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Abstract

In recent years, the internet of things (IoT) has been used effectively in smart agriculture,
where farmers can make decisions and transfer knowledge based on sensor data. How-
ever, the physical sensors (temperature, humidity, and illuminance sensors) of IoT systems
have limitations in capturing various changes in crops and environment in the actual fields.
Combining physical sensors with the human five senses (human sensors) can flexibly record
changes that cannot be captured by physical sensors alone. In this study, a smart voice mes-
saging system is used for recording the five human senses via voice messages. Assisted by
machine learning, preliminary experiments are conducted using planter boxes for predicting
soil condition in the watering process. Our results confirm the effectiveness and validation
of fusing physical and human sensors.
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1 Introduction

In recent years, digital technology including the internet of things (IoT), artificial intelli-
gence (Al), and cloud computing, has produced various innovations and applications [1][2].
Smart agriculture supported by digital technology is one of the most promising approaches
for increasing agricultural efficiency and productivity. In particular, the rapid aging of farm-
ers presents a serious social problem, especially in Japan. Older farmers have abundant tacit
knowledge based on their experiences. However, there are insufficient means and efforts for
them to externalize and transfer their knowledge to younger generations. Thus, digital tech-
nology becomes very important in recording and analyzing agricultural data and supporting
farming activities. Recently, there have been numerous studies and practical applications
of 10T in agriculture. Many researchers focus on physical sensors and networks to visual-
ize agricultural processes [3], and some have proposed the application of machine learning
techniques to agriculture [4].
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Physical sensors used in agriculture, such as temperature, humidity, and illuminance,
are insufficient for understanding the detailed conditions of crops and cultivated land, and
human confirmation is essential. In addition, the high cost and rather complicated opera-
tion of physical sensors makes their use impractical for actual farmers and occasionally for
research purposes. In reality, farmers use their five senses (sight, hearing, touch, smell, and
taste) and a wealth of experience (often tacit knowledge) to detect pests and environmental
changes in crops, make decisions, and perform their work. In this study, these are called
“human sensors.” As a mechanism for collecting data from human sensors, we developed a
smart voice messaging system (SVMS) [5] that can verbalize farmers’ awareness (observa-
tions, operations, and judgments) of crops and field environments, which can be recorded
directory in the field as voice messages and photographs. The objective of this study is
to use this system to record detailed field conditions by combining physical sensor data
and human sensor data and analyze the data using machine learning to extract patterns for
knowledge sharing and transfer in agriculture.

Combining the data from physical sensor and human sensor collected by SVMS, we
describe a preliminary experiment for predicting soil conditions in planter cultivation

2 Literature Review

Numerous studies have investigated the application of digital technology to agricultural
support [3][6]. Applied agricaltural research that uses data collected by physical sensors
includes a warning system that monitors the water level in agricultural water tanks [7], crop
health diagnosis using image analysis, and control of environmental parameters through IoT
[8]. Although these past studies have shown that methods using physical sensors effectively
improve work efficiency, in many cases, all of these efforts have focused on one specific
task and have been unable to adequately capture the more subjective changing agricaltural
crop and environmental conditions.

Dey[9] proposed context-aware computing as a method for computers to sense their
surroundings and situations, and defined “context” as follows: “Context is any information
that can be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an application,
including the user and applications themselves.” Context-aware methods that uses IoT have
been proposed, such as CA4IoT (context awareness for internet of things) [10], which is a
broad classification system that combines information from multiple sensors and describes
it in an ontology-based approach; nonetheless, incorporating the environmental changes
and experiences perceived by experienced field workers remains a challenge.

Uchihira et al. [11] have shown the importance of “Gen-Ba knowledge,” which can
be defined as knowledge possessed by humans that cannot be captured by IoT sensors. It
is latent knowledge that can be expressed in the field, which blends tacit knowledge and
explicit knowledge, suggesting the concept of a human-centric digital twin that utilizes
Gen-Ba knowledge in cyberspace. Uchihira et al. state that SVMS is an effective tool to
gather this knowledge. In agriculture, it is also effective to collect and apply this on-site
Gen-Ba knowledge. However, analyzing Gen-Ba knowledge using Al remains a future
challenge.

In addition, recent years have seen revolutionary advances in natural language process-
ing with the advent of Transformer[12], BERT[13], GPT[14], among others. The perfor-
mance of highly accurate tasks with minimal information could be an effective method for
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integrating human sensor data and physical sensor data for improving knowledge about the
fields.

3 Fusion of Physical and Human Sensors

In corp fields, the type of information that can be collected by physical sensors is limited,
and in reality, humans (farmers) make decisions and take actions based on their empirical
knowledge. We have been developing a SVMS[5] to record human awareness based on
their experiential knowledge on the field. We call this the “human sensor.” The fusion
of physical sensors and a human sensor, described as sensor fusion, makes it possible to
accumulate data for an on-site situation that cannot be acquired by physical sensors alone.
Data gathered is usually simply fusion among physical sensors, but human-sensor-physical-
sensor fusion is an unusual and unique approach. This concept is shown in Figure 1, which
was originally proposed by the authors [15]. Up to this point, however, pattern extraction
by applying machine learning remained a future issue.

Through a simple experimental environment, we show in this report that an effective
prediction model can be created by using physical and human sensor data in a complemen-
tary manner. Machine learning models for predicting soil and other conditions are used to
extract patterns in actual field and cultivation knowledge.
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Figure 1: Fusion of Physical and Human Sensors (Conceptual Model) [15]

4 Preliminary Experiments

4.1 Experiment Overview

In this experiment, we integrate and analyze physical sensor data (air temperature, humidity,
illuminance, soil temperature, and soil moisture content) and human sensor data (sunlight
intensity, soil surface wetness, soil texture, and weather conditions) collected from planter
cultivation to predict future soil conditions. The collected data is important to cultivate
Japanese white radish. In particular, handling soil water conditions affects corps quality.
Specifically, we cultivated radishes in three planters of the same size (90L) and made of
plastic, collected physical sensor data (two circuits were installed in each planter), and
recorded soil observations for the planters daily for two months (late October to late De-
cember 2022) using SVMS. Table 1 shows the experiment conditions.
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Table 1: Experiment Conditions

Experimental Period 20 October, 2022 to 19 December, 2022
Participant / Hunam Sensor 1 person (one of authors)
Location Veranda in student dormitory

Captured Physics Sensor Data | Temperature, humidity, illuminance, soil
temperature, soil moisture

Captured Human Sensor Data | Intensity of sunlight, apparent soil sur-
face wetness, feel of soil

Amount of Water Per Day Planter1: 1 liter per day,

Planter2: 2 liter per day,

Planter3: 3 liter per day

4.2 Experimental System Configuration

The experimental system configuration for planter cultivation is shown in Figure 2. For
physical sensors, we developed a prototype system to measure air temperature, humidity,
illuminance, soil temperature, and soil moisture content (Figure 3). The data obtained from
the physical sensors were collected and stored in a time-series database (InfluxDB) using
message queuing telemetry transport, including the environmental information around the
planter. For the collection of human sensor data, we used a commercial version (RECAIUS,
Toshiba Digital Solutions Corporation) of the SVMS [5] noted in the previous sections
(Figure 4). Figure 5 shows an image of the three planters and the instrumentation.

Human Sensor Physical sensor

RECAIUS [ Bl -

MQTT

Cloud
Server

[
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App / Web Circuit
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farm work
by voice or picture

Soil Moisture

Figure 2: Configuration of the Experimental System

4.3 Data Collection and Method

Using a decision tree based machine learning model, lightGBM [16], the acquired physi-
cal and human sensor data were used to build models to predict the soil moisture content
that would be present 3 hours later. An overview of the experimental method is shown in
Figure 6.
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Figure 3: Physical Sensors in Experimental System
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Figure 4: Human Sensor (SVMS Smart Phone Interface)
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Figure 5: Conducting the Preliminary Experiment and Data Collection

Table 2 shows the features used in training. For the variables based on human sensor
data, we applied an ordinal scale (Table 3) for sunlight, soil surface wetness, feel of soil,
while for the variables related to weather, sun_.dummy, rain_dummy, and clouds_dummy
were transformed into dummies (Table 4) and used in the analysis. After adding the data
for spoiled_water and the amount of water added to the planter, the data from planter1-3
were combined vertically to create machine learning models.

4.4 Results

To confirm the effectiveness of physical and human sensor fusion, we compare the accuracy
of predictive models generated from the physical sensor data alone with models generated
from physical and human sensor data. Here, root mean squared error (RMSE) was used
to evaluate the models. The results of the built prediction models and hyperparameters are
shown in Tables 5 and 6, respectively; a lower value of the RMSE score, the better the
accuracy. The lower RMSE score (7.07413) or physical and human sensor fusion, which
includes the human sensor data model, relative to physical sensors (7.32872) confirms that
adding the human sensor data model provides an accurate prediction by adding soil condi-
tions that are not captured by the physical sensors.

RMSE is known to provide a correspondingly larger penalty for large errors. The mod-
els predict the soil moisture content after 3 hours, but the planter environment is changing
continuously during the time up to 3 hours. Accordingly, it is difficult to predict with high
accuracy. Therefore, RMSE was utilized in this forecasting because some small errors can
be tolerated. The value of the RMSE rating can be directly converted to units, and the fore-
casting model including the human sensor data can have errors in the forecast value that
approximately the average RMSE score.

5 Discussion

To evaluate the effect of each of the model values on the predicted values, the Shapley
additive explanation (SHAP)[17][18] is used to show the contribution to the 3-hour soil
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Figure 6: Process of Preliminary Experiments

Table 2: Features Used for the Prediction Model

Explanatory Variable

Temperature

humidity

illuminance
ground_temperature(soil
temperature)
soil_moisture (soil mois-
ture rate)

Variables of physical sensor

sun_light (intensity of sun-
light)

Variables of human sensor soil_surface (apparent soil
surface wetness)

soil_feel (feel of the soil)
sunny_dummy  (dummy
data for sunny condition)
rainy_dummy (dummy
data of rainy condition)

Variables that do not belong to Spoiled_water (amount of
either physical or human sensors spoiled water)

Target Variable

Variables of Physics sensor Soil moisture after 3_hours
(3_hours later soil moisture
rate)
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Table 3: Ordinal Scale of Sunlight, Soil_Surface Wetness, Soil _Feel

Intensity of sunlight Apparent soil surface wetness Feel of soil condition
(sunlight) (soil_surface) (soil_feel)
Very strong 5 Very moist 6 Clammy | 4
Strong 4 Moist 5 Crumbly | 3
Moderate 3 Slightly moist 4 Loose 2
Slightly strong | 2 Just a little damp | 3 Dry 1
Slightly weak | 1 Slightly dry 2 Smooth | 0
Weak 0 dry 1
very dry 0

Table 4: Dummy Conversion of Sun, Rain, and Clouds Dummy

Weather Sun_dummy Rain_dummy

Sun 1 0
Rain 0 1
Clouds 0 0
Table 5: Predicted Model Scores
Model type Train RMSE score  Test RMSE score
With human sensor model 1.43178 7.07417
Without human sensor model 3.26528 7.32872

Table 6: Hyperparameters

Parameters Value
Max epoch 100
Tree max depth 4
Min data in leaf 3
Early stopping 50
Number of leaves 30
Learning rate 0.1
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moisture content prediction using the model includes the human sensor (Figure 7). In addi-
tion to physical sensor values such as soil moisture content and temperature, human sensor
values such as soil surface and condition also contributed to the prediction. However, the
effect of the amount of water applied was less than expected. In the experiments, the soil
condition was considerably affected by environmental factors. Hence, the evaluation of soil
condition using the human sensor is effective in terms of appropriately capturing the plant
environment.
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Figure 7: With Human Sensor Model Visualized by SHAP

6 Conclusion

In this study, we showed that in a simple experimental environment of planter cultivation,
the data obtained using physical and human sensors can be integrated within a model, and
that machine learning can be used to provide more accurate estimation than physical sensor
data alone. Although the combination of physical and human sensors had been shown at
the conceptual level [15], this study demonstrates its effectiveness using actual experimental
data.

In our preliminary experiment, a predictive model was constructed using the messages
(e.g., feel of soil condition: clammy (4), crumbly (3), loose (2), dry (1), smooth (0)) that
could be quantified from the planter cultivation conditions as perceived by the human sen-
sor. Nonetheless, there remain many messages in the SVMS regarding human awareness
and senses that were not quantified (e.g., “weather is sunny, and the wind is blowing strong
today!”). Using natural language processing technology, which has become increasingly

Copyright © by IIAL. Unauthorized reproduction of this article is prohibited.



10

M. Inoue, K. Toya, R. Ogawa, N. Uchihira

innovative in recent years, we plan to construct more accurate prediction models that reflect
farmers’ experiential knowledge and extract cultivation knowledge (know-how) by directly
using all messages input by SVMS.
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