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Abstract 

    Recent years have observed increased demand for deliveries and a shortage of human re-

sources, necessitating more efficient transportation paths for products and other items in 

transportation, logistics, and associated sectors. This study introduces a heuristic by im-

proving the greedy-based algorithm to solve the traveling salesman problem. This proposed 

method can rapidly find numerous promising paths. Furthermore, we explored the applica-

tion of the proposed method for pheromone deposition in ant colony optimization (ACO). 

Specifically, pheromones are deposited on the paths charted by ants and those investigated 

using the proposed method. Computational experiments provided robust evidence of the

effectiveness of the proposed method and its integration with ACO. 
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1 Introduction 
The traveling salesman problem (TSP), a graph-theoretic problem, is widely used in 

various applications, especially in transportation and logistics. Based on the recent surge in 

delivery demand, triggered by factors such as online shopping, shortage of delivery 

personnel has emerged as a serious problem. For a company to deliver packages with 

minimal people, efficient transportation of packages to the delivery location is necessary. 

Hence, identification of an effective solution for the TSP becomes imperative. However, as 

TSP is an NP-hard problem [1], identification of an optimal solution necessitates 

substantial computation time. Thus, numerous heuristic algorithms have been proposed for 

TSP to date. 

This study introduces a heuristic algorithm by improving the existing greedy-based 

algorithm for TSP. Additionally, we explore the integration of the proposed algorithm 

with pheromone deposition in ant colony optimization (ACO), a nature-inspired stochastic 

metaheuristic that often applied to TSP [2][3][4][5][6][7]. 

2 Preparation 

2.1 Traveling salesman problem 

 The traveling salesman problem (TSP) is a problem for finding an optimal cycle with 

minimum weight across a given graph such that each vertex is visited exactly once. Figure 1 

shows an example. Here, the optimal path is represented by thick lines. Since TSP is an NP-
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hard problem, several heuristic algorithms have been proposed to solve it in the literature, 

and it continues to be an area of active study. Furthermore, problems derived from TSP, 

such as dynamic TSP (DTSP) [3][5][8], multiple TSP [7], and multiobjective TSP [9], are 

under active investigation. 

Figure 1: Example of TSP and its optimal path 

2.2 Distributed greedy TSP (Dg-TSP) method 

  Sharma and Chou [10] recently proposed four distinct methodologies for the DTSP. One 

such method, Dg-TSP, is based on the greedy algorithm, and it can rapidly explore various 

spectrum of paths. Initially, Dg-TSP investigates all edges connected to the starting vertex. 

For subsequent vertices, Dg-TSP considers only a single outgoing edge with the least 

weight connected to each vertex. Thus, for vertices, Dg-TSP explores  -1 paths. Figure 

2 shows an example of Dg-TSP exploration for four vertices 0, 1, 2, and 3, where the edges 

explored by Dg-TSP are depicted as thick lines. 

Figure 2: Example of explored edges by Dg-TSP 

2.3 Ant colony optimization (ACO) 

  ACO belongs to swarm-based metaheuristics, a stochastic solution method for 

computational problems. ACO employs a multitude of artificial ants—acting 

as information processing units—to construct solutions for optimization problems 

using graph-based paths. The transfer of pheromone information with each iteration 

enables ACO to lean toward efficient paths, thereby generating superior solutions. 

The underlying algorithm is as follows:

1. Initialize the pheromone value of each edge to . 

2. Repeat steps i.–iv. until the number of iterations reaches a predefined number.
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i. Have each ant explore a path stochastically based on the pheromone amount on

the edges and edge weights.

ii. For each path found by each ant, determine the pheromone deposition amount.

iii. Evaporate pheromone according to evaporation factor .

iv. Deposit pheromone on each path determined in step ii.

3. Output the best solution found.

 The pheromone amount on a path is calculated by / , where  represents the ref-

erence amount of pheromone and  corresponds to the path length. Notably, a smaller 

length generates a higher pheromone amount. Furthermore, the selection probability  of an 

outgoing edge ( ) from vertex  is derived from equation (1) and is selected in alignment 

with the roulette wheel principle: 

 =

-
∙

∑ -
∙∈

 for all ∈ , (1)

where  denotes the set of unvisited vertices;  and  represent the parameters controlling 

the influence of the edge weights and pheromone values, respectively;  indicate the 

 indicates the pheromone trail deposited on edge ( , ). Note weight of edge ( , ); and 

that the edge ( , ) with smaller  and/or larger  are more likely to be selected. 

 To date, numerous enhanced methodologies have been proposed for ACOs [2][3][4]. 

3 Proposed Method and Its Application to ACO

  Sharma and Chou [10] proposed Dg-TSP can explore various paths quickly. This paper 

introduces IDg-TSP by improving Dg-TSP to increase the number of explored paths. Un-

like Dg-TSP, which only explores the outgoing edges with the smallest weight for the sec-

ond vertex, IDg-TSP also considers outgoing edges with relatively low weight.  More spe-

cifically, for each second vertex , IDg-TSP explores up to /10 outgoing edges ( , ) with 

)/10 in ascending order of weight. Here, weight less than ( , ) + ( - 

refers to the number of vertices,  

and minimum edge weights among all edges, and 

 are respectively the maximum 

( , ) is the minimum edge weight 

among outgoing edges from vertex  to unvisited vertex  . Conversely, for the third vertex 

and onwards, IDg-TSP, similar to Dg-TSP, only explores the minimum weight outgoing 

edge to avoid an excessive increase in execution time. 

and
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   Figure 3 provides examples of the selection of the outgoing edges by the IDg-TSP 

from the second vertex for  = 25 and  = 4, and the number of vertices is six 

(ranging from 0 to 5). The edges selected for exploration are shown using thick lines. Fig-

ure 3(a) demonstrates an example where the number of edges to be explored in-

creases, whereas Figure 3(b) presents a scenario where it remains unchanged. 

Figure 3: Examples of IDg-TSP's selection of the outgoing edges 

Here we propose ACO-IDg, a method wherein IDg-TSP is employed for pheromone 

deposition in ACO. Using IDg-TSP, pheromones are deposited not only on the paths dis-

covered by the ants but also on those explored by IDg-TSP at every specific number of 

iterations . Moreover, pheromones are deposited on the paths explored by IDg-TSP 

during the initialization step. The amount of pheromone to be deposited in each path by 

IDg-TSP is determined by / , mirroring the paths discovered by the ants. This leads 

to a modification of steps 1 and iv of ACO as outlined in Section 2.3, resulting in steps 1 

and iv below, respectively: 

  1.    Initialize the pheromone value of each edge to . Additionally, deposit pheromone 

         on the paths explored by IDg-TSP. 

    iv.       Deposit pheromone on each path determined in step ii. If the number of iterations 

        is a multiple of , deposit pheromone on the paths explored by IDg-TSP too.

These modifications were made with the objective of enticing ants toward the promising 

paths explored by IDg-TSP. 

4 Experiments 

The efficiency of IDg-TSP and ACO-IDg was validated using computational experi-

ments, which were conducted using the C programming language on an AMD Ryzen 7 

5700G processor. Parameters , , and presented in Section 2.3 were set to 0.9, 1, and 2, 

respectively. The number of ants was equal to the number of vertices, with the iteration 

count being 3,000. These parameter values align with those used in [2][6]. As a preliminary 
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experiment, we examined several values for each parameter , , and , and the values 

mentioned above were generally the best for ACO. The reference amount of pheromone

was set to 100 to prevent either the edge weight or amount of pheromone in equation (1) 

from becoming exceedingly dominant. The initial pheromone value  was set to 0.1, and 

 used in ACO-IDg was set to 50.

Three types of graphs were utilized as input. The first comprised 20 different graphs with 

100 vertices, where edge weights vary randomly between 5 and 25. The second and third 

were benchmark problems berlin52 and kroA100 from TSP-LIB [11], respectively. We 

prepared the following three conditions for input of graphs with random edge weights:

Condition 1  Each edge weight is given a value between 5 and 25 with a uniform probability.

Condition 2  The probability of a value between 5 and 15 given as an edge weight is twice 

that of a value between 16 and 25. In other words, the proportion of edges

with low weights is high. 

Condition 3  The probability of a value between 16 and 25 given as an edge weight is twice 

   that of a value between 5 and 15. In other words, the proportion of edges with high 

weights is high. 

Table 1 shows the results of Dg-TSP, IDg-TSP, ACO, and ACO-IDg for graphs with 

randomly-determined edge weights based on Condition 1. Each percentage in the table in-

dicates the average ratio of the path length by each method to that by Dg-TSP. Further-

more, Table 2 shows the average results of 10 trials of ACO and ACO-IDg for the two 

benchmark problems. The average execution times of Dg-TSP, IDg-TSP, ACO, and ACO-

IDg of 20 graphs with 100 vertices and random edge weights based on Condition 1 were 

0.011, 0.089, 96.99, and 94.19 seconds, respectively. ACO's and ACO-IDg's average exe-

cution times for berlin52 of 10 trials were 13.76 and 13.53 seconds, respectively, and 

those for kroA100 of 10 trials were 96.01 and 94.91, respectively. The proposed IDg-TSP 

method was slower than Dg-TSP, but it was notably faster, and it can find superior paths 

than Dg-TSP. Another proposed method, ACO-IDg was nearly as fast as ACO, identifying 

better paths than ACO for many graphs. For the 20 graphs with 100 vertices and random 

edge weights based on Condition 1, ACO-IDg outperformed ACO for 12 graphs, but it was 

inferior for 5 graphs. Under Conditions 2 and 3, ACO-IDg also generally outperformed

ACO. The difference between the two methods was larger under Condition 2 than 
Condition 1 and smaller under Condition 3 than Condition 1. This suggests that ACO-
IDg can efficiently utilize edges with low weights. 
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Table 1: Results for graphs with 100 vertices and random edge weights. 

Dg-TSP IDg-TSP ACO ACO-IDg 

100.0% 98.3% 96.1% 95.9% 

Table 2: Results for benchmark problems berlin52 and kroA100. 

ACO ACO-IDg 

Graph Optimum Best length Ave. length Best length Ave. length 

berlin52 7542 7813.74 7849.51 7641.79 7763.80 

103.6% 104.1% 101.3% 102.9% 

kroA100 21282 23069.35 23388.14 22587.84 22830.10 

108.4% 109.9% 106.1% 107.3% 

5 Conclusions 

This study introduced a TSP heuristic algorithm by improving the greedy-based 

algorithm proposed by Sharma and Chou. This method succeeded in rapidly identifying 

various promising paths. Additionally, the proposed TSP algorithm was employed for 

pheromone deposition in ACO. The effectiveness of these methods was validated using 

computational experiments. Because ACO is frequently utilized in conjunction with local 

search, future work will aim to investigate the behavior of ACO-IDg in such cases. 

Furthermore, the application of the proposed methods to DTSP is also a future work. For 

the latter one, we would like to consider real-time processing on low-performance 

computers. 
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