ITAI Open Conference Publication Series

ITAI Letters on Informatics and Interdisciplinary Research
Vol.006, LIIR396

DOI: https://doi.org/10.52731/1iir.v006.396

Preliminary Practices for Beginner's Programming Course
Utilizing Generative Al and Online Education

Miyuki Murata *, Naoko Kato T,
Tetsuro Kakeshita *

Abstract

Generative Al technology is rapidly advancing and is increasingly being used to automate various
processes in software development, from planning to testing. In light of these technological in-
novations, programming education at universities and institutes of technology must be restruc-
tured to align with software development processes using generative Al. Programming and gen-
erative Al are highly compatible, and generative Al can support a wide range of tasks, including
automatic code generation, refactoring, code suggestion, answering programming-related ques-
tions, and test code generation. In this paper, we propose a beginner-level online programming
course designed to utilize generative Al as a support system for programming education. We
developed educational content and implemented it in a preliminary trial with a small group of
university students. Learning logs and questionnaire responses were analyzed to evaluate the ef-
fectiveness of the course. Our results indicate a high level of student satisfaction with both the
course content and the use of generative Al. Additionally, students demonstrated increased
awareness of the importance of verifying Al-generated output and crafting appropriate prompts.
These findings suggest that the integration of generative Al and on-demand learning has strong
potential to enhance programming education in higher education institutions.

Keywords: Generative Al, Programming education, GitHub Copilot, Pair programming, Online
education

1 Introduction

Generative Al is rapidly gaining popularity and is being used in a variety of fields—not only for
text generation, but also for the generation of images, audio, 3D models, and multimodal content
that integrates these modalities. Considering this, an international initiative called the “Hiroshima
Al Process” [1] was launched by the G7 in 2023, serving as a guideline that promotes transpar-
ency, accountability, and risk management in the use of generative Al, and influencing Al policy
across various countries.

By 2023, various guidelines for the use of generative Al had been published in multiple countries.
“Generative Artificial Intelligence (Al) in Education” [2] was published in the United Kingdom

* National Institute of Technology, Kumamoto College, Yatsushiro, Japan
 National Institute of Technology, Ariake College, Ohmura, Japan
 Saga University, Saga, Japan

M. Murata, N. Kato, T. Kakeshita

in March. In May, “Artificial Intelligence and the Future of Teaching and Learning” [3] was
published in the United States, followed by Japan’s “Provisional Guidelines on the Use of Gen-
erative Al in Primary and Secondary Education” [4] in July. In September, UNESCO released
its first global guideline, “Guidance for Generative Al in Education and Research” [5], which
promotes the responsible use of generative Al tools and provides guidance on their impact on
education, risks, and challenges, as well as policy directions. Given that generative Al is expected
to continue evolving and becoming widely adopted, it is essential to intentionally foster both an
understanding of its underlying principles and the ability to utilize it effectively.

In software development, automation using generative Al is advancing across various processes,
from design to testing, and the knowledge and skills required of software engineers are expected
to evolve accordingly. Conventional programming and software engineering education provided
at universities and institutes of technology assumes that humans must do programming. However,
we argue that a paradigm shift in programming education is necessary since humans can now
program using generative Al such as GitHub Copilot [6].

The purpose of our research is to develop methodologies and tools for effective programming
education utilizing generative Al and to scientifically evaluate their effectiveness to provide new
value to programming education in the future, where generative Al is widely adopted. In our
previous work [7], we proposed the overall structure of the educational support system and de-
signed a set of instructional units for programming education that utilizes generative Al at the
beginner and intermediate levels, respectively. In this paper, we report on the development of
lesson content and the results of a preliminary trial conducted with a small group of beginner-
level students.

In Section 2, we review related research. Section 3 describes the overall programming education
system that utilizes generative Al, followed by an overview of the beginner-level programming
course reported in this paper. Section 4 describes a method of preliminary trial. Section 5 de-
scribes the analysis based on learning logs and assignment scores. Section 6 discusses the results
of the participants’ questionnaire. Section 7 concludes with a summary and directions for future
work.

2 Related Research

Since ChatGPT [8], the pioneer of generative Al, was released for public use in November 2022,
there have been few studies on the use of generative Al in the field of education. Regarding pro-
gramming education, numerous studies [9][10][11][12] have examined the impact of program-
ming lessons incorporating generative Al on student learning. These studies have shown that
generative Al is effective in helping students master programming concepts and providing indi-
vidualized feedback. On the other hand, they point out the difficulty for students to identify errors
made by the Al. Lepp et al. [13] investigated the impact of generative Al use in university classes
and found that students who used it more frequently tended to have lower academic performance.

Several studies have explored instructional approaches to programming education. Pahi et al.
[14] proposed a novel active learning approach that integrates human teaching assistants (TAs)
and generative Al, and confirmed through experiments that feedback leveraging the strengths of
both improved learning outcomes and student satisfaction. He et al. [15] integrated Al-assisted

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative Al and Online Education

adaptive learning into flipped classrooms and demonstrated not only enhanced learning outcomes
but also the effectiveness of immediate and personalized feedback.

Studies have also examined the use of generative Al to support programming exercises. Kazem-
itabaar et al. [16] reported that a support system using OpenAl Codex for beginners improved
both program completion rates and performance scores. Ueno et al. [17] reported that a person-
alized learning system using Generative Al can support the enhancement of learning motivation
through Al-generated advice. Additionally, Leinonen et al. [18] confirmed that generative Al pro-
vides useful information for resolving programming errors, such as helping students better un-
derstand error messages.

While all the above studies assume human programmers, our study explores pair programming
between a generative Al and a human programmer.

3 Programming Education utilizing Generative Al

3.1 Changes in Human Roles with the Introduction of Generative Al

Program development involves a series of steps, including requirements specification, program
design, coding, debugging, and maintenance. In traditional programming, although tools have
existed to support each of these steps, humans have primarily been responsible for the entire
process—ifrom defining requirements to maintenance. With the use of generative Al, each step
can potentially be made more efficient and automated. However, since generative Al poses risks
such as hallucinations, copyright issues, and information security concerns, it is hazardous to use
its outputs as-is. Therefore, human evaluation of the Al-generated content is essential. As a result,
the human role in programming shifts to issuing prompts to generative Al and verifying its out-
puts. In other words, humans and generative Al work collaboratively in an interactive and alter-
nating manner throughout the development process.

Figure 1 illustrates the coding workflow using generative Al. The human provides instructions,
and the generative Al performs the coding. The human then reviews the generated code to ensure
it aligns with the specifications. The human may also request explanations from the generative
Al to verify the validity of the code. If any issues are identified, the human provides additional
instructions to revise the code. This process is repeated iteratively.

Programmer Generative Al

Instruct to generate code

—

] *[Code generation]

+[Create anwer]

Verity generated code

!

,,..[Instruct to fix the generate code]

H‘“-{ Fix the Code]

+[Create anwer J

Figure 1: Coding Workflow with Generative Al

{ Verity fixed code]- -

[Request code desctription }
J

[Request code desctription

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

M. Murata, N. Kato, T. Kakeshita

3.2 Reforms Needed in Programming Education

In programming that utilizes generative Al, coding itself is the role of Al; however, basic pro-
gramming knowledge remains essential for humans to evaluate the generated output. Further-
more, programming with generative Al is expected to shift the focus of learning toward under-
standing fundamental concepts and algorithms through the code and explanations proposed by
Al as well as applying these algorithms in practical contexts. To have Al generate the desired
code, appropriate prompts are necessary. Therefore, it becomes increasingly important to educate
students in problem-solving methods—such as correctly understanding the problem and being
able to decompose it into smaller subproblems—so that they can effectively instruct Al

When utilizing generative Al, it is essential to understand its underlying mechanisms and associ-
ated issues to make informed decisions that consider both ethics and the responsibilities that come
with its adoption. It is also worth noting that there is a growing need to acquire proficiency in
code-generating Al tools and to learn new programming methods that incorporate these tools.

3.3 Overview of the Beginner-Level Programming Course

In beginner-level programming education, it is essential to emphasize fundamental programming
skills and problem-solving abilities, while also teaching the basics of debugging and code review.
Additionally, providing opportunities to engage with new tools and technologies helps to stimu-
late students’ interest and enables them to adapt to modern programming environments.

Table 1: Learning Objectives for Beginner-Level Subjects
Introduction to Programming
Objective | Students will be able to understand the basic concepts of programming and
create simple programs.
Content | * Data types and variables, operations
* Basic control statements (if statement, for statement, while statement)
* Basic input and output operations (Console, File)
* Definition and use of functions
* Basic data structures (list, dictionary)
e Utilizing libraries
* Testing and debugging
Algorithms and Data Structures
Objective | Students will be able to understand basic algorithms and data structures and
implement them.
Content * Sorting algorithms (Bubble sort, Insertion sort, Selection sort, etc.)
* Search algorithms (Linear search, Binary search, etc.)
* Basic data structures (Stack, Queue, Tree, Marge sort, etc.)
* Big O notation (Order notation)
* Dynamic search problem and data structure
* Graph definition and search
Problem-Solving Through Programming
Objective | Students will learn problem-solving methods and develop the ability to solve
concrete problems through programming.
Content | ® Problem decomposition and algorithm design
* Pseudocode and flowcharts
* Hands-on practice through simple projects

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative Al and Online Education

Taking these considerations into account, we designed three subjects listed in Table 1. Py-
thon was chosen as the programming language for these subjects. Python is widely used in
fields, such as data science and Al, and has already been adopted in beginner-level program-
ming education at Saga University, which is the target of this study. For these reasons, it is
well suited for introductory programming education.

4 Preliminary Trial of Beginner-Level Programming Education

This section describes the content developed for each subject in the preliminary trial of beginner-
level programming education, along with the corresponding lesson plan. The developed content
was provided to students using Moodle.

4.1 Developed Content
4.1.1 Introduction to Programming

In the “Introduction to Programming”, Google Colaboratory (Colab) was adopted as the practical
environment. Colab is free to use and runs on a web browser, which reduces the burden of envi-
ronment setup for learners. Additionally, the generative Al tool Gemini can be used within Colab.

As content, we created instructional pages and videos explaining how to use Colab, how to use
Gemini, and how to proceed with the exercises. For the main textbook, we adopted “Introduction
to Python Programming” [19]. This textbook comprehensively covers all the instructional topics
for the subject, as well as additional topics. It is also available in a notebook format, allowing
learners to open the files in Colab and study by checking the sample code and exercises directly
within the environment.

4.1.2 Algorithms and Data Structures

In this subject, students learn the fundamental concepts of algorithms and data structures. The
learning content encompasses all the algorithms and data structures required to complete the as-
signments in the subject “Problem-Solving Through Programming.”

As content, we prepared lecture videos, slides, and quizzes for each learning topic. Learners first
watch the lecture videos for each topic and then take the corresponding quizzes. They are encour-
aged to use generative Al to support their understanding of the lecture content and to review
explanations of questions they answered incorrectly on the quizzes.

The lecture videos and quizzes were created based on selected materials from the “Algorithms
and Data Structures”, which was previously used at Saga University. The quizzes include 2 to 4
questions for each learning topic. Since there is no limit on the number of quiz attempts, learners
can retake the quizzes as needed to deepen their understanding. The quizzes are presented in
bullet-point format using natural language. Students are asked to fill in missing parts of an algo-
rithm or to determine the state of variables given specific input data. The quizzes assess not only
the final state of variables but also their intermediate states throughout the execution process.

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

M. Murata, N. Kato, T. Kakeshita

4.1.3 Problem-Solving Through Programming

In this subject, students engage in programming exercises to solve problems based on the content
learned in “Introduction to Programming” and “Algorithms and Data Structures”. Python, the
same programming language used in the introductory subject, was adopted. Visual Studio Code
(VS Code) was selected as the programming environment, and GitHub Copilot was used as the
generative Al tool.

GitHub Copilot is trained on open-source code from GitHub, making it more suitable for pro-
gramming assistance compared to Gemini, which is trained on general web data. Another objec-
tive of using a different environment was to enable comparison with Colab and Gemini, which
were used in the introductory subject. At the time of the experiment, students could use GitHub
Copilot free of charge by registering with GitHub Education.

The content of this subject is divided into three parts: (1) explanations of program design and
coding, (2) instructions for preparing the development environment, and (3) the programming
assignments. For Part (1), lecture materials and videos from the “Software Engineering” subject,
which had already been conducted at Saga University, were selected. For Part 2, we created vid-
eos explaining how to install VS Code and how to install and use GitHub Copilot. Additionally,
we introduced several introductory videos about GitHub Copilot available on YouTube. For Part
(3), we produced a video explaining the steps for completing the programming assignments.

The assignment problems were selected from previous edition of “Pasocon Koshien (PCK) ,” a
programming competition for high school students hosted by the University of Aizu. Each prob-
lem in the contest is assigned a score ranging from 2 to 20 points according to its difficulty, and
this scoring system is considered a reliable indicator of problem difficulty. Since this subject is
designed for beginner-level learners, we selected 10 problems with a maximum score of 6 points.
An example of one of the problems is shown in Figure 2.

Number Similar to 2023

2023 can be expressed as the product of three prime numbers: 17x17x7. Among only two of these num-
bers are the same (17). For a given positive integer N, if it can be expressed as N=pxpxq using two dif-
ferent primes p and g, we define N as a number similar to 2023.

Task
Given a positive integer A/ write a program to determine whether N is a number similar to 2023.

Input

The input consists of a single positive integer N in the following format:

N

Where A single line contains a positive integer N(1<=N<=1,000,000,000).

Output
If N is a number similar to 2023, output *"Yes' on a single line. Otherwise, output **No*"* on a single line.

Figure 2: Assignment Example

Learners upload the source code of their programs, developed on their own PCs, to Moodle. The
submission deadline for all assignments was set to one week after the final class session. Sub-
missions received after the deadline were also accepted, and no points were deducted for late
submissions.

For assignment evaluation, we used the Aizu Online Judge (AOJ) [20], an online judging system
operated by the University of Aizu, which hosts the PCK programming contest. The evaluation

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative Al and Online Education

rubric is shown in Table 2. In some cases, program submissions were marked as incorrect due to
formatting errors in the input. However, since the focus of this subject is to assess students’
understanding of algorithms and data structures for problem-solving, input/output formatting is-
sues were not penalized. For such submissions, only the input/output sections were appropriately
corrected by the instructor, and then the solutions were submitted to AOJ for judgment.

Table 2: Grading Rubric for Assignments

Condition Score
Correct output is obtained for all test cases. 100
Correct output is obtained for some test cases. 90
Correct output is obtained for all sample cases listed in the problem statement. 80
The program runs but does not meet the assignment requirements. 60
The program contains errors and does not run. 50

4.2 Lesson Plan

As a preliminary trial, we conducted on-demand classes for three subjects with students from
Saga University. The course content was provided via Moodle, and a separate course page was
prepared for each subject. The participating students were five to seven fourth-year students ma-
joring in computer science. The implementation schedule is shown in Table 3.

The course ran from October 11 to November 28, 2024, with each Friday designated as class
time. Students individually worked on the content during these scheduled sessions. Any unfin-
ished activities or assignments were completed outside of class hours.

Table 3: Trial Course Schedule

Subject Start Date End Date A]s)selggmhn eent Stj d(;its
Introduction to 10/11/2024 10/24/2024 No Assign-
Programming (Fri.) (Thu.) ment L
Algorithms and Data 10/25/2024 11/7/2024 11/8/2024 6
Structures (Fri.) (Thu.) (Fri.)

Problem-Solving 11/8/2024 11/28/2024 11/29/2024 s
Through Programming | (Fri.) (Thu.) (Fri.)

5 Analysis of Learning Data

5.1 Learning Logs

We analyzed the access logs collected by Moodle. Figure 3 shows the number of accesses to each
course. Here, “Number of accesses” refers to the total number of times content within each course
was accessed.

“Introduction to Programming” had the fewest accesses, while “Algorithms and Data Structures”
had the most. Since both courses included either quizzes or external learning content outside of
Moodle, it is assumed that students engaged with these components on a regular basis. There was
no notable variation in access frequency among individual students.

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

M. Murata, N. Kato, T. Kakeshita

0 500 1000 1500 2000 2500 3000

M studentl
Introduction to I . student2
Programming rudents

studen
Algorithms and - _ student4
Data Structures o students
Problem-Solving - - m student6
Through Programming W student?

Figure 3: Number of Course Accesses in Moodle

Figure 4 illustrates the variation in the number of accesses to each course over a 28-day period,
commencing from the trial's initiation. The horizontal axis represents the number of days since
the course began, with Day 1 corresponding to the course start date.

For all subjects, the number of accesses was higher on class days. In “Algorithms and Data Struc-
tures” and “Problem-Solving Through Programming,” there were also frequent accesses on days
other than the scheduled class days. These two subjects included quizzes and assignments, sug-
gesting that students worked on them outside of class hours. Additionally, in “Problem Solving
Through Programming,” there was a noticeable increase in access just before the assignment
deadline.

Number of Contents Access

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Days Since First Lecture

Introduction to Programming ™ Algorithms and Data Structures ® Problem-Solving Through Programming

Figure 4: Transition of Course Accesses in Moodle Over Time

The content can be broadly classified into three categories: (1) materials in HTML or PDF format,
(2) explanatory videos for the materials, and (3) quizzes or assignments. Table 4 shows the num-
ber of accesses for each content category.

In “Introduction to Programming”, the number of accesses dropped to zero after the third week.
Since the course duration was set to two weeks, it is assumed that students completed their learn-
ing within the intended period. Although the course duration for “Algorithms and Data Structures”
was also set to two weeks, the deadline for the quizzes was scheduled for the end of the third
week, and thus access was observed during that time.

In “Problem-Solving Through Programming,” access to the assignments increased from the sec-
ond week onward. This was likely because the programming environment had to be set up in the

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative Al and Online Education

first week, enabling students to begin working on the assignments from the second week. The
course duration was three weeks, and the assignment deadline was set to four weeks after the
start, which explains the continued access until that point.

Table 4: Number of Course Accesses grouped by Content type

Course Introduction to Algorithms and Problem-Solving Through
Programming Data Structures Programming

Content- | Docu- Docu- Assign- | Docu- Assign-
Type ment Video ment Video ment ment Video ment
Week 1 144 85 84 49 941 85 88 49
Week 2 29 2 29 36 735 50 57 311
Week 3 0 0 20 18 562 10 11 286
Week 4 0 0 0 0 2 1 5 135

5.2 Evaluation of Quizzes and Assignments
5.2.1 Algorithms and Data Structures

Each quiz in this subject is scored on a 10-points scales. There was no limit on the number of
quiz attempts. The final average score was 9.2, with 4 out of 6 students achieving a perfect score.
Given that the average score on the first attempt was 7.6, it can be inferred that students retook
the quizzes multiple times to achieve full marks. Figure 5 shows the average score and number
of attempts on the first attempt for each quiz.

10 5
=S 2

[=%
s :
28 4%
i 3
> 6 39
= o
< @
o 4 2 g
3 2
0)2 1%
& ©
< 0 0

Quizl Quiz2 Quiz3 Quiz4 Quiz5 Quiz6é Quiz7 Quiz8 Quiz9

Average Number of Quiz Attempts Average score

Figure5: Average Score on the First Attempt and Overall Average Number of Attempts per Quiz

According to Figure 5, Quizzes 1 and 9 had high average scores and were attempted only once
on average. Quiz 1 covered introductory topics in “Algorithms and Data Structures”, and the
questions involved selecting the correct terminology. Quiz 9 included problems that required de-
termining the results of graph traversal using techniques such as breadth-first search. As graph
traversal problems are widely known, the students likely found them easy to understand and solve.

Quizzes 6 and 8, which had low average scores, are considered here. These quizzes also had
higher average numbers of attempts. Quiz 6 included two questions related to dynamic search
problems. Question 1 required students to complete a dynamic hashing algorithm using separate
chaining. In the first attempt, three out of six students answered this question partially incorrectly.
Question 2 asked students to determine the state of a red-black tree after inserting a given value.
In the first attempt, all six students answered incorrectly, and five of them left several blanks
unanswered. Although similar examples were presented in the lecture videos, the results suggest

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

10

M. Murata, N. Kato, T. Kakeshita

that the students’ understanding of red-black trees was insufficient.

Quiz 8 consisted of four questions on advanced sorting algorithms such as merge sort and quick
sort. In each question, students were required to determine the state of the data at each step as the
algorithm progressed. In this format, a single incorrect answer often leads to subsequent errors in
later steps. On the other hand, Quiz 7 also included four questions of the same format, but students
achieved higher scores on their first attempt and needed fewer attempts overall. Since Quiz 7
focused on basic sorting algorithms, this suggests that advanced sorting algorithms like merge
sort and quick sort are more challenging for students to understand.

5.2.2 Problem-Solving Through Programming

Figure 6 shows the distribution of problem point values and the average scores of students. A
weak negative correlation was observed between the point values and average scores, with a
correlation coefficient of -0.28. However, the p-value was 0.45, which is substantially greater
than the commonly used significance level of 0.05. Therefore, this result is not considered statis-
tically significant.

120.0

y=-2x+94.5
o 100.0 R* = 0.0719
2 800
s
° 600
&
£ 400
>
< 200
0.0
0 1 2 3 4 5 6 7

Allocated Point

Figure 6: Distribution of Problem Point Values and Average Scores

The grading results are shown in Table 5. The problem with the highest average score was Prob-
lem 6, with a score of 99.0. Problems with an accuracy rate below 80.0 were Problems 5, 8, and
10.

Table 5: Problem points assigned by the PCK contest and average student scores

Problem 1 2 3 4 5 6 7 8 9 10
Problem point 2 2 3 3 4 5 5 6 6 6
Average score 85.0| 97.0| 97.0| 88.0 | 60.0 | 99.0| 95.0| 76.0 | 84.0 | 80.0

For submissions scoring below 60 points, although the expected output was provided in the prob-
lem description along with the input, students were unable to produce correct results. This sug-
gests that they failed to reflect the intended algorithm in their implementation. Submissions scor-
ing between 80 and 90 points were able to produce correct output for some inputs but likely failed
to handle edge cases or exceptions appropriately.

In the following, we examine the results for the low-performing problems—Problems 5, 8, and
10. GitHub Copilot was used to assist in analyzing the errors in the submitted programs.

In Problem 5, students were asked to determine the number of groups formed by people arranged
in a circle, based on information about whether they were holding hands. In many of the submit-
ted programs that used depth-first search to count the number of groups, the logic failed to

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative Al and Online Education

account for cases where the last person and the first person were holding hands, or where all
individuals were connected. This suggests that the analysis and understanding of the problem
were insufficient. Students who scored higher on this problem wrote programs based on the ob-
servation that the number of unconnected individuals corresponds to the number of groups. In-
stead of checking each person sequentially, they devised a more efficient algorithm, which led to
correct results.

Problem 8 required students to determine the degree to which pasta was cooked, based on past
data that related cooking time to doneness. Incorrect answers generally failed to express the cor-
rect conditions in the branching logic, indicating a lack of alignment with the intended interpre-
tation of the problem.

Problem 10 was a variation of the ball rearrangement problem, in which there were restrictions
on how balls could be swapped. The task was to determine whether a given arrangement could
be sorted in ascending order. One student who scored 50 points failed to implement the required
conditions correctly. Other students who attempted to simulate the sorting process exceeded the
time limit. In contrast, students who scored higher applied a modified version of the bubble sort
algorithm that performed only a single pass to check whether sorting was possible, enabling them
to complete the task within the time constraint.

6 Student Questionnaire

6.1 Questionnaire Overview

After the course was completed, a questionnaire was administered for the participants, as shown
in Table 6. The number of respondents was six for both “Introduction to Programming” and “Al-
gorithms and Data Structures”, and five for “Problem Solving Through Programming”.

Table 6: Questionnaire Items for Course Participants

No. Question Type
1. | How satisfied were you with the class format using on-demand videos? | 5-pt scale
) Please explain your reason. Also, if you have any suggestions or ideas | Open-

" | for improvement, please share them. ended
3 How many total hours did you spend watching course videos and | Fixed-
" | working on assignments? choice
4. | How clear were the explanations and materials in the video content? | 5-pt scale
5 How helpful were the exercises in helping you understand the experi- | 5-pt scale
" | mental content?
6. | Please select all generative Al services you used to work on exercises. | MCQ
7. | How satisfied were you with the generative Al services? 5-pt scale
] Please explain your reason. If you did not use generative Al, please | Open-
" | also explain why. ended

Note: MCQ = Multiple-Choice Question; Fixed Choice = Predefined answer options.
6.2 Satisfaction with the Course and Content

Figures 7 through 9 show the results of the questionnaire regarding the on-demand class format
and course content. For all questions, most students responded with either “Very satisfied” or

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

11

12

M. Murata, N. Kato, T. Kakeshita

“Satisfied”. In response to Question 2, students across all subjects commonly appreciated the
ability to study at their own pace and to review the materials multiple times.

In “Algorithms and Data Structures,” one student noted that taking quizzes after watching the
videos helped deepen their understanding. However, another student commented that although
the video explanations were clear, it became difficult to follow how the data changed when the
problems grew more complex. In “Problem-Solving Through Programming,” a student reported
difficulty in applying for GitHub Education.

Figure 10 illustrates the time required to complete each course. In “Problem-Solving Through
Programming,” one student spent more than 30 hours, but the others completed the course within
20 hours. Based on these results, we suggest that integrating the three subjects developed in this
study and adjusting the volume of assignments appropriately, it is feasible to structure them as a
one-credit course for universities or technical colleges.

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Pl gl |
Programming Programming
Algorithms and Algorithms and _}g-\yf;-ﬁ
bomsncuss N0 Data Structures W
e I ... ormi; I
Through Programming Through Programming

B Very satisfied W Satisfied H Neutral W Strongly agree M Agree B Neutral

Dissatisfied m Very dissatisfied Disagree H Strongly disagree

Figure 7: Satisfaction with the on-demand format ~ Figure 8: Clarity of the documents and videos

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

o I il
Programming Programming

et om0 e
Data Structures Data Structures

e ot . I
. .]
Through Programming Through Programming %éﬁ?%‘%%
W Very satisfied m Satisfied ® Neutral M Less than 10 hours ® between 10 and 20 hours
Dissatisfied W Very dissatisfied H between 20 and 30 hours

Figure 9: Usefulness of the exercises Figure 10: Total hours spent on the course

6.3 Use of Generative Al

Figure 11 shows the results of the questionnaire regarding the use of generative Al. Although
some students responded “Neutral” in “Introduction to Programming” and “Algorithms and Data
Structures”, the overall responses indicate high level of satisfaction.

In the free-text responses, two students in “Introduction to Programming” expressed dissatisfac-
tion with the generative Al’s responses being in English or the Japanese translations being inac-
curate. In “Algorithms and Data Structures”, three students noted frequent errors in the AI’s out-
put or an inability to obtain the desired results.

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative AI and Online Education

On the other hand, positive responses were observed in all subjects, with students stating that the
explanations provided by the generative Al helped them understand difficult concepts and that
the code suggestions were useful. In particular, for “Problem Solving Through Programming”,
students commented on the usefulness of the Al’s code suggestions and autocomplete function-
ality. However, there were also responses indicating that the Al-generated code did not produce
the correct output. Some students emphasized the importance of critically evaluating Al’s output.
This evaluation process is essential when programming with generative Al

Additionally, one student mentioned that it took considerable time to design appropriate algo-
rithms and data structures to generate effective prompts. This suggests that the ability to construct
suitable data structures and algorithms remains important, even when using generative Al for
coding.

Figure 12 illustrates the generative Al tools that students utilized during the courses. Multiple
responses were allowed. Note that ChatGPT and Google Gemini were used in their free versions.

In “Algorithms and Data Structures,” one student reported not using any generative Al, stating in
the free-response section that they believed it was essential to understand the material inde-
pendently. Another student who indicated that they used GitHub Copilot referred to coding in
their comment; however, since there were no coding tasks in this subject, it is possible that they
were confusing it with “Problem-Solving Through Programming.”

In “Problem-Solving Through Programming,” where VS Code and GitHub Copilot were used as
the programming environment, all students reported using GitHub Copilot. According to the free
responses, some students also utilized ChatGPT when considering algorithms and data structures.
These responses suggest that students chose different generative Al tools depending on their spe-
cific learning objectives.

0% 20% 40% 60% 80% 100% 0 2 4 [8 10

Introduction to
Programming

Introduction to
Programming

Data Structures _ Data Structures _ -
and Algorithms and Algorithms

Problem Solving
Through Programming

Problem Solving
Through Programming

W Very satisfied Satisfied Neutral M ChatGPT Google Gemini GitHub Copilot
Dissatisfied m Very dissatisfied Microsoft Copilot B Not use
Figure 11: Satisfaction with generative Al Figure12: Generative Al Used

7 Conclusion and Future Work

In this paper, we propose a beginner-level curriculum for programming education that incorpo-
rates the use of generative Al and develops corresponding on-demand educational content. As a
preliminary trial, the content was implemented with a small group of students, and its effective-
ness was evaluated through analysis of learning logs and student questionnaires. The results in-
dicated a high level of satisfaction with both the content and the use of generative Al. Moreover,

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

13

14

M. Murata, N. Kato, T. Kakeshita

it was found that students became aware of the importance of verifying Al-generated output and
crafting appropriate prompts.

Based on these outcomes, we plan to expand the target group in fiscal year 2025 to include sec-
ond- and third-year students in the Department of Intelligent Information Systems at Saga Uni-
versity, offering the courses in an on-demand format. In preparation for this, we intend to refine
and improve the instructional content of “Algorithms and Data Structures” and the assignments
in “Problem-Solving Through Programming,”

In the current implementation, students were required to apply for GitHub Education to use
GitHub Copilot at no cost. As a result, some students experienced delays in setting up the pro-
gramming environment and starting the assignments. However, on December 18, 2024, GitHub
Copilot Free [21] was released, which allows the use of generative Al without requiring a GitHub
Education account, albeit with some usage limitations. This development is expected to simplify
environment setup and promote the use of generative Al among beginners. The performance of
generative Al is rapidly improving, and in some cases, it is even surpassing human capabilities.
For this reason, the importance of programming education based on the premise of using gener-
ative Al, which is the aim of this research, is expected to increase even further in the future.

Acknowledgment

We appreciate the students of Faculty of Science and Engineering, Saga University, for their co-
operation in this practice. This research is supported by the Japan Society for the Promotion of
Science (JSPS) KAKENHI under Grant Number 24K06431.

References

[1] G7, “Hiroshima Al Process,” Oct. 2023; https://www.soumu.go.jp/hiroshimaaiprocess/en/in-
dex.html.

[2] The Department for Education of the United Kingdom, “Generative artificial intelligence (AI)
in education,” Mar. 2023; https://www.gov.uk/government/publications/generative-artificial-
intelligence-in-education.

[3] The United States Department of Education, “Artificial intelligence and the future of teaching
and learning,” May. 2023; https://tech.ed.gov/ai-future-of-teaching-and-learning/.

[4] The Ministry of Education, Culture, Sports, Science and Technology of Japan, “Provisional
guidelines on the use of generative Al in primary and secondary education” (in Japanese), Jul.
2023; https://www.mext.go.jp/content/20230710-mxt_shuukyo02-000030823 003.pdf.

[5] UNESCO, “Guidance for generative Al in education and research,” Sep. 2023:
https://www.unesco.org/en/articles/guidance-generative-ai-education-and-research.

[6] GitHub Inc., “GitHub Copilot”; ht tps://docs. github. com/ja/copilot.

[7] Anonymous, “Research Vision for Paradigm Shift and Support Tools in Programming Edu-
cation Ultilizing Generative Al Proceedings of the Symposium on Information

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

Preliminary Practices for Beginner's Programming Course Utilizing Generative Al and Online Education

Education(SSS2024), Vol. 2024, pp.95-102 (in Japanese).
[8] OpenAl, “ChatGPT”’; https://chatgpt.com/.

[9] P. Haindl, and G. Weinberger, “Students’ Experiences of Using ChatGPT in an Undergraduate
Programming Course”, IEEE Access, Vol. 12, 2024, pp.43519-43529.

[10] M. M. Rahman, and Y. Watanabe, “ChatGPT for education and research, Opportunities,
threats, and strategies,” Applied Sciences, vol. 13, no. 9, 2023, p. 5783.

[11] M. Daun, and J. Brings, “How ChatGPT will change software engineering education,” in
Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Ed-
ucation V. I(ITiCSE 2023), 2023, pp. 110-116.

[12] M. Hu, T. Assadi and H. Mahroeian, “Explicitly Introducing ChatGPT into First-year Pro-
gramming Practice: Challenges and Impact,” IEEE International Conference on Teaching,
Assessment and Learning for Engineering (TALE), 2023; doi:
10.1109/TALE56641.2023.10398297.

[13] M. Lepp, J. Kaimre, "Does generative Al help in learning programming: Students’ percep-
tions, reported use and relation to performance," Computers in Human Behavior Reports,
volume 18, 2025, article 100183: doi:https://doi.org/10.1016/j.chbr.2025.100642.

[14] K. Pahi, S. Hawlader, et al., "Enhancing active learning through collaboration between hu-
man teachers and generative Al", Computers and Education Open, vol. 6, 2024, article
100183; doi: https://doi.org/10.1016/j.cac0.2024.100183.

[15]Y. He, Y. Song, and Y. Ji, “Integrating Al-based adaptive learning into the flipped classroom
model to enhance engagement and learning outcomes,” Education and Information Technol-
ogies, vol. 29, 2024, pp. 1845-1869.

[16] M. Kazemitabaar, J. Chow et al, “Studying the effect of Al code generators on supporting
novice learners in introductory programming”, in Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems(CHI '23), no. 455, 2023, pp. 1-23.

[17] H. Ueno, Y. Tanaka, et al., “Development of a Learning Advising System Using Generative
AI”, IEEE Conference Proceedings of IIAI International Congress on Advanced Applied In-
formatics (ITAI-AAI), 2024, pp.693-694.

[18]J. Leinonen, A. Hellas, S. Sarsa et al., “Using Large Language Models to Enhance Program-
ming Error Messages,” Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1, SIGCSE 2023, New York, NY, USA, Association for Computing
Machinery, 2023, pp. 563—-569; doi: 10.1145/3545945.3569770.

[19] Mathematics and Informatics Center, “The University of Tokyo: Introduction to Python Pro-
gramming,”; https://utokyo-ipp.github.io/.

[20] University of Aizu: “AlZU ONLINE JUDGE,”; https://onlinejudge.u-aizu.ac.jp/

[21] TechCrunch, “GitHub launches a free version of its Copilot,” 2024;

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

15

16

M. Murata, N. Kato, T. Kakeshita

https://techcrunch.com/2024/12/18/github-launches-a-free-version-of-its-copilot/.

Copyright © by 1Al Unauthorized reproduction of this article is prohibited.

