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Abstract 

Sound Event Classification (SEC) is essential for applications like urban noise monitoring and 

smart home automation, but modern models often struggle with efficiency and deployability. 

This study evaluated lightweight SEC architectures namely CNN, CRNN, and Transformer using 

the UrbanSound8K dataset, considering both accuracy and resource consumption. CRNN 

emerged as the top performer, achieving around 90% accuracy with only 175,754 parameters, 

surpassing the efficiency of CNNs and Transformers. These results underscore the CRNN's po-

tential for scalable and cost-effective SEC solutions, making it ideal for smart city infrastructure 

and resource-limited IoT applications. 

Keywords: Sound Event Classification, Convolutional Neural Network, Convolutional Recurrent 

Neural Network, Transformer. 

1 Introduction 

Sound Event Classification (SEC) is a key audio processing technology that identifies and clas-

sifies sounds along with their timing. It has practical applications in urban noise monitoring [1][2], 

security systems for detecting unusual sounds like gunshots, smart homes for alarms or voice 

commands, autonomous vehicles for critical audio cues, wildlife monitoring, and healthcare for 

real-time patient observation. Hybrid models, such as Convolutional-Recurrent Neural Networks 

(CRNNs), combine the spatial strengths of CNNs with the temporal modeling of RNNs, offering 

high performance with moderate computational demand [3]. Capsule Networks and Trans-

former-based models like BERT and 1D-DETR deliver accurate results but require significant 

resources [4][5][6]. Long Short-Term Memory (LSTM) networks are effective for long-term de-

pendencies, while attention mechanisms in Transformers enable models to focus on key input 

sequences, improving accuracy [7]. However, these advancements face challenges like weakly 

labeled data, poor domain adaptation, and high computational costs, especially for real-time or 

resource-constrained applications [8]. With the rise of edge computing, lightweight SEC models 

have gained importance. On-device processing enhances energy efficiency, reduces hardware 

costs, and protects user privacy by eliminating reliance on cloud services. This study compares 

CNN, CRNN, and Transformer models for SEC, focusing on accuracy and efficiency. The 

CRNN emerged as the most effective, leveraging convolutional and recurrent layers to capture 

spatial and temporal features efficiently. The findings emphasize the importance of balancing 

performance and resource usage, paving the way for practical and scalable SEC systems. 
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2 Dataset and Model 

This study evaluates and compares three deep learning models—CNN, CRNN, and Transformer 

for Sound Event Classification (SEC) using the UrbanSound8K dataset. Each model was imple-

mented, trained, and assessed based on its classification accuracy across diverse audio events. 

The methodology covers data preprocessing, model architecture, training procedures, evaluation 

metrics, and design rationale. UrbanSound8K, introduced by Salamon, Jacoby, and Bello in 2014, 

consists of 8,732 labeled audio clips (up to 4 seconds each) across ten urban sound classes: air-

conditioner, car horn, children playing, dog bark, drilling, engine idling, gunshot, jackhammer, 

siren, and street music. Its standardized 10-fold cross-validation structure makes it a widely 

adopted benchmark for SEC research. This study utilized UrbanSound8K for its variety of sound 

events and robust cross-validation setup, ensuring generalizable evaluations. Before training, au-

dio clips were resampled to 16 kHz using Librosa, a rate balancing efficiency and auditory detail. 

Mel-Frequency Cepstral Coefficients (MFCCs) were extracted to capture spectral features cru-

cial for SEC. The extraction process began with a Short-Time Fourier Transform (STFT) using a 

25ms Hann window and a 10ms hop length for high temporal resolution. A Mel spectrogram with 

40 frequency bins was computed, optimized for detail and efficiency. Dynamic range compres-

sion and decorrelation were applied to align with human auditory perception and enhance noise 

resilience. Each clip was converted into a (40×T) feature matrix, where T represents time frames, 

capturing the audio’s temporal structure. 

2.1 Data Augmentation 

To enhance model robustness and generalization, particularly with limited data, data augmenta-

tion techniques were implemented for the CNN model. Time shifting: Audio samples were 

shifted by 10 frames to simulate slight variations in event timing. This augmentation helps the 

model become more invariant to small temporal shifts in sound events, which is important for 

real-world SEC tasks where sound events may not occur at precisely the same time across differ-

ent recordings. Noise injection: Gaussian noise with a mean of 0 and a standard deviation of 

0.05 was added to the original samples. This technique simulates real-world audio conditions 

where background noise is present, thereby improving the model's ability to generalize to noisy 

environments. By introducing variations in the training data, these augmentations help the model 

learn to recognize sound events under different conditions, reducing the risk of overfitting. 

2.2 Model Architectures 

Three common model architectures were implemented and compared. The Convolutional Neural 

Network (CNN) uses three convolutional layers (32, 64, and 128 filters) with Batch Normaliza-

tion, MaxPooling, and Dropout to prevent overfitting. It includes a fully connected layer (128 

units) and employs ReLU and soft-max activation functions, totaling around 1.2 million param-

eters. The Convolutional Recurrent Neural Network (CRNN) combines CNNs and RNNs, fea-

turing two convolutional layers (32 and 64 filters) and an LSTM layer (128 units) for temporal 

dynamics. It concludes with a fully connected layer (64 units), using ReLU and Softmax activa-

tions, and has around 175,754 parameters. The Transformer model processes audio as a sequence, 

using 8 attention heads and two feed-forward layers (512 units each). A final fully connected 

layer (256 units) integrates in-formation, with ReLU and Softmax activations. With around 2.5 

million parameters, it excels at learning complex audio patterns 
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3 Experimental Setup 

This section compares the performance of CNN, CRNN, and Transformer models to determine 

the most effective approach for Sound Event Classification (SEC). These models were selected 

for their unique strengths: CNNs excel in capturing localized spatial features, CRNNs blend spa-

tial and temporal modeling through their hybrid architecture, and Transformers leverage self-

attention for long-range dependencies. Among them, CRNN emerged as the top performer due 

to its ability to effectively capture both frequency components and temporal dynamics, making 

it ideal for SEC tasks. The experiments were conducted on a system with an Intel Core i7-

13700HX processor, 16 GB RAM, and an NVIDIA RTX 4070 GPU (12 GB GDDR6X), ensur-

ing sufficient computational capacity. All models used the Adam optimizer for efficient conver-

gence. Key hyperparameters, such as a batch size of 16 and adaptive learning rates, were opti-

mized through iterative testing, with CNNs employing early stopping (typically under 50 epochs) 

and CRNN/Transformer models following fixed schedules. The CRNN achieved optimal perfor-

mance with approximately 175,754 parameters, compared to 1.2 million for CNNs and 2.5 mil-

lion for Transformers. Not all hyperparameters are detailed here to maintain focus on critical 

comparisons, and because hyperparameters often require fine-tuning based on specific tasks and 

datasets. The results highlight the trade-offs between model complexity and performance, offer-

ing valuable insights into resource-constrained applications. 

Table 1: Hyperparameter comparison 

Hyperparameter CNN CRNN Transformer 

Batch Size 16 16 16 

Learning Rate 0.001 (with scheduler) 0.001 (fixed) 0.001 (fixed) 

Epochs 50 50 10 

Optimizer Adam Adam Adam 

Regularization L2 (0.001) None None 

Dropout 0.3 0.3 None 

Number of pa-

rameters 

~ 1.2M ~ 175k ~ 2.5 M 

Activation 

Function 

ReLU (Conv Layers) ReLU (Conv, 

LSTM Layers) 

ReLU (FF 

Layers) 

4 Results and Evaluation 
This section presents the performance evaluation of three models: Convolutional Neural Network 

(CNN), Convolutional Recurrent Neural Network (CRNN), and Transformer on the Ur-

banSound8K dataset. Each model's performance is measured in terms of accuracy, computational 

efficiency, and class-wise recognition, with a focus on CRNN as the proposed solution. 

4.1  Model Performance Assessment 

To evaluate the performance of CNN, CRNN, and Transformer models, a combination of quan-

titative metrics and qualitative analysis was used. Classification accuracy was the primary metric, 

representing the proportion of correctly classified sound events. Accuracy trends were tracked 

and plotted over epochs to observe learning progress, while cross-entropy loss was used to meas-

ure prediction errors. For the Transformer model, training and validation losses were closely 

monitored to identify overfitting, with loss curves providing insights into convergence and 
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learning stability. As shown in Fig. 1, CNN achieved a final validation accuracy of approximately 

75%. Training progress was enhanced by using a learning rate scheduler and early stopping, 

which helped improve generalization on the limited UrbanSound8K dataset. The learning rate 

scheduler adjusted the rate dynamically for smoother training, while early stopping prevented 

overfitting by halting training at the optimal point. Despite these strategies, some overfitting per-

sisted after fine-tuning, reflecting the challenges posed by the dataset's constraints. As shown in 

Fig. 2, the CRNN consistently outperformed the other models, reaching about 90% validation 

accuracy. Its strength comes from combining convolutional layers (capturing spatial features like 

frequency patterns) with recurrent layers (modeling temporal dependencies such as rhythm), al-

lowing it to understand sound events deeply. Trained for a fixed 50-epoch, the CRNN showed 

steady improvement without overfitting, unlike the CNN, demonstrating strong generalization. 

Both accuracy and loss curves remained stable, highlighting its reliability and efficiency, making 

it a top choice for real-time audio tasks. In Fig. 3, the Transformer reached around 85% accuracy. 

Though promising, it didn’t surpass CRNN or CNN. It was only trained for 10 epochs due to its 

heavy computational demands and long training times. This shorter training limited its conver-

gence and overall performance, suggesting it needs more epochs, better tuning, or a larger dataset 

to fully shine in SEC tasks. The Transformer’s complexity and resource needs make it less prac-

tical here, despite its theoretical power. 

Figure 1: CNN model accuracy and loss curves during training 

Figure 2: CRNN model accuracy and loss curves during training 
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Figure 3: Transformer model training and validation loss, and validation accuracy curves 

4.2   Comparative Analysis 

A critical aspect of this research was to assess the computational efficiency of each model. As 

seen in Table 2, the analysis included training time, inference time and memory usage. The Trans-

former model required significantly more time to train per epoch compared to the CNN and 

CRNN models due to its complex architecture and higher parameter count. In contrast, the CNN 

model, with fewer parameters, trained much faster while still achieving reasonable performance. 

The inference time for the CRNN was slightly longer than that of the CNN but shorter than the 

Transformer. The CRNN’s balance of accuracy and computational efficiency made it the most 

suitable for real-time applications on resource-constrained platforms. The memory footprint of 

the Transformer model was the largest, which posed challenges for deployment on devices with 

limited memory resources. The CNN and CRNN models, with their smaller memory require-

ments, are more practical for such environments. These efficiency metrics are crucial for deter-

mining the feasibility of deploying these models in real-world applications. 

Table 2: Performance Comparison 

Model Accu-

racy 

Final 

Validation 

Loss 

Parame-

ters 

Train-

ing 

Time 

Epochs to 

Convergence 

CNN 75% 0.35 1.2M   7200s 40 epochs 

CRNN 90% 0.30 175k   1320s 50 epochs 

Trans-

former 

85% 0.45 2.5M   3744s 10 epochs 

4.3   Computational Efficiency 

The CRNN model strikes a good balance between accuracy and computational efficiency, mak-

ing it a standout choice for real-time Sound Event Classification tasks. The CRNN model excels 

in real-time Sound Event Classification by balancing accuracy and efficiency. With only 175,754 

parameters, it outperforms the 2.5M-parameter Transformer model while remaining lightweight. 

Its hybrid architecture, combining convolutional and recurrent layers, effectively captures spatial 

and temporal patterns, enabling strong generalization with minimal computational cost. Unlike 

the Transformer, whose self-attention mechanism adds size and complexity without significant 
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accuracy gains, the CRNN’s design ensures faster training, lower memory usage, and suitability 

for resource-constrained platforms like mobile devices. This makes the CRNN an ideal choice 

for practical, real-time sound classification systems. 

 

4.4   Proposed CRNN Model 

To highlight the CRNN model's strengths, we evaluated its performance across diverse sound 

classes. The confusion matrix in Fig. 4 demonstrates its high accuracy, excelling in challenging 

categories like air-conditioner, jackhammer, and siren. This reflects the model’s robustness in 

handling complex and overlapping sound patterns typical in real-world environments. The Pre-

cision-Recall (PR) curve in Fig. 5 confirms the CRNN’s ability to balance precision and recall, 

essential for real-time Sound Event Classification (SEC) tasks where minimizing both false pos-

itives and false negatives is critical. Additionally, the ROC curve in Fig. 6, with AUC values 

nearing 1.0 for many classes, showcases its exceptional discriminatory power and reliability. 

Comparative evaluations with CNNs and Transformer-based architectures were excluded as 

these models did not meet the task's constraints. CNNs struggled with temporal dynamics crucial 

for SEC, while Transformers, despite their popularity, faced challenges due to high computational 

demands and limited temporal coherence on smaller audio datasets. CRNN emerged as the opti-

mal solution, offering a practical, high-performing architecture suited for real-world applications. 

 

Figure 4: Confusion Matrix of CRNN model on the UrbanSound8K dataset 
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Figure 5: Precision-Recall curves for different sound classes using CRNN Model 

Figure 6: ROC curves and AUC values for different sound classes Using CRNN model 

5  Conclusion 

This study evaluated three deep learning architectures namely CNN, CRNN, and Transformer 

for Sound Event Classification (SEC) using the UrbanSound8K dataset. The CRNN outper-

formed its counterparts, achieving around 90% validation accuracy, compared to 75% for the 

CNN and 85% for the Transformer. The CRNN’s ability to integrate spatial and temporal audio 

features makes it particularly effective for SEC tasks. With just 175,754 parameters, it balances 
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complexity and performance, meeting the demand for lightweight, real-time solutions. While the 

Transformer excelled at capturing complex temporal relationships, its high computational cost 

and extended training times limit its practicality for resource-constrained applications. Con-

versely, the CNN, though computationally efficient, lacked the temporal modeling needed for 

accurate classification. Future work could focus on optimizing the CRNN for low-resource envi-

ronments and integrating multimodal inputs, such as visual data, to enhance robustness and adapt-

ability in diverse settings. 
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