
IIAI Open Conference Publication Series
IIAI Letters on Informatics and Interdisciplinary Research
Vol.006, LIIR412
DOI: https://doi.org/10.52731/liir.v006.412

Predicting Neoadjuvant Therapy Response in Breast Can-
cer Patients: A Multi-Omics and Machine Learning Per-
spective

Lina AlRifai ∗, Mostafa Z. Ali * , Qasem Abu Al-Haija ‡ ,

Talal Z. Ali § , Mera Ababneh ¶

Abstract

Breast Cancer (BC) treatment response varies due to underlying heterogeneity. Person-
alized therapy based on multi-omics profiling enhances efficacy by identifying patient-
specific biomarkers and optimizing strategies. Multiomics integrates diverse biological data
to understand mechanisms and enable customized treatments. Advances in ML and DL rev-
olutionize BC therapy response prediction, leveraging multi-omics to improve precision,
identify biomarkers, and refine strategies, reducing morbidity and mortality. This study
presents a comparative analysis of multi-omics-dependent models for predicting neoadju-
vant therapy response, highlighting techniques like DeepSurv, Gradient Boosting Machine
(GBM), and Weighted MultiSource Canonical Correlation Analysis (WMSCCA). These
models use data sets such as TCGA, METABRIC, and ICGC to boost predictive power.
DL enables automated feature extraction, while ML offers interpretability for balanced pre-
dictive analytics. Despite progress, challenges remain, including data limitations, lack of
external validation, and interpretability issues.
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1 Introduction

Breast cancer (BC) arises from genetic and molecular abnormalities that cause uncontrolled
cell division in breast tissue. Early detection and appropriate treatment increase survival
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rates and improve quality of life.[1] BC is the second most common cause of death in
women. It primarily affects women but can also affect men in some cases.Approximately
one in eight women in the United States will be diagnosed with BC in their lifetime. Cancer
can either be benign, meaning it does not spread to other tissues, or malignant, meaning it
can invade nearby tissues.[2]

Treatment is classified into neoadjuvant and adjuvant therapies. Neoadjuvant therapy is
administered before surgery to help reduce the tumor burden and includes chemotherapy,
hormonal therapy, and other treatments.[3] To make surgery less invasive, the goal is to
shrink a tumor or stop the spread of malignancy. In addition, adjuvant therapy aims to
reduce the risk of recurrence and eradicate any remaining cancer cells.[4]

A critical challenge in BC treatment is the heterogeneity, which depends on the type of
neoplasm, histological grade, and genetic constitution.[5] This variation highlights the need
to identify diverse biomarkers to predict treatment responses based on individual patients.
Consequently, this has led to the use of multi-omics data integration analysis.[6]

To improve personalized BC therapy, we need methods to determine the best therapy
for the right patients based on genetic information and to handle complex molecular data.
Researchers have been studying genetic predispositions to cancer for decades, identifying
key genes that increase the risk, such as BRCA1, BRCA2, PALB2, CHEK2, ATM, BARD1,
RAD51C, and RAD51D.[7]

Multi-omics, a relatively new concept, is gaining significant attention from researchers.
Multi-omics can be achieved by augmenting ”omes” data: genome, proteome, transcrip-
tome, epigenome, metabolome, and microbiome. This augmentation allows us to explore
diseases further, understand their etiologies, and tailor treatments.[8] Machine learning can
help predict drug responses in BC patients through multi-omics, improve accuracy, and
identify robust biomarkers across various drug responses.[6]

Machine learning and deep learning have revolutionized the prediction of BC therapy
responses. They can assist in cases where patients do not respond to treatment and may
require combination therapies.[6] These advanced computational techniques have enabled
us to analyze and interpret very complex multi-omics data due to their ability to perform
dimensionality reduction by using several machine learning algorithms and models, such
as autoencoders, Cox PH, Principal Component Analysis (PCA), K-means, and Support
Vector Machines (SVMs).[9]

In this paper, we review the available literature on the use of machine learning for pre-
dicting BC drug response through multi-omics data, as well as the importance of handling
multi-omics data and selecting features. We highlight models well-suited for predicting
personalized therapies, emphasizing the potential of multi-omics approaches in tailoring
treatment to individual patients. About our contribution:

• Review models that predict therapy response in multi-omics breast cancer.

• Review multi-omics-dependent models for breast cancer-related tasks.

• Discuss model use, strengths, and limitations.

• Discuss challenges, future research directions, and practical implications.

The paper is divided into five main parts. In the introduction, we define BC and multi-
omics, explain treatment approaches, and discuss the challenges in predicting treatment re-
sponses due to heterogeneity. The literature review investigates available studies on BC uti-
lizing multi-omics, explores therapy response prediction leveraging multi-omics, compares
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models and performance metrics. In the discussion, we perform a comparative analysis 
of impactful models, highlight their strengths and limitations, and propose future research 
directions.

2 Review of Literature

In this section, we will review models related to neoadjuvant therapy response to multi-
omics for breast cancer, and multi-omics-dependent models for breast cancer-related tasks.

2.1 Multi-omics Dependent Models for Breast Cancer Neoadjuvant Therapy
Response

Table I highlights the variety of architectures and methodologies by comparing several mod-
els utilized for therapy response. The significant aspects compared include the year, archi-
tecture, datasets, input data, preprocessing steps, performance metrics, main strengths, and
limitations.

The Neural Network(NN) Model [10] has two hidden layers used for survival and drug
response prediction. Neighbourhood Component Analysis (NCA) was employed as a fea-
ture selection algorithm to identify high-weighted features. FireBrowse and CpG islands
were used to preprocess the TCGA and GDSC datasets, respectively. Copy number values
were normalized within the range of -1 to 1, where 0 indicates a normal copy number, -1
indicates a loss of copy genes, and +1 indicates a gain of copy genes. Bayesian Hyperpa-
rameter Optimization (BayesOpt) was used to optimize hyperparameters, and losses were
propagated using scaled conjugate gradient backpropagation. It is used to enable effective
identification with fewer evaluations in accordance with other optimizing techniques. The
network’s output for the risk group was determined using a categorical variable ranging
from zero to one in survival prediction.

CE =

{
− log( f (s1)) if t1 = 1,
− log(1− f (s1)) if t1 = 0.

(1)

Here, t1=1 indicates the assignment of C1= Ci or the sample. Grid Search and BayesOpt
were utilized to optimize the entire network and its parameters. To forecast IC50 values
for predicting drug therapy response, the NN was constructed as a regression problem. K-
means clustering was used to divide IC50 values and binarize the prediction. An accuracy
of 94% was reported for evaluating the model as a performance indicator.

Random Forest, Logistic Regression, and SVM [11] were used to predict the response
to neoadjuvant therapy. Z-scores were calculated to determine feature importance. Five-
fold cross-validation [12] was used to optimize model parameters. A 1000-step five-fold
cross-validation was employed for randomization in hyperparameter optimization. Logistic
regression was applied with elastic net regularization, using L1 ratio in the range 0.1 to 1,
C = 10−3 to 103. For SVM, radial basis function, sigmoid, or linear kernels were used, with
gamma parameters ranging from gamma= 10−9 to 10−2 and C and C parameters similar to
those in logistic regression. For Random Forest, the maximum number of features ranged
between 5% and 70%, and the minimum sample split ranged between 2 and 15. The area
under the curve (AUC) was used to evaluate the model’s performance. The ARTemis dataset
was used with fully trained models to validate and assess generalizability.
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Two predictive models were proposed to support personalized treatment [13]: one to
predict the BC subtype of a patient and another, called DCNN-DR, for drug response pre-
diction. The first model was trained using BC patient omics and clinical data, while BC cell
line omics data was used to train the second model. The omics data and associated features
of 42 cell lines are summarized in Figure 1. The four omics, including methylation, CNV,
mRNA, and mutation, were used to train the models and predict therapy responses. The
DCNN-DR model was utilized to predict possible drugs for BLBC subtype patients. Con-
volutional NNs (CNNs) were the primary model used because they recognize hierarchical
patterns and capture intricate relationships across multiple omics layers. The architecture
consisted of multiple convolutional layers with ReLU activation functions, max-pooling
layers for dimensionality reduction, and fully connected layers for final prediction gener-
ation. Dropout regularization was applied to prevent overfitting, and the Adam optimizer
was used to train the model with a cross-validation-tuned learning rate. Principal Com-
ponent Analysis (PCA) was employed to reduce dimensionality while retaining the most
informative features, imputation was used to address missing values, and standardization
was applied to ensure comparability among omics datasets. The CNN model was com-
pared with single-omics and traditional machine-learning models, such as Random Forests
and SVMs. With an AUC of 91%, accuracy of 85%, precision of 84%, recall of 82%, and
an F1-score of 83%, CNN outperformed these alternative approaches.

Figure 1: Number of features in each omics dataset for 42 cell-line samples used in various 
predictive models for BC therapy response.

The ComBat [14] classification algorithm was utilized. Six classification algorithms 
were examined, including K-Nearest Neighbors (K-NN), Random Forest, SVMs (SVM), 
NNs, linear models (Glmnet), and Kernel SVM. Two-fold cross-validation with Super-
Learner was used to evaluate BEAUTY features, with AUC employed as the performance 
evaluation metric. It was observed that the kernel SVMs, kNN, and random forest models 
achieved the best median classification AUC.

In this preprint paper [15], the importance of developing causal discovery algorithms
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was highlighted. These algorithms aim to uncover relationships by analyzing observational
data. Explainable methodologies were utilized to forecast disease prognosis and provide ap-
propriate treatments. A suitable causal discovery approach was employed to investigate how
various genomic changes affect the prognosis of BC (BC). The methods used included PC,
a Generalized Precision Matrix-based approach, and Greedy Equivalence Search (GES). To
validate the results, BlueBERT [16] was utilized.

The Weighted Multi-Class SCCA (WMSCCA) model [6] was employed for feature
selection. The main inspiration behind WMSCCA is its ability to interactively identify
drug response class-specific multimodal biomarkers to enhance drug response prediction.
Logistic regression with PCA was used to predict drug response categories. Five-fold cross-
validation was employed to evaluate the prediction performance for treatment response ob-
jectively.

Table 1: Summary of Models and Performance
Ref. Year Architecture Datasets Input Data Preprocessing Steps Performance

Metrics
Main Strengths Limitations

[10] 2021 A NN, Regression, and K-means The Cancer
Genome Atlas
(TCGA), and
The Genomics
of Drug Sensi-
tivity in Cancer
(GDSC)

Genomic data About TCGA
dataset: z-scaled
RSEM of RNA and
miRNA log2-RNA
were used. Methy-
lation and protein
expression were
already scaled. The
Synthetic Minor-
ity Oversampling
Technique (SMOTE)
was used to balance
the data. About
GDSC dataset: RNA
normalized basal ex-
pression levels were
prevalent. CNVs
were scaled between
-1 and 1.

Accuracy:
94%, AUC:
98%

Survival Pre-
diction, Drug
Response Predic-
tion

Small sample
size,Limit the
number of drugs.

[11] 2022 Logistic Regression, Random Forest, and SVMs (SVM) The European
Genome-
phenome
Archive (EGA)

Genomic data Imputation to han-
dle missing values,
recursive feature
elimination to iden-
tify the most relevant
biomarkers, and
standardization and
normalization of data
across omics layers.

AUC: 87% Drug response
prediction.

—

[13] 2022 SVMs The Cancer
Genome Atlas
(TCGA), The
Genomics of
Drug Sensi-
tivity in Cancer
(GDSC), and The
Cancer Cell Line
Encyclopedia
(CCLE)

Genomic data Adam, SGD, and
RMSprop were tested
for optimizers. To
prevent overfitting,
dropout was used. A
mean-squared error
was used as the loss
function.

Accuracy:
0.75, Sensi-
tivity: 0.7,
Specificity: 0.8

Drug response
prediction.

Small datasets.

[14] 2023 Six algorithms BEAUTY Genomic data Pre-NAC biopsies
showed minimal
gene expression
differences between
recurrent and non-
recurrent cases.

AUC. Drug response
prediction

Small sample
size.

[15] 2023 Discovery algorithms and language models The Cancer
Genome Atlas
(TCGA)

Genomic data Max-Min Markov
Blanket (MMMB)
and Mutual Informa-
tion (MI) were used
for feature selection,
chosen depending on
the data type. Causal
discovery methods
were applied to learn
causal graphs, includ-
ing PC, GES, FGES,
and GPM.

NaN Model’s ability in
feature selection

Incomplete work /
pre-print.

[6] 2024 The Weighted Multi-Class SCCA Own dataset,
including 147
patients’ BC
data (clinical,
mutation, molec-
ular pathways,
gene expression,
tumor microenvi-
ronment cells)

Genomic data Log2 transformation
and Frobenius nor-
malization were ap-
plied. PCA and five-
fold cross-validation
were used for drug re-
sponse prediction.

AUC: 98% Enhanced drug re-
sponse

MOMLIN relies
on correlation-
based algorithms
for data integra-
tion methods,
Current state-of-
the-art methods
struggle a lot with
causal inference.
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2.2 Multi-omics Dependent Models for Breast Cancer Related Tasks

Table II compares different models for multi-omics in BC-related tasks, focusing on the 
year, architecture, datasets, input data, preprocessing steps, performance metrics, main 
strengths, and limitations.

The Gradient Boosting Machine (GBM) [17] is a supervised machine learning classi-
fier and an ensemble learning method based on decision t rees. It combines multi-omics data 
to predict the risk of developing BC (BC) in premenopausal women. Clustering was per-
formed using Non-Negative Matrix Factorization (NMF) to divide the data into two groups 
using k-means clustering. The evaluation metric used was AUC, which achieved a score of 
91%.

A Concatenation Autoencoder (ConcatAE) [18] incorporates the hidden attributes learned 
from each modality for data integration. It aims to enhance overall survival prediction 
by utilizing images. It uses multi-omics data, including gene expression, DNA methyla-
tion, miRNA expression, and Copy Number Variations (CNV). To maximize agreement be-
tween modalities and produce modality-invariant representations, the Cross-Modality Au-
toencoder (CrossAE) was used. T-distributed stochastic Neighbor Embedding (t-SNE) was 
employed to understand the similarity between paired hidden features further. The MNIST 
dataset was used to validate the effectiveness of the proposed models, which were then ap-
plied to the TCCA for overall survival prediction. In the first s tep, each data modality had 
its reconstruction loss in ConcatAE. The reconstruction loss was the summation of the sepa-
rate reconstruction losses, as clarified in the equation when two modalities were integrated; 
the new reconstruction loss was:

L′
recon =

1
N

N

∑
n=1

(
(x1,n − x̂1,n)

2 +(x2,n − x̂2,n)
2) (2)

In the second step, the encoder and decoder were trained again using CrossAE, as shown
in Figure 2. This process involved reconstructing modality 1 input data from modality 2
hidden features.

In the third step, the hidden features from each modality were combined, and the en-
coders, along with the task-specific network, were trained using task-specific loss functions
such as cross-entropy or log-likelihood loss.

DSCCN [19] was used to classify BC subtypes. DSCCN performs distinctive analyses
to highlight correlated features among multi-omics-expressed genes. The methods com-
pared include Ensemble RF, Ensemble EN, Concate RF, Concate EN, DIABLO, SMPSL,
DeepMo, and DSCCN. The FGL-SCCA model was utilized to predict BC subtypes and
extract linear structured features from mRNA and DNA data. In the first step, the module
encoder includes a fully connected layer that links features in the omics data. The module
vectors Mj represent the j-th omics data, Wj denotes the weight of the fully connected layer,
and Fj represents the module encoder. Given (xj,y)(xj,y), xj denotes a sample from the j-th
omics data, while y is the classification label represented in this equation:

M j(x j) = F j
module(x

j;W j
module) (3)

The second attention mechanism focuses on models with high similarity between omics
data. Cosine similarity was used to assess the degree of correlation. A cross-entropy error
was applied in the third stage between the true and predicted labels.

The iSOM-GSN model [20] predicts using three CNNs with an integration layer, where
the model’s output depends on the majority vote from the predictions. The chi-square test is
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Figure 2: Multi-omics Data Augmentation with ConcatAE.

used to find the most relevant features. An SVM with the Radial Basis Function (RBF) Ker-
nel is used to find the best subset of features: SOM reduces the dimensionality of datasets.
iSOM-GSN uses the Euclidean distance to find the similarity between feature vectors. It
updates the network neurons based on the Euclidean distance between the sample gene gij
and the feature center cij as this equation:

d j =

[
n

∑
i=1

(gi j − ci j)

]1/2

(4)

Where n (The number of samples). j (The current gene feature in the feature vector v =
{v1,v2, . . . ,vm}. m (The number of features). The neurons with the lowest d j in somNet
are taken as the competition’s winner to represent the data. This neuron is additionally
called as the best matching unit(BMU) The ADAM optimizer is used for regularization and
optimization during training to avoid overfitting.[21]

The Random Forest Model (RFM) and Generalized Linear Regression Model (GLRM)
[22] were used to establish an Axillary Lymph Node (ALN) prediction model in the training
queue. RFM is based on the Gini impurity formula, given by:

G = ∑
i

p(i) · (1− p(i)) (5)

p(i) represents the probability that the random sample belongs to category i. To convert
variables into a nomogram, the Feature Mapping Algorithm (FMA) was used.

The Multi-omics Stacked Fusion Network (MSFN) [23] has three components. First, a
Residual Graph NN (ResGCN) is used to gain correlative prognostic information. Second,
Convolutional NNs (CNNs) are employed to obtain specific prognostic information from
multi-omics data. Third, AdaboostRF is used for survival prediction.
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Table 2: Summary of Models and Performance
Ref. Year Architecture Datasets Input Data Preprocessing

Steps
Performance Met-
rics

Main
Strengths

Limitations

[17] 2018 The Gradient Boosting Machine (GBM) Local dataset
from a radio-
logical clinic

Genomic
data

The number k of
clusters in the anal-
ysis ranged from
2 to 10, and the
silhouette index
and cophenetic
correlation were
investigated as clas-
sical methods to
evaluate clustering
solutions.

AUC: 91% Specific to pre-
menopausal BC
women

Covers a small
scope of pa-
tients (only
premenopausal).

[18] 2020 Concatenation Autoencoder, Cross-Modality Autoencoder The Modi-
fied National
Institute of
Standards and
Technology
(MNIST), The
Cancer Genome
Atlas (TCGA)

Image Imputation for miss-
ing values was ap-
plied using a log2
transform. Min-max
normalization (0–1)
and four-fold valida-
tion were used.

ConcatAE:
0.641±0.031,
CrossAE:
0.63±0.081

Feature selec-
tion from large
multi-omics
data

The sample size
was small, The
validation dataset
lacked genomic
data.

[20] 2020 iSOM-GSN METABRIC Image It used Chi-Square
for feature selection.
SVM was applied to
find the best subset
of features. ADAM
was used for opti-
mization and regu-
larization.

Accuracy:94.32%,
Precision:93.34%,
Recall:97.7%,
F1-Score:95.49%

Feature selec-
tion from large
multi-omics
data

Limited features
in the multi-omics
dataset.

[19] 2024 DSCCN The Cancer
Genome Atlas
(TCGA)

Genomic
data

Identifying corre-
lated genes using
SCCA with a fused
pairwise group
lasso penalty. The
graph-guided pair-
wise group lasso
(GGL) penalty
was used to model
bi-multivariate asso-
ciations of mRNA
and DNAm.

Accuracy: 0.926,
AUC: 0.982

Classifying
breast cancer
subtypes

Limited number
of features in the
dataset, Lack of
noncoding gene
analysis, and Data
imbalance.

[22] 2024 Random Forest Model (RFM), Generalized Linear Regression Model (GLRM) Own datasets
collected retro-
spectively

Image Segmentation and
capture in digital
images, grayscale
value capture of
digital multi-omics
variables.

AUC GLRM:
81.8%, AUC RFM:
89.3%

Early warning
of axillary
lymph node
metastasis in
BC patients

Retrospective
and single-center
design limited the
generalizability,
Machine learning
algorithms were
limited.

[23] 2024 AdaboostRF The Cancer
Genome Atlas
(TCGA)

Genomic
data

Feature extraction
to obtain specific
features for each
omics data using
CNN. Dropout and
L2 regularization
were applied to
prevent overfitting.

Accuracy: 0.978,
AUC: 0.991, Pre-
cision: 0.932, Re-
call: 0.964, F1-
Score: 0.944

Survival Predic-
tion

Lack of explo-
ration into the
interpretability
of the survival
prediction model.
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3 Discussion and Future Direction

This section will discuss the models and algorithms applied, the strengths and limitations
of existing work, the challenges and research gaps, future research directions, and practical
implications.

3.1 Key Models and Applied Algorithms

When the ensemble method, Gradient Boosting Machine (GBM) [17], was used to predict
the risk of developing BC in premenopausal women by combining multi-omics, it achieved
a high AUC of 91%. To identify drug response class-specific multimodal biomarkers and
enhance drug response prediction, WMSCCA [6] was used. The small size of datasets is
a common limitation in drug response studies. Deep learning requires large databases and
automatically extracts features, while traditional machine learning depends on structured
data and manual feature engineering. Heuristic methods rely on trial and error for com-
plex problems, whereas classical optimization provides mathematically optimal solutions
for structured issues. Heuristic and deep learning methods are effective for unstructured
problems but are computationally expensive. Classical optimization and machine learning
are more interpretable and effective.

3.2 Strengths and Limitations of Existing Work

This section provides a detailed analysis of the strengths and limitations of existing work in
the field. By examining various models and algorithms, we aim to highlight their notable
achievements and the areas where they fall short. The discussion will cover multiple as-
pects, offering a comprehensive overview to guide further investigations and improvements
in this domain.

3.2.1 Discuss the advantages of specific models and frameworks

In drug response prediction, NN, regression, k-means [10] and WMSCCA [6] achieved high
accuracy. SVMs were used in small datasets and achieved high performance.[13] iSOM-
GSN [20], DSCCN [19] were used in feature selection from large multi-omics data. Con-
ventional ultrasound examination has advantages, including non-invasive, radiation-free,
low-cost, and fast imaging speed.[22]. The reverse phase protein array (RPPA) is a high-
throughput sequencing platform for protein detection that depends on antibodies to mea-
sure a target protein’s expression. It is cost-effective and extremely sensitive to the target
protein.[18] MOMLIN techniques reduce cost while maintaining predictive accuracy.[6]

3.2.2 Address limitations

Some limitations include limited generalizability due to the lack of external validation
sets.[22] Some models lack exploration into the interpretability of predictions.[23] Biased
limitations are faced in some models when using FPKM and RPM to normalize gene or
miRNA expression. [18]

3.3 Open Challenges and Research Gaps

Despite remarkable advancements, several open challenges and data gaps persist, including
the need for further real-world validation of these models. Many models perform excep-
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tionally well in controlled experimental settings but fail in dynamic environments. This 
gap underscores the necessity of more extensive deployment and real-world stress testing. 
Additionally, insufficient focus on explainability makes i t challenging t o i nterpret model 
decisions. The absence of standardized benchmark datasets is another important limitation, 
making it challenging to evaluate generalization across diverse scenarios and fairly compare 
various approaches. Furthermore, hybrid models that combine data-driven approaches with 
rule-based methods offer favorable pathways toward greater robustness and generalization.

3.4 Future Research Directions

Future research should integrate technologies like federated learning and explainable AI 
to improve interpretability and clinical use. LLMs enhance NLP, reduce bias, and may 
combine with federated learning for private, decentralized training. Quantum computing 
could advance processing for complex models. As these tools evolve, ethical and societal 
issues must be addressed. Researchers should refine guidelines for privacy and fairness, 
with real-world validation needed.

3.5 Practical Implications and Industry Relevance

The reviewed techniques show strong potential for healthcare application. Effective adap-
tation requires addressing standardization in healthcare systems. Strategic planning must 
tackle deployment bottlenecks, including staff training and integration into hospital infras-
tructure. Our research supports confidence i n t hese s olutions, s howing t hey a re robust, 
improve patient outcomes, and gain stakeholder support by demonstrating benefits like en-
hanced safety, better outcomes, and greater efficiency.

4 Conclusion

This comparative study examined multi-omics-based models for predicting breast cancer 
neoadjuvant therapy response, reviewing architectures, datasets, preprocessing, and perfor-
mance. It highlighted strengths and limitations of current methods, focusing on accuracy 
and interpretability. Existing models improve accuracy, enable biomarker discovery, and 
guide treatment decisions. However, challenges like data heterogeneity, limited validation, 
and clinical translation persist. Machine and deep learning automate feature extraction, 
while interdisciplinary collaboration fuels progress. These advances support better out-
comes and personalized care. Key findings s tress t he n eed f or r obust v alidation, better 
generalization, and transparent models. Future work should prioritize external validation, 
standardized benchmarks, and novel methods like federated learning and explainable AI. 
Collaboration is crucial for real-world impact.
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