 Results 

Figure 7: Simulation Results 

 

This section provides a concise and clear presentation of the key findings of the simulations, 

comparing them with real-world data and highlighting the impact of variations in mobility 

on the total peak number of new infections between groups. 

IIn the simulation results, the number of new infections and the total number of latent 

individuals exhibited outcomes similar to those depicted in Figure 7 above. The peak number 

of new infections in Group 1 reached 17,486 individuals on the 9th day since the start of the 

simulation. For Group 2, the peak number of new infections was 4,907 individuals on the 

11th day since the start of the simulation. In the case of Group 3, the peak number of new 

infections occurred on the 15th day since the start of the simulation, with 15,821 individuals 

affected. Similarly, for Group 4, the highest number of new infections, reaching 11,242 in-

dividuals, was observed on the 15th day since the start of the simulation. 

Figure 8: Data on the number of new infections in the referenced prefectures 
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From January 5th to March 5th, the highest number of new infections occurred on the 

32nd day in Tokyo, with 21,110 individuals affected, followed by Saitama Prefecture with 

7,353 individuals on the same day, Chiba Prefecture with 6,599 individuals on the 37th day, 

and Kanagawa Prefecture with 9,096 individuals on the 32nd day. 

 

Table 2: Simulation results with varying mobility rates 

character numerical value      

T₁.₁ 1 0.25 0.7 0.1 

T₁.₂ 0 0.25 0.1 0.3 

T₁.₃ 0 0.25 0.1 0.3 

T₁.₄ 0 0.25 0.1 0.3 

T₂.₁ 0 0.25 0.1 0.3 

T₂.₂ 1 0.25 0.7 0.1 

T₂.₃ 0 0.25 0.1 0.3 

T₂.₄ 0 0.25 0.1 0.3 

T₃.₁ 0 0.25 0.1 0.3 

T₃.₂ 0 0.25 0.1 0.3 

T₃.₃ 1 0.25 0.7 0.1 

T₃.₄ 0 0.25 0.1 0.3 

T₄.₁ 0 0.25 0.1 0.3 

T₄.₂ 0 0.25 0.1 0.3 

T₄.₃ 0 0.25 0.1 0.3 

T₄.₄ 1 0.25 0.7 0.1 

Highest number of new infections   

Group1 16204.63 18458.88 16410.08 20061.35 

Group2 4646.433 8576.16 6828.08 8776.14 

Group3 10962.05 9963.21 10873.76 9612.22 

Group4 7266.41 7985.38 8581.73 7488.35 

Total Peak Number of New Infections from Group 1 to Group 4  

 38799.29 44945.8 42553.56 45925.33 

 

Table 2 presents simulation results with variations in mobility across four patterns. When 

inter-group movement is the most frequent, the total peak number of new infections between 

each group is highest, whereas scenarios with no movement exhibited the lowest total peak 

number of new infections between groups. 
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5 Discussion 

The simulation results did not closely resemble the trends observed in real-world data. In all 

scenarios, the peaks occurred earlier and the outbreak subsided more rapidly than in actual 

data. The peak number of new infections in each group ranged from approximately 8 to 15 

days in the simulations, resulting in a difference of around 3,000 individuals in the peak 

number of new infections compared to actual data. Moreover, each simulation recorded the 

peak number of new infections earlier than the real-world data. Subsequently, the number of 

recoveries surpassed the number of infections, and the outbreak appeared to gradually sub-

side. 

The earlier peak observed in the simulation results compared to real-world data may be 

attributed to factors such as the lack of incorporation of immunity acquisition through vac-

cination in the model, leading to a rapid spread of the infection in the simulations. Further-

more, the differences in the peak number of new infections may be attributed to the consid-

eration of movement only between the four groups, as well as the extreme division of move-

ment into daytime activity and nighttime confinement. In reality, individuals from prefec-

tures other than Saitama, Kanagawa, and Chiba may also move to Tokyo, and people may 

also travel from overseas. Additionally, variations in infection rates based on location are 

also conceivable. For example, outdoor sidewalks, office spaces, bars, and clubs are unlikely 

to all have the same infection rate. The oversight in considering these factors may have re-

sulted in discrepancies between the simulation results and the real-world data. 

Furthermore, when examining the data with varying mobility rates, Table 2 reveals that 

moving to groups with higher infection rates resulted in approximately 1.18 times more new 

infections compared to when no movement occurred. Measures such as remote work and 

online classes have been implemented to prevent the spread of infection during the COVID-

19 pandemic. Refraining from unnecessary outings has significantly contributed to infection 

prevention. 

 

6 Conclusion 

In order to address two questions regarding the extent of the impact of human mobility on 

infection outbreaks and the estimation of the number of latent individuals, a simulation of 

the SEIR model was conducted, taking into account changes in contact rates due to daytime 

and nighttime mobility. To make the settings more realistic, data from the National Institute 

of Infectious Diseases (4), daytime mobility data for residents of Saitama, Tokyo, Kanagawa, 

and Chiba (5), as well as publicly available data on new infections in Saitama, Tokyo, Kana-

gawa, and Chiba prefectures (6), were used to determine initial values between groups and 

calculate parameters by substituting them into the differential equations of the SEIR model.  

The simulation results were somewhat divergent from real-world data. Additionally, when 

the inter-group mobility rates were altered in subsequent simulations, a difference of approx-

imately 1.18 times in peak new infections was observed between scenarios where individuals 

from low infection rate groups did not move to high infection rate groups and scenarios 

where they did move. This suggests that human mobility could be a contributing factor to 

infection spread. Therefore, it can be argued that measures such as online classes and remote 

work, which reduce human mobility, can help mitigate the spread of infection during out-

breaks. 

It should be noted that factors such as mobility of individuals outside the four groups, 
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immunity acquisition through vaccination, the possibility of reinfection due to immunity ac-

quired after infection, and population changes due to births and deaths and healthcare system 

collapse due to infection spread were not considered in this study. Creating a new model that 

takes these factors into account and conducting simulations closer to real-world trends is a 

future challenge. 
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