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Abstract 

This study proposes an infectious disease model incorporating person-trip data and adopts an 

extended SEIR framework based on the classical SIR model. The analysis specifically targets the 

spread of the Omicron variant of COVID-19, which proliferated across Japan in the early months 

of 2022. Following the construction of a SEIR-based epidemiological model, a single infectious 

region is segmented into four distinct groups to simulate diverse transmission dynamics through 

person-trip movements. Using empirical records of infection cases and commuter flows in 

Saitama, Tokyo, Kanagawa, and Chiba prefectures from January to April 2022, the model esti-

mates key parameter values, including infection rate, recovery rate, and mobility rate. Addition-

ally, vaccine efficacy parameters released by the Ministry of Health, Labour and Welfare are 

incorporated into the simulation. Based on the estimated parameters, the study investigates the 

potential for mitigating the spread of infection. The model’s validity is then assessed by compar-

ing the simulated data of new infections with actual epidemiological data from the aforemen-

tioned four prefectures used in the parameter estimation. Furthermore, the study explores various 

scenarios by altering the parameters related to human mobility and vaccine efficacy to evaluate 

which preventive measure—mobility restriction or immunity acquisition through vaccination—

more effectively curtails the spread of infection. 
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1 Introduction 

The COVID-19 pandemic has wreaked havoc globally, including in Japan, with a total of 

33,803,572 infections and 74,694 deaths recorded as of December 31, 2023. As of January 

2025, although the momentum of infections has diminished compared to the early stages of 

the outbreak, measures still need to be taken. 

The SIR (Susceptible-Infectious-Recovered) model, formulated by Kermack and 

McKendrick in 1927, represents the short-term epidemic process of infectious diseases 

through classical model equations (1). The SIR model assumes the absence of immunity to 

the novel infectious disease, no population movement between external cities, population 

density with contact with an unspecified large number of people, and a rapid and short-term 

outbreak like the plague. The name is derived from the initials of the susceptible individuals 

(S), infected individuals (I), and recovered or removed individuals (R). On the other hand, 

the SEIR model extends the SIR model by considering exposed individuals (E) due to the 

infectious disease (2). During the Ebola virus outbreak in West Africa from 2014 to 2015, an 

extension of the SIR model was applied to epidemic analysis to suppress infection spread (3). 
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The differential equations for each model are as follows: 

Figure1: Differential equations for SIR and SEIR models 

The investigation of human mobility within specific regions—such as intercity move-

ments—is referred to as a “person trip survey.” Previous research (3) employed this concept 

to conduct numerical analyses focused on influenza. That study examined various intercity 

movements from the perspective of person trip surveys, derived the next-generation matrix, 

and calculated the basic reproduction number as well as city-specific reproduction numbers. 

However, considering that the aforementioned research primarily addressed influenza, cer-

tain contextual discrepancies may arise when compared to the current focus on COVID-19. 

The SIR (Susceptible-Infectious-Recovered) model posits that susceptible individuals (S) 

contract the infection directly from infectious individuals (I). In reality, however, infectious 

individuals (I) are typically isolated immediately upon testing positive, making it improbable 

for them to directly influence susceptible individuals (S). Consequently, this study assumes 

that the influence on susceptible individuals (S) is primarily exerted by exposed individuals 

(E), who are in the latent phase of infection. 

Moreover, to investigate the impact of human mobility on the spread of infection, the study 

restricts mobility to occur solely among four defined population groups. 

Many studies utilizing the SIR model operate under the assumption of a constant contact 

rate, denoted by α. However, in human societies characterized by dynamic social behavior, 

the assumption of a temporally constant contact rate diverges from empirical realities. There-

fore, this study constructs an SEIR model predicated on the assumption that population 

movement occurs only during daytime hours. 

Key parameters—including vaccine effectiveness, infection rate, and initial conditions—

are derived from actual data provided by the Ministry of Health, Labour and Welfare, as well 

as infection and commuting data from the Saitama, Tokyo, Kanagawa, and Chiba prefectures. 

These are compared and analyzed in relation to observed infection trends. Furthermore, ac-

knowledging that vaccine administration inherently necessitates human movement, the study 

explores, based on empirical data, the threshold level of vaccine efficacy at which the bene-

fits of administration outweigh the risks associated with mobility. Based on these analyses, 

the study deliberates on public health measures that may be considered effective in mitigating 

the spread of infectious diseases. 
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2 Concept 

This section provides a comprehensive exposition of the SEIR model employed in the present 

study. The model incorporates person trips, diurnal variations in human mobility affecting contact 

rates, and the efficacy of vaccination. The equations derived herein constitute the foundational 

framework for the numerical computations and simulations conducted to analyze the spread of 

the COVID-19 Omicron variant within Japan. 

2.1 Prerequisite 

The period referenced in the construction of this model corresponds to the phase during 

which epidemic containment measures were actively enforced, under the presumption that 

only essential outings—such as commuting to work or school—were undertaken. Conse-

quently, individuals traveling from foreign countries or other prefectures are excluded from 

consideration. Parameters associated with demographic dynamics, including reinfection, 

birth, and mortality, are not incorporated due to the structural limitations of the SEIR model. 

Additionally, the potential immunological enhancement resulting from prior infection is not 

accounted for. Furthermore, asymptomatic carriers, whose presence is inherently difficult to 

detect and whose influence on susceptible individuals remains ambiguous, are excluded from 

the scope of this model. 

All initial values employed within the model are derived exclusively from datasets pub-

lished by national and local governmental authorities. 

The authors undertake an analytical exploration of the effects of human mobility and vac-

cination on the propagation of infectious disease using this model. 

2.2 Epidemic Model 

This section formulates the extension of the SIR model using person trips. The Kermack-

Mckendrick SIR model serves as the foundation of this epidemic model. The SIR model 

categorizes the population of an epidemic region into three compartments: "susceptible," 

"infectious," and "recovered." The SIR model employs a system of coupled differential equa-

tions to represent transitions between these compartments. S, I, and R represent susceptible, 

infectious, and recovered individuals, respectively, where S denotes the number of suscepti-

ble individuals, I denotes the number of infectious individuals, and R denotes the number of 

recovered individuals. The difference between S and I is proportional to the number of sus-

ceptible individuals in contact with infectious individuals. Additionally, the difference be-

tween I and R is proportional to the number of infectious individuals. Therefore, the differ-

ences among S, I, and R are expressed by the following equations.  

To resolve these issues using the SEIR model, the epidemic area is partitioned into four 

groups, defining the susceptible, infected, and recovered individuals of Group 1 as S1, E1, 

I1, R1. 

Furthermore, this framework accommodates different infectious diseases per person trip. 

α₁ denotes the infection rate of Group 1, β₁ signifies the recovery rate of Group 1, N₁ repre-

sents the total population in that group (S1 + E1 + I1 + R1), and T12 denotes the migration 

rate from Group 1 to Group 2. 

Let λ represent the number of new infections during the daytime in Group 1. The number 

of susceptible individuals in Group 1 during the daytime is denoted as 𝑆1
𝑑(𝑡)

𝑇1,1

𝑁1
𝑑 . The count

of infected individuals in Group 1 during the daytime is given by 𝑆1
𝑑(𝑡)

𝑇1,1

𝑁1
𝑑 , obtained from 
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the migration rate from Group 1 to Group 1, denoted as T1.1, and the daytime population 

N₁ of Group 1. The number of latent individuals moving to Group 1 during the daytime is 

provided for Groups 1 through 4, denoted as𝑇1~4,1𝐸1~4 and the total number of latent indi-

viduals moving from all groups to Group 1 is given as (𝑇1,1𝐸1(𝑡) + 𝑇2,1𝐸2(𝑡) +
𝑇3,1𝐸3(𝑡) + 𝑇4,1𝐸4(𝑡)). Let ω denote the vaccine efficacy and α₁ represent the infection

rate of Group 1. Under these conditions, the number of susceptible individuals who become 

newly infected is expressed by the following equation: 

𝑆1
𝑑(𝑡)

𝑇1,1

𝑁1
𝑑 𝛼1𝜔 (𝑇1,1𝐸1(𝑡) + 𝑇2,1𝐸2(𝑡) + 𝑇3,1𝐸3(𝑡) + 𝑇4,1𝐸4(𝑡)).

By substituting the above expressions from Groups 1 through 4, the following equations 

are derived. 

𝜆1
𝑑 = 𝑆1

𝑑(𝑡)
𝑇1.1

𝑁1
𝑑

𝛼1𝜔 (𝑇1,1𝐸1(𝑡) + 𝑇2,1𝐸2(𝑡) + 𝑇3,1𝐸3(𝑡) + 𝑇4,1𝐸4(𝑡))

+𝑆1
𝑑(𝑡)

𝑇1,2

𝑁2
𝑑 𝛼2𝜔 (𝑇1,2𝐸1(𝑡) + 𝑇2,2𝐸2(𝑡) + 𝑇3,2𝐸3(𝑡) + 𝑇4,2𝐸4(𝑡))

+𝑆1
𝑑(𝑡)

𝑇1,3

𝑁3
𝑑 𝛼3𝜔 (𝑇1,3𝐸1(𝑡) + 𝑇2,3𝐸2(𝑡) + 𝑇3,3𝐸3(𝑡) + 𝑇4,3𝐸4(𝑡))

+𝑆1
𝑑(𝑡)

𝑇1,4

𝑁4
𝑑 𝛼4𝜔 (𝑇1,4𝐸1(𝑡) + 𝑇2,4𝐸2(𝑡) + 𝑇3,4𝐸3(𝑡) + 𝑇4,4𝐸4(𝑡))  (1) 

Let 𝜆1
𝑛 denote the number of new infections occurring during the nighttime. Under the

assumption that no inter-group movement takes place at night, the susceptible individuals 

present during this period are represented by 𝑆1
𝑛. This quantity is determined by the vaccine

efficacy ω, the infection rate α₁ of Group 1, the number of exposed individuals E₁, the total 

nighttime population N₁ of Group 1, and the secondary infection rate within household con-

tacts, denoted as h(4). 

The secondary infection rate within households is referenced from data provided by the 

National Institute of Infectious Diseases. The institute calculates the secondary infection rate 

within households (PCR positivity rate among close contacts) based on the basic attributes 

and contact history of infected individuals and close contacts within households (including 

non-family members). 

The following equation calculates the number of new infections during the nighttime in 

Group 1. 

𝜆1
𝑛 =  𝛼1ℎ𝜔

𝑆1
𝑛(𝑡)

𝑁1
𝑛 𝐸1(𝑡)     (2)

To determine the number of new infections 𝜆1 in Group 1, the following equation is de-

rived by calculating the average of the sum of the daytime new infections 𝜆1
𝑑in Group 1 and

the nighttime new infections 𝜆1
𝑛 in Group 1.

𝜆1(𝑡) =  
1

2
(𝜆1

𝑑 + 𝜆1
𝑛)   (3)

Let S₁ represent the susceptible individuals in Group 1, and as susceptible individuals in 

Group 1 transition to newly infected individuals, the number of susceptible individuals de-

creases, denoted as −𝜆1(𝑡). 
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𝑑𝑆1

𝑑𝑡
(𝑡) =  −𝜆1(𝑡)   (4) 

The latent period of the COVID-19 Omicron variant, the subject of this study, has been 

disclosed to be approximately 3 days, according to the data published by the National Insti-

tute of Infectious Diseases (5). Therefore, it is assumed that individuals who are susceptible 

in this study will develop symptoms precisely 3 days after being infected by latent individu-

als. Consequently, the number of latent individuals, denoted as 𝐸1 (t) in Group 1, is the sum

of individuals in latent period 1 ( 𝐸1.1 (t)), latent period 2 (𝐸1.2 (t)), and latent period 3 (𝐸1.3

(t)). The following is a list of 

𝐸1(𝑡) = 𝐸1.1(𝑡) + 𝐸1.2(𝑡) + 𝐸1.3(𝑡)   (5)

Let 𝐸1.1 denote individuals in Group 1 on the first day of the latent period. There is no data

available on latent individuals in the data disclosed by the government or prefectures. This 

is because latent individuals have not yet developed symptoms, making it difficult to observe 

them as latent individuals. In my SEIR model, as mentioned earlier, susceptible individuals 

are assumed to become infectious three days after infection. Therefore, in the data disclosed 

by the government or prefectures, it is assumed that the number of new infections corre-

sponds to the first day of the latent period two days prior to symptom onset. 

Furthermore, since we are interested only in individuals on the first day of the latent period 

(𝐸1.1), the formula for𝐸1.1is derived by subtracting the number of individuals on the first day

of the latent period from the number of new infections disclosed daily, obtained by subtract-

ing the number of individuals on the first day of the latent period from the number of new 

infections disclosed daily. 
𝑑𝐸1.1

𝑑𝑡
(𝑡) = 𝜆1(𝑡) − 𝐸1.1(𝑡)   (6) 

(7) coincides with the aforementioned content, yet designates individuals in Group 1 on

the second day of the latent period as E₁.2. Individuals on the first day of the latent period 

transition to those on the second day of the latent period the following day. Hence, subtract-

ing the number of old second-day latent individuals from the number of new second-day 

latent individuals results in the count of second-day latent individuals on day t. 
𝑑𝐸1.2

𝑑𝑡
(𝑡) = 𝐸1.1(𝑡) − 𝐸1.2(𝑡)   (7) 

(8) overlaps with the aforementioned information, designating individuals in Group 1 on

the third day of the latent period as E₁.3. Individuals on the second day of the latent period 

transition to those on the third day of the latent period the following day. Therefore, subtract-

ing the number of old third-day latent individuals from the number of new third-day latent 

individuals results in the count of third-day latent individuals on day t. 
𝑑𝐸1.3

𝑑𝑡
(𝑡) = 𝐸1.2(𝑡) − 𝐸1.3(𝑡)   (8) 

Let I₁ represent the infected individuals in Group 1. The infected individuals in Group 1 

are those who were in the third day of the latent period the previous day. Additionally, among 

the infected individuals, there are those who recover from the infection and no longer remain 

infected. Those who have recovered from the infection are designated as recoveries (σ₁ or 

R₁). Infected individuals continue to accumulate as such until they recover from the infection. 
𝑑𝐼1

𝑑𝑡
(𝑡) =  𝐸1.3(𝑡 − 1) − 𝜎1 = 𝐼1(𝑡) − 𝜎1   (9) 

R₁ represents the daily number of recoveries in Group 1, where β denotes the recovery 
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rate, and I₁(t) represents the number of infected individuals. Multiplying these two yields the 

daily number of recoveries for Group 1. This is illustrated below. 
𝑑𝑅1

𝑑𝑡
(𝑡) =  𝜎1(𝑡)   (10) 

 𝛽 represents the recovery rate, and I₁(t) denotes the infected individuals. These two vari-

ables allow us to calculate the daily number of recoveries for Group 1. This is illustrated 

below. 

𝜎1(𝑡) =  𝛽𝐼1(𝑡)   (11) 

The above elucidates equations (1) through (11) for Group 1. The equations for Groups 2, 

3, and 4 involve merely substituting parameters such as initial values and coefficients with 

the values from Group 1, hence, explanation is omitted. The following is a list of 

Figure 2: SEIR model for Group 1     Figure 3: SEIR model for Group2 
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Figure 4:  SEIR model for Group 3     Figure 5: SEIR model for Group 4 

 

3 Methods 

This section provides a precise and detailed elucidation of the parameter estimation pro-

cess employed in this study, including the sources of data, the methodology for deriving 

specific parameters, and the tools and techniques utilized for experimentation and numerical 

analysis. 

In estimating parameters such as initial values, data from a variety of sources were utilized. 

These included datasets published by the National Institute of Infectious Diseases (4); de-

mographic and daytime mobility data for Saitama, Tokyo, Kanagawa, and Chiba prefectures 

(5); newly confirmed case data from the same regions (6); and vaccine efficacy data released 

by the Ministry of Health, Labour and Welfare (7). These data were employed to determine 

coefficients such as vaccine efficacy, infection rate, recovery rate, and mobility rate. 

For numerical analysis, this study used nationwide infection data spanning from January 

3, 2022, to April 10, 2022. This period was selected because the surge in COVID-19 cases 

during this time was attributed to the BA.1 lineage of the Omicron variant, while the emer-

gence of the BA.2 lineage—with distinct epidemiological characteristics—was anticipated 

to occur subsequently. Although these variants are collectively referred to as COVID-19, 

differences in lineage may result in significant variations in infection rates, recovery dura-

tions, and latent periods. Accordingly, the present study focuses on the BA.1 lineage of the 

Omicron variant, which experienced a marked increase in transmission from the first through 

the fourteenth week of 2022. 

 

Table 1: Parameters such as infection rates 

character meaning numerical 

value 

α1 Group 1 infection rate 0.213 
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α2 Group 2 infection rate 0.149 

α3 Group 3 infection rate 0.168 

α4 Group 4 infection rate 0.145 

T₁.₁ of those who stay in group 1 0.967 

T₁.₂ Movement rate from Group 1 to Group 2 0.01 

T₁.₃ Movement rate from Group 1 to Group 3 0.006 

T₁.₄ Movement rate from Group 1 to Group 4 0.017 

T₂.₁ Movement rate from Group 2 to Group 1 0.148 

T₂.₂ of those who stay in group 2 0.842 

T₂.₃ Movement rate from Group 2 to Group 3 0.004 

T₂.₄ Movement rate from Group 2 to Group 4 0.006 

T₃.₁ Movement rate from Group 3 to Group 1 0.118 

T₃.₂ Movement rate from Group 3 to Group 2 0.001 

T₃.₃ of those who stay in group 3 0.879 

T₃.₄ Movement rate from Group 3 to Group 4 0.002 

T₄.₁ Movement rate from Group 4 to Group 1 0.143 

T₄.₂ Movement rate from Group 4 to Group 2 0.008 

T₄.₃ Movement rate from Group 4 to Group 3 0.004 

T₄.₄ of those who stay in group 4 0.845 

h Prevalence of secondary infections within cohabiting 

families 

0.35 

β recovery rate 0.1 

𝜔 Efficacy of the new corona vaccine 0.5 

 

The aforementioned parameters were computed through the following procedure. First, the 

daily number of newly confirmed cases in Saitama, Tokyo, Kanagawa, and Chiba prefectures 

was compiled using Excel, and the average of these figures was calculated. Subsequently, 

the differential equations constituting the SEIR model were algebraically rearranged so that 

only the infection rate remained on the left-hand side. By substituting empirical data—as-

signing Tokyo to Group 1, Saitama to Group 2, Kanagawa to Group 3, and Chiba to Group 

4—the infection rates α₁, α₂, α₃, and α₄ were determined. 

The estimation of the mobility rate T was based on population and daytime mobility data 

for each of the aforementioned prefectures. 

The secondary infection rate within households, denoted as h, was derived with reference 

to data released by the National Institute of Infectious Diseases. 

The efficacy of the COVID-19 vaccine, represented as ω, was established with reference to 

the interim report of the case-control study on vaccine effectiveness (Fourth Report), which 

evaluated the efficacy during the epidemic phases of Omicron sublineages BA.1/BA.2 and 

BA.5 (7). 
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As for the recovery rate β, considering the Omicron variant prevalent around January, the 

recovery period was estimated to be 10 days. Assuming that symptoms reliably resolve 10 

days after onset, the daily recovery rate was set at 0.1 (8). 

Experiments were performed using Python. RK45 was used to solve the simultaneous dif-

ferential equations. 

4 Results  

Figure 6: Simulation Results 

This section concisely and lucidly presents the principal findings of the simulation, drawing 

comparisons with empirical data and underscoring the influence of inter-group mobility dis-

parities on the peak number of new infections. 

The simulation results are illustrated in Figure 7 above. In Group 1, the number of new 

infections reached its peak at 9,698 individuals on the 8th day from the onset of the simula-

tion. In Group 2, the peak occurred on the 7th day, with 3,265 individuals newly infected. 

For Group 3, the apex was observed on the 8th day, amounting to 5,224 new cases. Similarly, 

Group 4 experienced its peak on the 8th day, with 3,258 newly infected individuals. 

From January 5th to March 5th, the highest number of new infections occurred on the 

32nd day in Tokyo, with 21,110 individuals affected, followed by Saitama Prefecture with 

7,353 individuals on the same day, Chiba Prefecture with 6,599 individuals on the 37th day, 

and Kanagawa Prefecture with 9,096 individuals on the 32nd day. 

 

Table 2: Simulation results with varying mobility rates 

character numerical value      

T1.4 1 0.25 0.7 0.1 

T1.2~4 0 0.25 0.1 0.3 

T2.1,3,4 0 0.25 0.1 0.3 

T2.2 1 0.25 0.7 0.1 

T3.1,2,4 0 0.25 0.1 0.3 

T3.3 1 0.25 0.7 0.1 

T4.1~3 0 0.25 0.1 0.3 

T4.4 1 0.25 0.7 0.1 
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Highest number of new infections   

Group1 15104.63 18458.88 16410.08 20061.35 

Group2 4246.433 8576.16 6828.08 8776.14 

Group3 8714.05 9963.21 10873.76 9612.22 

Group4 6526.41 7985.38 8581.73 7488.35 

Total Peak Number of New Infections from Group 1 to Group 4  

 34591.52 44945.8 42553.56 45925.33 

Table 2 presents simulation results with variations in mobility across four patterns. When 

inter-group movement is the most frequent, the total peak number of new infections between 

each group is highest, whereas scenarios with no movement exhibited the lowest total peak 

number of new infections between groups.  

Figure 7: Comparison of the usefulness of migration control and vaccines 

Finally, a comparative analysis was conducted to evaluate the infection-suppressing effects 

of human mobility restrictions versus the immunological benefits conferred by vaccination. 

As indicated in Table 2, an increase in human mobility generally correlates with a rise in the 

number of infections. Accordingly, based on empirical data from the four prefectures refer-

enced in this study, we examined the extent to which the effectiveness of vaccination could 

justify accepting the risks associated with increased movement, thereby still contributing to 

the containment of the outbreak. The findings revealed that a vaccine efficacy of approxi-

mately 10% is sufficient to significantly mitigate the spread of infection, even when some 

degree of population movement is present. 

5 Discussion 

The simulation results deviated from the trends observed in actual data. In all scenarios, the 

peak of new infections occurred earlier, and the subsequent decline in cases transpired more 

rapidly than in the empirical data. 
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One possible explanation for the earlier emergence of peaks in both new infections and 

recoveries within the simulation results is the model's omission of critical real-world factors, 

such as immunity acquisition following recovery and the collapse of the healthcare system 

due to an overwhelming surge in cases. These omissions may have led to an accelerated 

progression and resolution of the outbreak within the simulations. Additionally, the discrep-

ancies in the peak number of new infections are likely attributable to the model's exclusive 

focus on movement among the four predefined groups and its overly rigid separation of day-

time activity and nighttime residence. In reality, individuals commute to Tokyo from prefec-

tures beyond Saitama, Kanagawa, and Chiba, and international movement also plays a role. 

Moreover, infection rates can vary significantly depending on location. For instance, it is 

unreasonable to assume identical transmission probabilities in outdoor walkways, office en-

vironments, restaurants, and nightlife venues. The exclusion of these elements from the 

model likely contributed to the divergence between the simulation outcomes and real-world 

data. 

Furthermore, an analysis of scenarios with varying mobility rates, as shown in Table 2, 

revealed that movement into high-infection-rate groups resulted in approximately a 1.3-fold 

increase in the number of new infections compared to scenarios with no intergroup move-

ment. During the COVID-19 pandemic, refraining from non-essential outings significantly 

contributed to infection prevention. 

Lastly, a comparative evaluation of the infection-suppressing effects of mobility restrictions 

versus immunity acquisition through vaccination indicated that the latter yields a more sub-

stantial reduction in infection spread. This finding suggests that enhancing individual im-

munity through vaccination may be more effective in mitigating the spread of infection than 

implementing mobility restrictions. 

6 Conclusion 

In order to address three pivotal questions—namely, the extent to which human mobility 

contributes to the spread of infection, the efficacy of vaccination, and whether mobility re-

striction or vaccine administration is more effective in curbing transmission—this study con-

ducted simulations based on an SEIR model that incorporates variations in contact rates due 

to daytime and nighttime mobility, as well as the protective effects of vaccination. To en-

hance the realism of the simulation settings, data from the National Institute of Infectious 

Diseases (4), daytime mobility data for residents of Saitama, Tokyo, Kanagawa, and Chiba 

prefectures (5), publicly available data on new infections in these four regions (6), and sta-

tistics provided by the Ministry of Health, Labour and Welfare (7) were utilized. These data 

were employed to establish initial intergroup values and to calculate the model parameters 

by substituting them into the SEIR model’s differential equations. 

The simulation outcomes displayed a degree of divergence from empirical data. Moreover, 

subsequent simulations that varied intergroup mobility rates revealed that when individuals 

from low-infection-rate groups refrained from moving to high-infection-rate groups, the peak 

number of new infections was approximately 1.3 times lower than in the scenario involving 

such movement. This finding suggests that human mobility can significantly influence the 

dynamics of infectious disease spread. Hence, it may be posited that policy measures aimed 

at reducing mobility could play a substantial role in mitigating outbreaks. 

Additionally, a comparative analysis was conducted to evaluate the infection-suppressing 

effects of mobility restriction versus those of immunity acquisition through vaccination. The 

results indicated that vaccination conferred a more pronounced effect in curbing the spread 
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of infection. Therefore, even when considering the risks associated with movement, the act 

of administering vaccines appears to offer greater benefits in preventing large-scale trans-

mission. 

It should be noted, however, that this study does not take into account factors such as the 

mobility of individuals beyond the four predefined groups, the possibility of reinfection fol-

lowing natural immunity, demographic changes due to births and deaths, or healthcare sys-

tem collapse resulting from overwhelming infection rates. Constructing an enhanced model 

that integrates these additional variables and conducting simulations that more closely reflect 

real-world conditions remain important directions for future research. 
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