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Abstract

This paper proposes a device-free Human Activity Recognition (HAR) system, utilising
Wi-Fi Channel State Information (CSI) to maintain the privacy of users in a multi-user
environment. To achieve this goal, substantial annotated training data is required, which
is often imbalanced with poor generalisability in complex, multi-user environments. To
overcome these gaps, a hybrid deep learning approach is proposed that integrates signal
pre-processing, targeted data augmentation, and a novel CNN incorporating a Transformer
model. Experimental results show that the proposed model outperforms several baselines in
single-user and multi-user contexts. Our findings demonstrate that combining real and aug-
mented data significantly improves model generalisation in scenarios with limited labelled
data.

Keywords: Human Activity Recognition, HAR, Channel State, CSI, Deep Learning, CNN,
Transformer.

1 Introduction

Human Activity Recognition (HAR) algorithms based on information obtained from ambi-
ent sensors, wearable sensors or vision-based systems are successfully applied in detecting
many basic human activities [1]. Although effective, these modalities pose considerable
limitations; ambient sensors such as motion detectors do not provide accurate informa-
tion about a specific activity, wearable devices demand user compliance, regular charging
of batteries, and maintenance, while vision-based systems suffer from occlusion, varying
illumination, and severe privacy concerns [1, 2]. To preserve the privacy of users, some re-
search with thermal vision employing Thermal Sensor Arrays (TSA) has shown promising
results [3]. None of the proposed approaches so far provides a holistic solution to the HAR,
especially for an indoor multi-user environment.
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To address the above limitations, device-free methods using Wi-Fi Channel State Infor-
mation (CSI) have emerged. The CSI captures subtle radio signal changes caused by human
motion, enabling passive, contactless, and privacy-preserving activity detection. This ap-
proach allows sensing through obstacles without user-worn devices. However, CSI-based
HAR faces challenges like ambient noise, temporal drift, and multipath interference, often
degrading performance in dynamic multi-user environments with overlapping activities.

The limited availability of labelled datasets, especially for diverse user setups and infre-
quent activities, hinders the development of generalisable models [4]. Multi-user HAR
is further complicated by simultaneous, unpredictable movements and spatial entangle-
ment, demanding models capable of extracting relevant features from noisy, intertwined
signals while generalising across various spatial arrangements. Traditional Machine Learn-
ing (ML), relying on handcrafted features, often proves insufficient in these complex sce-
narios. Deep learning, particularly CNNs and attention-based models, offers a promising
alternative. However, many existing studies treat pre-processing, feature extraction, and
classification as separate stages, potentially missing the advantages of an integrated ap-
proach.

Recent deep learning advances highlight the potential of hybrid architectures combining
CNNss for local pattern recognition and Transformers for capturing long-range dependen-
cies, although their application in multi-user, device-free HAR remains largely unexplored
[5]. Transformers, especially with relative positional encoding, are well-suited for mod-
elling the complex temporal relationships inherent in overlapping human activities [6]. To
address these limitations, we propose a unified, augmentation-aware approach for CSI-
based HAR, specifically designed to tackle the challenges of multi-user recognition and
limited training data. Our approach integrates signal denoising, advanced data augmen-
tation, domain-informed feature engineering, and deep multimodal learning, featuring a
custom CNN + Transformer model to learn both local and global patterns from CSI signals,
trained on an augmented dataset that mimics real-world activity variability.

The remainder of the paper is structured as follows: Section 2 reviews related work,
Section 3 details our proposed model and augmentation methods, Section 4 describes the
experimental setup and results, Section 5 provides a discussion of our findings, and Sec-
tion 6 concludes the paper.

2 Related Work

Advances in HAR using CSI have seen a notable shift from conventional ML methods
to advanced deep learning models, with Transformer-based architectures emerging as a
powerful alternative in recent years. This is driven by the increasing need for scalable,
device-free, and privacy-conscious activity recognition systems, especially in smart homes
and Iot-enabled environments [2].

Advances in Transformer-based architectures are emerging in CSI-HAR by incorporat-
ing self-attention to capture long-range temporal dependencies, offering a robust alterna-
tive to recurrence [5]. For example, a multichannel attention-based Transformer achieved
high accuracy in HAR and a lightweight Transformer optimised for edge computing main-
tained competitive accuracy (92.4%) with reduced complexity [9]. However, attention-only
models can struggle with fine-grained local features to discriminate similar activities. To
overcome this, hybrid CNN-Transformer architectures have emerged, combining CNNs for
spatial pattern extraction with Transformers for global contextual modelling. Incorporating
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Figure 1: Overview of the proposed human activity recognition approach.

relative positional embeddings in these frameworks enhances temporal precision and activ-
ity segmentation [8]. These hybrid designs improve recognition accuracy and balance local
and global sequence modelling, often a trade-off in Transformer-only systems.

The lack of consistent evaluation protocols in CSI-based HAR presents another signif-
icant challenge. The inconsistent use of evaluation protocols in the literature, including
holdout sets, random splits, and k-fold cross-validation, impedes reproducibility and fair
comparison of model performance across different CSI-based HAR studies. This is partic-
ularly problematic for benchmarking complex hybrid models where performance variability
is more significant. Building upon recent advancements in hybrid deep learning for CSI-
based HAR, a CNN-Transformer approach optimised for both single- and multi-user sce-
narios is proposed, utilising robust preprocessing and augmentation techniques to address
these limitations and enhance accuracy, scalability, and real-world deployment potential.

3 Proposed Methods

The proposed HAR approach using CSI employs a four-stage process as depicted in Fig-
ure 1 designed to enhance recognition, especially in complex multi-user home environ-
ments. The pipeline includes data acquisition, pre-processing, augmentation, and model
training/classification. Data acquisition involves Wi-Fi signal transmission, with motion-
induced perturbations captured as CSI at the receiver, forming the raw dataset encoding
static and dynamic movements.

A multi-stage preprocessing pipeline extracts meaningful information via subcarrier
averaging, denoising, and Discrete Wavelet Transform. To enhance generalisability with
limited CSI data, a random-transformation-based augmentation module generates diverse
variations (jittering, scaling, slice shuffling, magnitude warping) while preserving activity
semantics. The augmented data is then partitioned. The classification stage trains baseline
(CNN, LSTM) and advanced hybrid deep learning models, CNN + Transformer, BiLSTM,
GRU, LSTM to better capture spatial and temporal dependencies in CSI data, enhancing
recognition of complex, multi-user activities.
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Figure 2: Architecture of the proposed time-series analysis model.
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A publicly available CSI-based HAR dataset, specifically designed to investigate the feasi-
bility of indoor activity recognition using fine-grained CSI from wireless signals, is utilised.
The dataset was collected in a controlled laboratory environment, simulating a typical in-
door room measuring 3 metres by 2.8 metres [7].

The experimental setup involved two Universal Software Radio Peripheral devices: a
USRP X300 as the transmitter and a USRP X310 as the receiver. Both were equipped with
VERT2450 omnidirectional antennas and operated at a frequency of 3.75 GHz within the
5G sub-6 GHz band. The transmitter and receiver are positioned diagonally opposite each
other in the room to establish a reliable communication link and maximise spatial signal
coverage. Within the defined activity zone, consisting of four chairs arranged in a 1-metre
grid, participants performed various daily activities. During these activities, the USRP
devices continuously collected CSI data using the GNU Radio software environment.

3.2 The Proposed CNN + Transformer Model

The proposed architecture shown in Figure 2 combines CNN and Transformer encoders for
effective local and global feature extraction from time-series CSI data, capturing complex
temporal features for HAR by using CNNs for local dependencies and Transformers for
long-range context. The model has three parts: a CNN feature extractor, a Transformer
encoder with relative positional encoding, and a classification head. Input sequence: X =

{x0,X1,%2,...,x7},

x; € RY is reshaped to (T, 1) for univariate processing.

CNN Feature Extractor: Three 1D convolutional layers (32, 64, 128 filters, kernel
size 3, ReLU, Batch Normalisation, MaxPooling1D pool size 2) followed by Global Max
Pooling and reshaping to (1,128).

Transformer Encoder: Vector-based relative positional encoding X,os = X + Epos.

Three encoder layers with multi-head self-attention - Attention(Q, K, V) = softmax (

0K’

Nz

v

residual connections, Layer Normalisation, and feed-forward layers (1D convolutions of

size (256,d), ReLU).

Classification Head: Transformer output through Global Average Pooling and two
Dense layers (256, 128 units, ReLU, Dropout 0.5 and 0.3). The final softmax output is § =
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Figure 3: Augmentation impact of random-transformation techniques on the CSI data with
each row displaying the original and augmented signals.

softmax(Wx + b). This architecture provides an optimal balance between representational
power and computational efficiency, making it particularly suitable for deployment in real-
time or edge-based HAR systems.

4 Experiments and Results

The CNN + Transformer model was evaluated against baselines, focusing on data aug-
mentation’s impact, multi-user performance, and accuracy. The original dataset which
contained 1777 instances was augmented as depicted in Figure 3 using factors up to 10.
This increased the instances for example factor 3 yielded 5331 instances which introduced
variability while preserving temporal structure for better generalisation. Following aug-
mentation, 34 features per instance were extracted.

The model was evaluated using accuracy and Fl-score to address class imbalance in
CSI-based HAR datasets. Fl-score provides a balanced performance assessment beyond
potential skew in result due to class imbalance.

4.1 Experiment I: Sensitivity Analysis of Augmentation

Sensitivity analyses were conducted to compare the original and augmented dataset. The
primary objective was to determine if augmentation introduces statistically significant de-
viations in CSI feature distributions. Towards this, the following hypothesis is formulated:

* Null Hypothesis (Hp): The distributions of the original and augmented data are statis-
tically identical; i.e., augmentation does not significantly alter feature distributions.

* Alternative Hypothesis (H;): The distributions of the original and augmented data
differ significantly.

Normality tests were performed to determine the appropriateness of parametric versus
non-parametric testing. The Mann—Whitney U test was used to examine whether they are
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Figure 4: Sensitivity analysis of original and augmented CSI data for two multi-user activity
scenarios.

Table 1: Mann—Whitney U and Levene’s Test Results for Original vs. Augmented Data.

Feature Label Mann-Whitney U  p-value Levene’s W  p-value  Interpretation
Mean Empty 144584.0 0.9139 0.1772 0.6739  Fail to reject Hy
Mean 1Subject-18Sit 206671.5 0.9325 0.0449 0.8322  Fail to reject Hy
Mean 2Subjects-1Sit-1Stand 105480.5 0.9384 0.0819 0.7747  Fail to reject Hy
Mean 3Subjects-2Sit-1Stand 105100.5 0.9871 0.0858 0.7696  Fail to reject Hy
Mean 4Subjects-2Sit-2Stand 106725.5 0.7811 1.0095 0.3151  Fail to reject Hy

Table 2: Experiment II Results: Accuracy across different augmentation factors.

Model Aug. Factor Phasel Phase2 Phase3 Phased4 All Activities
0 0.869 0.840 0.899 0.869 0.757
1 0.963 0.927 0.957 0.885 0.817
3 0.988 0.970 0.976 0.938 0.910
CNN + Transformer 5 0994 0979 0987 0959 0.939
7 0.994 0.986 0.990 0.965 0.954
10 0.994 0.989 0.991 0.973 0.963
0 0.807 0.852 0.885 0.871 0.766
1 0.968 0.925 0.957 0.874 0.805
. 3 0.987 0.968 0.974 0.933 0.908
CNN + BiLSTM 5 0.992 0.977 0.986 0.955 0.937
7 0.992 0.984 0.990 0.964 0.948
10 0.995 0.985 0.992 0.972 0.960
0 0.762 0.729 0.832 0.881 0.772
1 0.965 0.932 0.960 0.875 0.799
3 0.985 0.969 0.979 0.935 0.906
CNN+GRU 5 0.993 0.978 0.985 0.954 0.930
7 0.993 0.985 0.989 0.963 0.952
10 0.994 0.987 0.991 0.973 0.958
0 0.746 0.729 0.841 0.869 0.761
1 0.962 0.927 0.952 0.872 0.794
3 0.984 0.966 0.974 0.933 0.901
CNN+LSTM 5 0.990 0.973 0.983 0.954 0.927
7 0.993 0.982 0.988 0.965 0.949
10 0.995 0.985 0.989 0.973 0.959

statistically significant differences in the means of the two datasets. Levene’s test was also
used to assess the homogeneity of variances. As summarised in Table 1, the p-values from
both tests exceeded 0.05 for all classes suggesting no statistically significant differences in
central tendency or variance with “fail to reject” the null hypothesis in all cases. Figure 4
is included as a confirmation showing histograms for the two subjects (one sitting and one
standing) and three subjects (two sitting and one standing) classes. While the augmented
data (in red) displays broader tails, the distributions remain centred around the same mean as
the original data (in blue), suggesting that augmentation preserves core statistical structure.
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Table 3: Comparison of classification performance across different model architectures.

Model Variant Accuracy F1-Score Precision Recall
CNN [7] 0.857 - - -

CNN 0.893 0.891 0.893 0.892
LSTM 0.900 0.894 0.894 0.894
Proposed CNN+Transformer 0.939 0.933 0.940 0.934

4.2 Experiment II: Impact of Augmentation Factors

This experiment examined the effect of varying data augmentation factors (0-10) on the
proposed CNN + Transformer and three baseline hybrid models (CNN + BiLSTM, CNN
+ GRU, CNN + LSTM). Table 2 shows the accuracy improved consistently from factor 1
to 5 across all models and activity phases, indicating the benefit of a moderate increase in
CNN + Transformer: 0.757 to 0.939 at factor 5; CNN + GRU: 0.772 to 0.930 at factor 5.
Performance plateaued beyond factor 5 as illustrated by the CNN + LSTM model, where
accuracy increased only marginally from 0.927 at factor 5 to 0.959 at factor 10. Notably, no
model performance declined by a factor of 10, confirming the robustness of our augmenta-
tion. The lowest performance at factor O (no augmentation) highlights data augmentation’s
crucial role in enhancing deep learning HAR models, especially for sparse or imbalanced
datasets.

5 Discussion

The experimental results, from sensitivity analysis to varying augmentation factors, demon-
strate our approach’s capability in handling diverse data and complex multi-user environ-
ments. Combining augmentation and Transformer mechanism significantly enhances in
modelling temporal dependencies and isolating key features. Multi-user experiments con-
firmed the CNN + Transformer model’s robustness against signal interference and overlap-
ping activities. In a 2-user setup, performance was good with high precision and recall,
especially for dynamic activities like walking, reflecting the effective capture of temporal
patterns by the hybrid CNN and Transformer layers.

Increased user configurations posed challenges, particularly for static activities (stand-
ing, sitting), which saw a precision drop, often misclassified, especially with fewer users.
This likely resulted from reduced motion variance during concurrent sedentary activities,
creating similar sensor patterns difficult even for the attention mechanism to differentiate,
as seen in mixed-user settings. However, the Transformer model still effectively distin-
guished more kinetic activities like walking, showcasing its strength in capturing global
temporal dependencies. This suggests the Transformer does well with dynamic activities
in concurrent scenarios, but static activity classification with overlap requires further en-
hancement. Comparative analysis presented in Table 3 reinforces this. A standalone CNN
achieved 89.3% accuracy, improving on prior CNN-only results (85.7% [7]). LSTM slightly
improved to 90.0%. However, our CNN+Transformer achieved the highest performance:
93.9% accuracy, 93.3% F1-score, 94.0% precision, and 93.4% recall. This significant gain
stems from the hybrid model’s integration of spatial feature extraction with long-range tem-
poral dependency learning, providing a balanced activity representation. The high F1-score
indicates a strong balance between precision and recall, crucial for reliable HAR applica-
tions.
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6 Conclusion

This paper presents a robust and scalable CSI-based HAR approach tailored for complex
multi-user indoor environments. The method integrates multi-stage preprocessing, data
augmentation, and a CNN + Transformer hybrid model, alongside other deep learning ar-
chitectures, to effectively capture spatiotemporal CSI dependencies. Extensive experiments
validate the approach’s effectiveness. Sensitivity analysis confirmed that augmentation pre-
serves the underlying data distribution. Moderate augmentation—specifically at factor 5
optimised model performance across all variants, with CNN + Transformer consistently
outperforming others. Overall, the proposed CSI-based HAR system exhibits notable im-
provements in robustness, accuracy, and scalability, forming a strong foundation for future
intelligent activity recognition systems in ambient settings. Key limitations include non-
adaptive augmentation, lack of explicit user-level separation, and the Transformer’s com-
putational demands. Future work will focus on adaptive augmentation, finer-grained user
identification, lightweight Transformer variants, and deployment across diverse real-world
environments and populations.
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