
IIAI Open Conference Publication Series

IIAI Letters on Informatics and Interdisciplinary Research

Vol.006, LIIR388

DOI: https://doi.org/10.52731/liir.v006.388

Preliminary Practices for Java Programming Tools

and TDD Courses Utilizing Generative AI and Online

Education

Mika Ohtsuki *, Tetsuro Kakeshita *

Abstract

With the rapid advancement of generative AI, automation is increasingly being introduced

across various stages of software development. In response to these changes, programming ed-

ucation must also evolve to incorporate the use of generative AI from the outset. In this study, we

designed and implemented intermediate-level programming courses that integrate generative AI

tools such as GitHub Copilot. The curriculum consisted of three subjects: Object-Oriented Pro-

gramming, Test-Driven Development, and Practical Project Development. Each course com-

bined on-demand instructional materials with AI-assisted exercises. As a result, learners reported

high levels of satisfaction and frequently accessed course materials and assessments. Notably,

many students demonstrated the ability to critically evaluate and adapt AI-generated suggestions

rather than relying on them uncritically. A comparative survey between GitHub Copilot and

Google Gemini revealed that students were also beginning to select AI tools based on purpose

and context. These findings indicate the potential of educational designs that foster practical

programming skills and cultivate AI literacy. This initiative highlights the promise of pro-

gramming education that is both AI-integrated and personalized, offering new directions for

curriculum innovation in higher education.

Keywords: Programming education, GitHub Copilot, Object-oriented programming,

Test-Driven Development.

1 Introduction

The rapid advancement of generative AI has led to increased AI utilization across various stages

of software development, from design to testing, driving the restructuring of development pro-

cesses. As a result, programming and software engineering education at universities and tech-

nical colleges are also being compelled to reevaluate their educational frameworks, shifting from

traditional education based on “human-driven programming” to education designed around

“collaboration with generative AI” [1].

AI tools such as ChatGPT [2] and GitHub Copilot [3] are increasingly being used to support

be-ginners' learning and provide individual feedback, attracting attention even in introductory

programming education [4][5][6][7]. However, a more practical and step-by-step instructional

design is required to cultivate skills that enable users to utilize AI outputs without overreliance

on them while evaluating and revising proposed content.

* Saga University, Saga, Japan

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

This study aims to establish a methodology for intermediate-level programming education

that assumes collaboration with generative AI. We designed a three-course curriculum incor-

porating a software engineering perspective, consisting of object-oriented programming,

test-driven development, and practical project development.

This curriculum utilizes generative AI tools such as GitHub Copilot but emphasizes a process

in which learners select, revise, and integrate AI suggestions rather than blindly accepting them.

This approach differs from previous studies that focused on individual support for beginners,

instead prioritizing the development of AI literacy and autonomous learning behaviors (learner

agency). Additionally, it aims to cultivate metacognitive skills to compare multiple AI tools and

use them appropriately for specific purposes.

In this paper, we report the results of a pilot implementation of this curriculum and a multi-

faceted evaluation of its educational effectiveness based on learning histories, assignment sub-

missions, and surveys. This paper is structured as follows. We provide an overview of related

research in Section 2. Section 3 describes the educational support system and the designed

course. Section 4 outlines the teaching methods. Section 5 presents analysis results using logs

and assignments. We analyze the participant survey in Section 6. Then, Section 7 contains a

conclusion with a summary and prospects.

2 Related Research

A ChatGPT was released to the public in November 2022, and education to utilize generative AI

remains a new field [8]. Regarding programming education, several studies have been reported

on the impact of generative AI on student learning [1][4][5][6][7]. These studies have shown that

generative AI effectively supports the acquisition of programming concepts and provides indi-

vidualized feedback while highlighting the challenge of identifying AI errors.

In terms of exercise support, Kazemitabaar et al. [6] reported on automatic support for be-

ginners using Codex, and Leinonen et al. [9] presented a case study on error support. These

studies assume that “humans create programs,” positioning generative AI as an auxiliary tool.

On the other hand, Bull et al. [7] and Prather et al. [10] discuss the potential of integrating AI

coding assistants such as GitHub Copilot into education, analyzing how students accept AI

suggestions and experience difficulties. Additionally, Prather et al. [11] provide a comprehensive

review of research, practice, and tools related to the educational use of generative AI, which is

useful as background for this study.

Practical examples of integrating generative AI into educational curricula include a report on

curriculum design support by Western Governors University [12] and a case study on the inte-

gration of Claude by Northeastern University and Anthropic [13].

This study builds on these previous studies and has the following unique features: (1) practical

curriculum design and implementation through multiple lectures for intermediate-level learners,

(2) multi-faceted evaluation using learning logs, grades, and questionnaires, and (3) a compara-

tive study of multiple generative AI tools. In particular, by analyzing how the use of AI in exer-

cises and assignments leads to behavioral changes in students, this study provides new insights

that complement existing research.

M. Ohtsuki, T. Kakeshita2

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

3 Design of Intermediate Programming Education Utilizing

Generative AI

3.1 Role Shift in Programming with Generative AI

Figure 1 shows (a) the conventional programming procedure and (b) a new procedure utilizing

generative AI. In conventional programming, all tasks, from specification determination to

maintenance, were performed by humans. The utilization of generative AI is expected to im-

prove the efficiency and automation of program development; however, generative AI has issues

such as hallucination, copyright issues, and information security risks, making the direct use of

generated outputs highly risky. Therefore, since the human evaluation of the generated outputs is

essential, the role of humans in programming shifts to providing instructions to the generative AI

and verifying the outputs it generates. As a result, humans and generative AI will collaborate

interactively, dividing tasks between them.

Figure 1: Conventional and new procedure for programming utilizing generative AI

3.2 Requirements for Educational Reform

Coding is the role of generative AI in programming that utilizes generative AI, but basic pro-

gramming knowledge is necessary to evaluate the generated output. Traditionally, coding exer-

cises have been used to solidify understanding of these concepts. In AI-assisted programming,

understanding basic concepts and algorithms is expected to shift to using the code and explana-

tions proposed by generative AI and further applying algorithms. Appropriate prompts are re-

quired to generate the desired code using generative AI. This necessitates the ability to correctly

understand problems and break them down into smaller problems, making the education of

problem-solving skills more critical.

Understanding the mechanisms and issues of generative AI is essential when utilizing gener-

ative AI to make decisions that consider ethical aspects and the responsibilities associated with

its adoption. Additionally, it is essential to note that mastering code generation AI tools and

programming techniques will become a new requirement.

Preliminary Practices for Java Programming Tools and TDD Courses Utilizing Generative AI and Online Education 3

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

4 Curriculum Design for Intermediate-Level Programming

At the intermediate-level of programming education, the goals are to develop the skills necessary

for integrated application development based on the fundamental programming skills learned at

the beginner level. Another objective is to learn how to utilize coding support provided by gen-

erative AI during this process.

In this study, we designed an intermediate programming education program that emphasizes

the gradual acquisition of practical development skills and software engineering concepts. We

established three courses, as shown in Table 1. Java was selected as the programming language.

Java has been traditionally used in intermediate programming education at Saga University,

serving as a practical target and widely adopted in business application development.

These courses are designed with generative AI (primarily GitHub Copilot) as a prerequisite,

leveraging the tool's characteristics to enable experiences and efficient learning that are difficult

to achieve through traditional educational methods.

Table 1: Subjects at the intermediate-level

Object-Oriented Programming（OOP）

Objective Learn object-oriented programming from basics to advanced concepts in a
step-by-step manner. Emphasize understanding concepts over syntax, and uti-
lize code completion and error explanations provided by generative AI to

deepen your understanding.

Contents Classes, inheritance, polymorphism / Design patterns / Exception handling /
OOP exercises

Tools GitHub Copilot, Eclipse

AI Usage Deepen students’ understanding of concepts by receiving support in reading and
revising proposal codes.

Test-Driven Development（TDD）

Objective This course aims to understand TDD's basic concepts and development process
and apply them using generative AI. Students will learn the importance of
testing and design techniques by interpreting test cases automatically generated

by AI and implementing them based on those cases.

Contents What is software engineering? / Process models / Specification development /
Software testing / TDD exercises

Tools GitHub Copilot, Eclipse, JUnit

AI Usage Read design and specifications through test code generation support.

Practical Project Development（PPDev）
Objective Simulate actual application development and experience in everything from

design and implementation to project management. Utilize generative AI,
CI/CD tools, and issue management tools to recreate a modern development

environment.

Contents Basic design/Detailed design/GitHub/UML/Web application exercises/CI tool
utilization

Tools GitHub Copilot, GitHub, CI/CD, UML Drawing Tool

AI Usage Practical development utilizing AI support in a modern development environ-
ment

M. Ohtsuki, T. Kakeshita4

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

4.1 Object-Oriented Programming（OOP）

This course covers the basic concepts of object-oriented programming (OOP), program design,

and implementation methods based on those concepts. OOP is essential for making software

structures more transparent and extensible. Using generative AI as an auxiliary tool makes it

possible to efficiently address grammatical errors and acquire practical design skills.

In this course, Java will be the programming language. Students will progressively learn

concepts such as classes, inheritance, and polymorphism through coding exercises in Eclipse.

Generative AI (GitHub Copilot) will assist with code examples, error messages, and suggestions

for simple code syntax.

In exercises, the focus is on developing the ability to critically analyze the content while effi-

ciently advancing development using GitHub Copilot's suggestions. The goal is to cultivate

autonomous programming skills using AI as an auxiliary tool rather than excessively relying on

it.

4.2 Test-Driven Development（TDD）

In this course, students will learn the basic software engineering concepts and then apply the

fundamental techniques and practices of test-driven development (TDD). TDD [14] is a devel-

opment methodology that involves repeating the cycle of “write tests → write code → refactor,”

with the support of generative AI, students can efficiently and practically learn this process.

In this course, students combine GitHub Copilot and Eclipse and execute test codes using

JUnit. They will implement code based on test codes automatically generated by AI and re-

peatedly improve the code so that it passes the tests. The objective of this course is to cultivate

the ability to read and understand AI output, consider its intent and specifications, and implement

code accordingly.

The course content is designed to enable students to progressively master the construction of a

development environment, generative AI, Eclipse operations, and JUnit usage. Demonstration

videos and supplementary materials are provided to facilitate self-directed learning.

4.3 Practical Project Development（PPDev）

In this course, students will apply their foundational knowledge of software engineering and

object-oriented programming techniques to project-based exercises designed to simulate re-

al-world application development. The goal is to develop comprehensive software development

skills by progressively experiencing each phase of the project development process.

A distinctive feature of this course is that students can experience efficient development in

both team and individual development by utilizing generative AI (GitHub Copilot) for code

completion and design support. In addition, modern development tools such as continuous in-

tegration (CI) [15] and issue management tools are introduced, allowing students to gain

hands-on experience in a practical development environment.

This course is designed to help students understand the practical flow of software develop-

ment and gain experience combining tools to advance development through a series of pro-

cesses, from planning to design, implementation, and management. Generative AI functions as

Preliminary Practices for Java Programming Tools and TDD Courses Utilizing Generative AI and Online Education 5

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

an “auxiliary partner” in each phase, designed to enhance students' judgment and prob-

lem-solving skills.

4.4 Instructional Planning and Execution

As a preliminary practice, we conducted classes on three subjects prepared for students in our

research lab. The class content was provided to students using Moodle. There were five to seven

fourth-year students specializing in information engineering. Although the small sample size

limits the generalizability of findings, it enabled close monitoring of individual learning pro-

cesses and provided rich insights into how each student adapted AI-generated suggestions to

their needs.

Table 2 shows the implementation schedule. Classes were held every Friday, and students

worked on the content independently. Any content or assignments that could not be completed

during class were to be worked on outside class time.

Table 2: Trial Course Schedule

Subject Start Date End Date Assignment Deadline
of

Students

OOP Nov. 29, 2024 Dec. 12, 2024 Jan. 10, 2025 7

TDD Dec. 13, 2024 Dec. 25, 2024 Jan. 21, 2025 7

PPDev Jan. 10, 2025 Jan. 31, 2025 Jan. 31, 2025 6

5 Evaluation and Analysis

In this section, we analyze learners' behavioral tendencies, learning achievement, and the actual

use of AI based on Moodle access logs, quiz scores, and exercise assignment submissions.

5.1 Learning History Analysis

Table 3 shows the viewing status of teaching materials and videos and the test participation sta-

tus, while Table 4 shows the utilization status of exercise using AI teaching materials and refer-

ence materials. Across all three subjects, access to lecture materials, videos, and quizzes was

very high, indicating that repetitive learning behaviors had become established. In particular, in

test-driven development (TDD) and practical project development (PPDev), access to

AI-supported exercise materials and submission pages was active, demonstrating a high interest

in practical exercises. There were significant individual differences in the use of supplementary

materials (external links, explanatory videos, etc.), and improving the structure to indicate the

importance of these materials is a challenge for the future.

Table 3: Viewing status of teaching materials and videos as well as the test participation

status

Course Viewing the status of teaching materials

and videos

Test participation status

OOP The lecture videos for the first 10 ses-
sions were accessed by multiple students,
with the first video viewed 13 times by

10 students and the lecture materials
viewed multiple times by approximately

Access was particularly high for the
sixth and tenth of the ten sessions, with
the sixth session recording the highest

number of accesses at 283.

M. Ohtsuki, T. Kakeshita6

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

7 students. A high level of engagement
was maintained throughout the course.

TDD All six sessions saw numerous accesses
to lecture materials and videos (e.g.,

Session 1: 14 accesses to materials by 7
participants, 8 accesses to videos by 7

participants).

All students took the test, accessed 217
times in total in the first round, clearly

showing that they repeatedly worked on
it.

PPDev Five to six people accessed lecture videos

on basic design and project management
each time.

They were retaken frequently, up to 201

times (basic design 3) and 194 times
(PM).

Table 4: Utilization status of exercise using AI teaching materials and reference materials

Course Utilization status of exercise using AI
teaching materials

Utilization status of reference materials

OOP The use of AI-oriented training materials
was particularly notable, including setup

videos for Copilot (13 videos/7 partici-
pants) and basic Java exercise materials
(38 materials/8 participants).

1 to 7 people also utilized external ma-
terials such as design patterns, UML,

collections, and stack traces, and access
to supplementary reading materials was
maintained at a relatively high level.

TDD JUnit exercise materials (32 items/8

students), exercise videos (17 total), and
submission locations (78/8 students)
showed a high level of interest in im-

plementation exercises.

Supplementary URL materials such as

the Agile Development Manifesto (3
items/3 people) and the Gompertz curve
(1 item/1 person) were used to a limited

extent.

PPDev Six to eight people accessed all materials
related to Git exercises, task manage-
ment, and UML exercises multiple times,

demonstrating a strong interest in prac-
tical development tools. In particular, the
UML diagram drawing and Jenkins ex-

ercises were viewed more than 20 times
per file.

External links (Copilot usage, Git offi-
cial website, PlantUML server, etc.)
were also utilized, and the use of sup-

plementary materials in this course was
relatively consistent.

5.2 Instructional Planning and Execution

The confirmation tests conducted in each subject achieved high participation rates and average

scores (generally 90 percent or higher), indicating that repeated testing contributed to a deeper

understanding of the material. The exercise assignments also demonstrated high submission

rates, with many participants observed critically evaluating and revising their proposals while

utilizing generative AI.

For example, in the TDD exercise, all participants submitted their assignments for the test

design task using JUnit and demonstrated an attitude of reading and understanding the test code

generated by AI while implementing it following the specifications. In OOP, the Java exercise

tasks confirmed the consolidation of design concepts such as inheritance and polymorphism

through AI-assisted completion. In PPDev, high submission rates were maintained in both the

UML diagram exercise and the CI tool implementation exercise, indicating that practical learn-

ing was achieved throughout the development process.

To assess the quality of these submissions—particularly in the context of AI-assisted devel-

Preliminary Practices for Java Programming Tools and TDD Courses Utilizing Generative AI and Online Education 7

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

opment—we employed a rubric designed to capture both technical correctness and the depth of

learner engagement. The rubric included the following criteria: (1) correctness and completeness

of the final code, (2) alignment between comments and implemented functionality (i.e., whether

learners articulated and reflected on AI-generated suggestions), and (3) meaningful revision

history as recorded in version control systems. This last point allowed us to observe whether

students iteratively modified AI-generated outputs or engaged in reflective improvement pro-

cesses.

These results suggest the potential for AI to be utilized not merely as a convenient tool but as a

scaffold to facilitate understanding of learning content and to promote reflective behavioral

change.

6 Editorial Policies for General Issues

In this section, we analyze evaluations of course design and the use of generative AI based on the

results of a student survey conducted in three courses: “Object-Oriented Programming (OOP),”

“Test-Driven Development (TDD),” and “Practical Project Development (PPDev).”

The surveys were conducted online via a form on Moodle immediately after each subject was

completed. Each question was designed as a multiple-choice or open-ended format and collected

opinions on participants' satisfaction, study time, evaluation of course materials, usage of gen-

erative AI, and the reasons behind their usage. The number of respondents for each subject is

shown in Table 5.

Table 5: The number of respondents for each subject

Course # of
participants

of
respondents

Response
rate

TDD 7 5 71.4%

OOP 7 5 71.4%

PPDev 6 5 83.3%

The response rate was over 70% for all questions, and despite the small number of respond-

ents, we determined that the data was reliable enough to analyze trends among the participants.

The common questions are organized into the following categories:

・ Course satisfaction: on-demand format, teaching materials, exercises, etc.

・ Learning behavior: time spent on learning, frequency of review, etc.

・ Use and evaluation of generative AI: Tools used (Copilot, ChatGPT, Gemini, etc.), usage

scenarios, and evaluations

・ Open-ended comments: Opinions on the course, materials, and use of generative AI, as

well as improvement suggestions, etc.

Additionally, for the OOP course, a special survey titled “Comparison Survey of GitHub Co-

pilot and Google Gemini” was conducted to collect participants' opinions on the usability of

AI-assisted tools.

M. Ohtsuki, T. Kakeshita8

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

6.1 Satisfaction and Learning Behavior Trends (Quantitative Analysis)

For on-demand classes, 60% to 83% of respondents were “very satisfied” across all subjects, and

100% were “somewhat satisfied” or higher. This confirmed that on-demand classes are highly

compatible with flexible learning styles. In OOP, 83% of respondents chose “very satisfied,”

suggesting that learning at their own pace may have enhanced the learning experience.

Regarding “time spent on learning (per week),” options such as “less than 10 hours” and “10

to 20 hours” were surveyed. As a result, all respondents in OOP chose “less than 10 hours,”

while in TDD, 4 out of 5 chose “less than 10 hours,” and 1 chose “10 to 20 hours.” On the other

hand, in PPDev, 4 out of 5 respondents chose “10-20 hours,” and 1 chose “20-30 hours.” It is

presumed that the workload was relatively high in PPDev due to the large number of exercises.

The course materials (slide materials, videos) and exercise assignments were evaluated on a

5-point scale. Regarding the clarity of the materials, three respondents in OOP, 1 in TDD, and 3

in PPDev answered that they were “very clear.” On the other hand, regarding the exercise as-

signments, two respondents in OOP, 1 in TDD, and 4 in PPDev answered that they were “very

effective” in understanding the content of the experiments. These results suggest a certain level

of understanding and satisfaction with the course content.

Regarding the use of generative AI, GitHub Copilot was widely used across all subjects, with

all participants reporting experience using it in TDD and PPDev. In PPDev, Google Gemini was

also used alongside Copilot, and a special survey analyzed the comparison results (see Section

6.3 for details). The primary purpose of using Copilot was “code completion,” suggesting that

generative AI practically supported students' coding activities.

6.2 Analysis and Commentary on Free Responses

In this section, we analyze the open-ended feedback provided by participants in three courses

(TDD, OOP, and PPDev). We present their evaluations of the courses, their opinions on using

generative AI, and the challenges they faced in their learning.

Many participants commented positively about the course's on-demand format, such as “I can

learn at my own pace” and “It is easy to review.”

In the free-response comments related to generative AI, the following feedback was received

regarding the use of GitHub Copilot:

・ The code quality suggested during input was high, which was helpful for learning.

・ Since the AI's suggestions were not always correct, verifying them on my own was nec-

essary.

・ By progressing while understanding the meaning of the suggested code, my understand-

ing deepened

Additionally, among participants who were hesitant to use AI, comments such as “I didn't feel

it was necessary, so I didn't use it” were common, reflecting an autonomous learning attitude.

Preliminary Practices for Java Programming Tools and TDD Courses Utilizing Generative AI and Online Education 9

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

6.3 Comparison Results between Gemini and Copilot (Special Survey)

PPDev conducted implementation exercises utilizing multiple generative AI services. We con-

ducted a special survey comparing GitHub Copilot and Google Gemini, two representative code

generation support tools, to collect participants' subjective evaluations regarding usability and

output quality.

The survey included the following two questions:

Q1. Which of GitHub Copilot and Google Gemini was superior? (Options: Copilot was better

/ Gemini was better / They were about the same, etc.)

Q2. Please explain your reasons (free response)

This survey received responses from five participants who had used both tools briefly. The

results showed that three participants rated Copilot as better, one rated Gemini as better, and one

rated them as about the same (depending on the case).

Reasons for highly evaluating Copilot included “high consistency of the proposed code” and

“familiar and easy to use in an IDE,” highlighting its strengths as an IDE-integrated AI. On the

other hand, participants who evaluated Gemini mentioned “ease of specifying what is needed,”

highlighting the advantages of its chat-based interface.

The following insights can be drawn from these results:

・ Real-time completion-type (Copilot) contributes to improving development efficiency in

short periods

・ Chat-based generative AI (Gemini) is useful for code understanding and design support

・ The educational significance of using tools appropriately according to the learning stage

or combining them is significant.

In the future, instructional design that allows students to selectively utilize AI tools (“choosing

AI that suits them and using it intentionally”) will likely become important.

It should be noted, however, that this survey was exploratory and based solely on subjective

impressions from a small number of participants. Since no structured evaluation criteria (e.g.,

usability dimensions, accuracy, context relevance) were established, the findings remain at a

surface level. For these results to serve as actionable guidance for educators and tool designers,

more detailed comparative studies with task-specific benchmarks and larger sample sizes are

needed in the future.

6.4 Comprehensive Considerations and Future Prospects

This section presents a comprehensive analysis of student evaluations regarding the on-demand

lecture format, instructional materials and exercises, and the utilization of generative AI based on

surveys administered to participants in three courses.

High satisfaction with the on-demand format and a deeper understanding gained through ex-

ercise assignments indicated that the instructional design effectively balanced temporal flexibil-

M. Ohtsuki, T. Kakeshita10

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

ity and promoted gradual understanding. On the other hand, there were also requests for im-

provements in the viewing load of videos and the clarity of materials, indicating that ensuring the

organization and searchability of information is key in designing materials that assume

self-directed learning.

Generative AI centered on GitHub Copilot played diverse roles, including implementation

support, design assistance, and test creation support, promoting learners' motivation and under-

standing. Furthermore, a comparative study of Copilot and Gemini suggested that the choice of

AI tools depends on learning styles and objectives, indicating the need to incorporate “AI liter-

acy” and “tool selection skills” into future training programs.

Beyond these motivational and behavioral aspects, another critical educational benefit lies in

cultivating cognitive and metacognitive skills. In addition to enhancing learning motivation,

using generative AI tools like Copilot and Gemini also supports the development of such skills.

For instance, debugging AI-generated code promotes error identification and abstraction, while

prompt refinement fosters problem decomposition. Moreover, the deliberate selection and

comparison of AI tools based on context enhances self-monitoring and reflective judgment.

These practices align with educational theories such as the metacognitive loop, in which learners

plan, monitor, and evaluate their learning processes [16]. Thus, AI tools can catalyze deeper

thinking rather than simple automation devices, particularly in intermediate-level programming

education. While generative AI is not a panacea, it has the potential to serve as a “guide” that

helps beginners gain a more profound and faster understanding when used appropriately.

The findings of this study are preliminary insights based on small-scale and limited practical

implementation. Nonetheless, the following prospects can be identified: (1) comparative prac-

tical implementation with a broader range of AI tools (e.g., Claude, Mistral, etc.), (2) compara-

tive analysis of learning outcomes between AI users and non-users, and integration with educa-

tional support systems (e.g., LMS or GitHub Classroom), (3) automation and personalization of

AI intervention based on learning logs. In future learning environments where generative AI and

human intellectual activities converge, it will become increasingly important to design systems

that support learners' “choice and reflection.”

Given that generative AI has shown specific effects in learning support, designing integrated

support environments that enable multiple tools in a consistent context is essential. For example,

introducing an environment that integrates development, design, dialogue, and metacognitive

support—such as Cline [17], an integrated AI-based educational support environment—into

educational settings is expected to offer the following possibilities: (1) ensuring continuity be-

tween coding, design, and feedback, (2) promoting transparency, reflection, and peer feedback

through collaborative use of AI, and (3) enhancing the visibility of learning processes and sup-

porting metacognitive activities such as planning, monitoring, and revision.

Such environments may help learners not only complete tasks more efficiently but also en-

gage in deeper self-regulation and formative assessment. However, it is also necessary to remain

aware of potential risks, including overreliance on AI suggestions or superficial engagement

with code. Therefore, future research should examine how to balance AI-driven assistance with

learner agency and critical thinking. Designing systems that allow users to utilize multiple AI

support functions—not in isolation but within an integrated and pedagogically sound con-

text—will be an essential direction for educational practice and technological development.

Preliminary Practices for Java Programming Tools and TDD Courses Utilizing Generative AI and Online Education 11

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

7 Conclusion and Future Work

This study explored the design and implementation of intermediate-level programming educa-

tion using generative AI tools such as GitHub Copilot. We developed and conducted three

courses—Object-Oriented Programming (OOP), Test-Driven Development (TDD), and Practi-

cal Project Development (PPDev)—to examine students’ engagement with AI-assisted coding,

testing, and project work. Although the sample size was small—comprising only six to seven

students per course—this limitation enabled a more detailed observation of individual engage-

ment patterns and tool adaptation strategies. Nonetheless, caution is warranted in generalizing

these findings beyond the scope of this pilot.

Findings from learning logs, assessments, and learner feedback suggest several implications.

First, generative AI supported self-regulated learning: students actively used AI tools for re-

peated practice and refinement, particularly in TDD and PPDev. Second, on-demand video lec-

tures and modular resources enabled learners to study flexibly while maintaining deep engage-

ment. Third, AI literacy emerged as a critical competency, including the ability to evaluate and

choose tools like Copilot or Gemini. Finally, quizzes and assignments effectively tracked pro-

gress and encouraged practical, reflective learning through AI integration.

Future work should address scalability and sustainability through deeper LMS integration,

AI-based tutoring, and analytics-driven feedback loops. Comparative studies involving

AI-assisted and non-AI learner groups are needed to assess the pedagogical impact more rigor-

ously. Longitudinal research could further explore how skills developed in AI-supported envi-

ronments transfer to advanced coursework or real-world software development contexts.

Additionally, integrated environments such as Cline—which combine code generation, design

scaffolding, dialogue-based interaction, and support for reflection—offer promising directions

for enhancing metacognitive engagement and peer feedback. However, as such systems become

more sophisticated, examining potential risks such as overreliance on AI-generated output or

surface-level learning behaviors is critical. Embedding generative AI within structured, pur-

pose-driven curricula must be accompanied by thoughtful instructional design that cultivates

learner agency, critical thinking, and adaptive expertise in navigating complex development

tasks.

Acknowledgment

We appreciate the students of the Faculty of Science and Engineering, Saga University, for their

cooperation in this practice. This research is supported by the Japan Society for the Promotion of

Science (JSPS) KAKENHI under Grant Number 24K06418.

References

[1] M. Daun and J. Brings, “How ChatGPT Will Change Software Engineering Education,” in

Proc. ITiCSE, 2023, pp. 110–116.

[2] OpenAI, “ChatGPT.”; Available: https://chatgpt.com/

M. Ohtsuki, T. Kakeshita12

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

[3] GitHub Inc., “GitHub Copilot.”; Available: https://docs.github.com/ja/copilot

 [4] P. Haindl and G. Weinberger, “Students’ Experiences of Using ChatGPT in an Undergradu-

ate Programming Course,” IEEE Access, vol. 12, pp. 43519–43529, 2024.

[5] M. Hu, T. Assadi, and H. Mahroeian, “Explicitly Introducing ChatGPT into First-year Pro-

gramming Practice: Challenges and Impact,” in Proc. TALE, IEEE, 2023.

[6] M. Kazemitabaar et al., “Studying the Effect of AI Code Generators on Supporting Novice

Learners in Introductory Programming,” in Proc. CHI, ACM, 2023, pp. 1–23.

[7] B. Bull and A. Kharrufa, “Generative AI Assistants in Software Development Education,”

arXiv preprint, arXiv:2303.13936, 2023.

[8] M. M. Rahman and Y. Watanobe, “ChatGPT for Education and Research: Opportunities,

Threats, and Strategies,” Applied Sciences, vol. 13, no. 9, p. 5783, 2023.

[9] J. Leinonen et al., “Using Large Language Models to Enhance Programming Error Messag-

es,” in Proc. SIGCSE, ACM, 2023, pp. 563–569.

[10] J. Prather et al., “It's Weird That it Knows What I Want": Usability and Interactions with

Co-pilot for Novice Programmers,” arXiv preprint, arXiv:2304.02491, 2023.

[11] J. Prather et al., “Beyond the Hype: A Comprehensive Review of Current Trends in Gener-

ative AI Research, Teaching Practices, and Tools,” arXiv preprint, arXiv:2412.14732, 2024.

[12] Western Governors University, “How AI Is Reshaping Curriculum Design: Insights for

Future Educators,” WGU Blog, 2025;

https://www.wgu.edu/blog/how-ai-reshaping-curriculum-design-insights-future-educators24

12.html

[13] Axios, “Northeastern University joins AI-higher ed experiment,” Axios Local Boston, Apr.

3, 2025; https://www.axios.com/local/boston/2025/04/03/northeastern-ai-claude-partnership

[14] K. Beck, Test-Driven Development: By Example, Addison-Wesley, 2002.

[15] K. Beck, “Embracing change with extreme programming,” IEEE Computer, Vol. 32, No.

10, pp. 70-77, 1999.

[16] J. H. Flavell, “Metacognition and cognitive monitoring: A new area of cogni-

tive-developmental inquiry,” American Psychologist, vol. 34, no. 10, pp. 906–911, 1979.

[17] Cline Project, "Cline," GitHub; Available: https://github.com/cline

Preliminary Practices for Java Programming Tools and TDD Courses Utilizing Generative AI and Online Education 13

