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Abstract 

The Organization for Economic Co-operation and Development (OECD) Learning Compass 

2030 envisions education as cultivating transformative competencies for navigating uncertain 

futures. This study proposes the Descriptive-Relational-Graphical (DRG) Model as a compre-

hensive framework for understanding mathematical learning through representational transfor-

mation. The DRG Model integrates three complementary modes: descriptive language for artic-

ulation through natural expression, relational language for quantitative and logical structures, and 

graphical language for spatial visualization. This framework emerged from data-driven education 

research within Eduinformatics, an interdisciplinary field integrating educational sciences with 

informatics methodologies. Building on Ainsworth's DeFT framework, Duval's semiotic repre-

sentation theory, and Skemp's distinction between instrumental and relational understanding, this 

study demonstrates that mathematical learning develops through recursive movement across rep-

resentational systems. Visualization functions as a central mediating pathway connecting internal 

cognition with external representation. Analysis of geometric examples illustrates how bidirec-

tional transformations among descriptive, relational, and graphical representations foster rela-

tional understanding—comprehending both what to do and why. The DRG Model supports 

OECD Learning Compass 2030 goals by enhancing learner autonomy, metacognitive reflection, 

and agency in mathematics education and beyond. 

Keywords: Descriptive-Relational-Graphical (DRG) Model, Representational transformation, 

Visualization, Relational understanding, Mathematical learning, Eduinformatics, Data-driven ed-

ucation, OECD Learning Compass 2030 

1 Introduction 

1.1   The OECD Learning Compass 2030 

The Organization for Economic Co-operation and Development (OECD) Learning Compass 

2030, developed within the Future of Education and Skills 2030 project, envisions education as 

a process through which learners cultivate the agency and transformative competencies necessary 

to navigate an uncertain world. It defines learning not merely as knowledge acquisition but as the 

development of the capacity to act ethically and creatively toward individual and collective well-

being. The metaphor of a compass symbolizes the learner’s ability to orient themselves autono-

mously within dynamic and unpredictable contexts, rather than following predetermined direc-

tions [1] [2]. 
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1.2   Reading Literacy and Mathematical Language 

In the OECD framework, reading literacy extends beyond decoding text to include interpreting, 

evaluating, and reflecting upon meaning in diverse contexts [1]. A similar expansion applies to 

mathematics: mathematical literacy involves understanding and expressing relationships through 

descriptive, relational, and graphical representations [1]. It connects linguistic reasoning with 

quantitative and spatial thinking, requiring learners to shift flexibly among these three forms of 

expression [1]. This multi-representational fluency forms the foundation of mathematical com-

munication and understanding [1]. 

1.3   Purpose and Theoretical Framework 

This study aims to demonstrate that deep academic understanding requires transformation 

among languages, and that the three representational languages of mathematics—descriptive, re-

lational, and graphical—can serve as an effective model for fostering mutual understanding 

among linguistic forms. 

Building on Ainsworth’s Design, Functions, and Tasks (DeFT) framework for learning with 

multiple representations [3] and Duval’s theory of semiotic representation [4], learning is viewed 

as a process of coordination and conversion between representational registers. Ainsworth em-

phasizes the complementary functions of multiple representations in supporting learning [3] , 

whereas Duval highlights the cognitive operations required for transforming meaning across se-

miotic systems [4]. Each transformation—whether internal reorganization within a mode or ex-

ternal translation among modes—constitutes a step in meaning construction. From this perspec-

tive, mathematical comprehension arises not from the accumulation of procedures but from the 

dynamic transformation that integrates descriptive, relational, and graphical representations into 

coherent understanding. 

1.4 Eduinformatics: A Data-Driven Perspective on Representation and Learning 

Eduinformatics provides a data-driven lens for analyzing how learners construct meaning 

across representational systems. By observing transitions among descriptive, relational, and 

graphical expressions, Eduinformatics identifies patterns that reveal how cognition and expres-

sion interact. This perspective contributes to evidence-based curriculum design that enhances 

representational fluency and coherence between internal understanding and external articulation 
[5]. 

2 Research Questions 

The theoretical frameworks discussed above—Ainsworth's DeFT framework, Duval's semiotic 

representation theory, and Skemp's distinction between instrumental and relational understand-

ing—suggest that deep mathematical learning involves dynamic transformation among multiple 

representational systems. However, these theories have not been sufficiently integrated to explain 

how learners actively coordinate and transform representations in ways that align with contem-

porary educational goals such as those articulated in the OECD Learning Compass 2030. 

The primary research question that arises from this context is: How do transformations 

among descriptive, relational, and graphical representations foster relational understand-

ing and support the development of learner agency as envisioned by the OECD Learning 

Compass 2030? 
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To address this overarching question, this study pursues three subsidiary inquiries. First, what 

are the distinct cognitive functions of descriptive, relational, and graphical representations in 

mathematical learning, and how do these functions complement one another? Second, in what 

ways does visualization serve as a mediating pathway that enables learners to construct, translate, 

and integrate meaning across representational systems? Third, how can the bidirectional and re-

cursive nature of representational transformation be leveraged pedagogically to move learners 

from instrumental understanding to relational understanding? 

By answering these questions through theoretical analysis and examination of geometric exam-

ples, this study aims to demonstrate that representational transformation constitutes the core 

mechanism through which mathematical understanding develops. 

3 Reconstructing Knowledge 

3.1   Knowledge Must Not Become Hollow 

When knowledge is reduced to mere accumulation or repetition, learning loses its transformative 

potential. The OECD notion of transformative competencies—creating new value, reconciling 

tensions and dilemmas, and taking responsibility—offers a framework to reconstruct knowledge 

as a living process of reasoning, representation, and expression. Here, knowledge is not static 

content but a dynamic interaction among symbols, diagrams, and language, through which learn-

ers give meaning to what they know and transform it into new understanding. 

For deep understanding, spiral learning is essential; as learners revisit core ideas with progres-

sively varied representations, memory becomes a process of reconstruction that naturally yields 

a 'map of knowledge.' Language plays a major role in this process, for it can be translated into 

both visual and symbolic forms. This is most evident in the learning of mathematics. 

3.2   Relational and Instrumental Understanding Reconsidered 

According to Skemp in 1976, instrumental understanding refers to knowing the rules and proce-

dures that yield correct answers, whereas relational understanding involves knowing what to do 

and why [5] . While instrumental understanding often produces immediate success in problem 

solving, it easily leads to what may be called hollow knowledge—a fragile competence detached 

from meaning and structure. In contrast, relational understanding cultivates a coherent net-

work of concepts, enabling learners to integrate new ideas and reconstruct prior knowledge 

within a unified cognitive schema. 

In classroom contexts, this distinction also reveals why students often find mathematics difficult 

to understand. Two factors are especially significant. First, teachers tend to reproduce their own 

learning experiences: they teach as they were taught, thereby transmitting not only knowledge 

but also the same limitations of understanding. Second, the language of mathematics itself can 

obscure communication. Its symbols and expressions, designed for precision and abstraction, 

may conceal rather than reveal meaning when not connected to verbal or visual representations. 

Therefore, relational understanding is not merely a learner’s goal but also a teacher’s responsi-

bility—to mediate between mathematical language and learners’ intuitive reasoning, and to re-

construct one’s own understanding through dialogue. Only by this dual process of reflection and 

reconstruction can mathematical communication become genuinely meaningful. 
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3.3   Spiral Learning and the Reconstruction of Understanding 

Bruner proposed that “to learn structure is to learn how things are related” in 1960. In this view, 

genuine understanding arises when learners perceive not isolated facts but the relationships that 

organize them into coherent systems. A curriculum built upon this principle should revisit funda-

mental ideas repeatedly, each time at a higher level of abstraction—a process that Bruner termed 

spiral learning [6]. 

In such a design, prior knowledge is not merely reviewed but reconstructed. Each return to a 

familiar concept enables learners to connect symbolic, visual, and verbal representations in new 

ways, thereby transforming memory from storage into structure [7]. This recursive process 

aligns with Skemp’s notion of relational understanding: learning becomes meaningful when ac-

tions are integrated with reasons and when representations are coordinated across levels of ab-

straction [6] [7]. 

From an educational standpoint, the spiral principle implies that teaching must not aim at clo-

sure but at continuity[6]. Each encounter with a concept opens pathways to reinterpretation, in-

viting learners to reorganize their prior understanding. Through this dynamic revisiting, mathe-

matical knowledge grows as a living system—a network of relationships that can expand and 

adapt rather than a static accumulation of procedures [7]. 

This principle of revisiting and restructuring is clearly observable in the learning of the geomet-

ric concept of an angle. Initially, learners recognize an angle visually as a form—an opening or 

“turn” between two lines. Through measurement with degrees, this perceptual relation becomes 

quantified. With the introduction of the radian, the idea is abstracted further, linking the arc length 

s and the radius r through s = rθ, thereby identifying the angle with a real number. Finally, the 

trigonometric functions on the unit circle integrate this quantitative understanding into an analytic 

framework, connecting geometry with algebra and calculus. 

Therefore, the development of the concept of angle exemplifies Bruner’s spiral curriculum: 

each stage revisits the same idea at a deeper level of abstraction—from perception to measure-

ment, from quantity to structure, and from geometry to analysis [6]. 

4 Superiority of Visualization 

Visualization constitutes a powerful mode of cognition that complements linguistic and sym-

bolic reasoning. In mathematical learning, the ability to externalize abstract relations in visual 

form enables learners to grasp structure and interconnection that are often concealed in purely 

verbal or numerical expressions. Bruner emphasized that perception and imagery are funda-

mental to concept formation [6] in 1960 , while Duval identified visualization as a distinct se-

miotic register through which mathematical objects become accessible to thought [4] in 1999. 

Across domains of human knowledge, visual representation consistently demonstrates superior 

efficiency in communicating complex information. Contour maps, for example, translate numer-

ical data of elevation into immediate perceptual patterns: the spacing of contour lines conveys 

the gradient of terrain more intuitively than tables of figures could. Meteorological charts employ 

isobars and front lines to depict the dynamic behavior of atmospheric pressure systems. Musical 

notation converts temporal and acoustic events into a two-dimensional diagram that simultane-

ously expresses pitch, duration, and harmony. Likewise, in investigative or diagnostic contexts, 

diagrammatic flowcharts clarify causal sequences and relationships that would otherwise require 

lengthy verbal explanation. 

These examples reveal that visualization functions not merely as illustration but as a cognitive 
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transformation—a shift from sequential description to spatial configuration. When learners trans-

late verbal or symbolic data into diagrams, they reorganize information according to structural 

relations rather than temporal order. This process fosters insight, comparison, and error detection. 

Visualization thus acts as a mediating form between description and formal symbolism, facilitat-

ing the internalization of concepts through perceptual reasoning. 

Pedagogically, the superiority of visualization suggests that mathematics instruction should ac-

tively engage learners in constructing and interpreting visual representations. Tasks that invite 

students to see relations—to map, graph, or sketch patterns—encourage integration across the 

three representational languages: descriptive, symbolic, and diagrammatic. Through such cross-

modal activity, learners develop flexible understanding and the ability to navigate among multiple 

perspectives, a competence that underlies both creative problem solving and relational under-

standing. 

4.1   Conceptual Background 

The educational significance of visualization can be traced to a long intellectual tradition that 

views perception as the foundation of reasoning. Bruner proposed three modes of representa-

tion—enactive, iconic, and symbolic—arguing that conceptual understanding develops through 

the progressive coordination of these modes in 1960. The iconic mode, in particular, bridges 

concrete manipulation and abstract symbolism by allowing learners to organize experience 

through images and spatial relations [6]. In mathematics education, this mode corresponds to 

diagrams, graphs, and other visual structures that mediate between intuition and formal nota-

tion. 

Duval further advanced this view by distinguishing between representation registers and the 

transformations among them in 1999. According to his framework, mathematical comprehension 

does not reside in any single register but emerges from the ability to convert one form of repre-

sentation into another [4] —for example, from a verbal description to an algebraic expression, 

or from a formula to a geometric figure. Visualization thus plays a dual role: it provides 

perceptual access to abstract concepts and enables cognitive flexibility through representa-

tional transformation. 

Skemp contributed an additional psychological dimension by differentiating between instru-

mental and relational understanding in 1976. Visualization supports the latter, as it reveals the 

underlying structures that connect separate procedures. When students draw or imagine diagrams 

to interpret symbolic rules, they reconstruct meaning relationally rather than mechanically. The 

act of seeing relations becomes the act of understanding itself [7] . 

These theoretical perspectives converge on a common insight: visualization is not an optional 

aid but a core component of thought. It transforms mathematical reasoning from the manipulation 

of symbols into the organization of relationships within a visual field. Recognizing this, mathe-

matics education must treat visualization as a mode of reasoning equal in status to linguistic and 

symbolic representation. 

The development of the DRG model presented in this study emerged from the authors' sustained 

engagement with visualization methodologies in educational contexts. Through collaborative 

teaching of the first-year required course "Manaburu Tokiwabito" at Kobe Tokiwa University [8], 

which incorporates logical thinking, critical thinking, and visual thinking into its curriculum, the 

authors gained pedagogical insights into the cognitive function of visualization in supporting log-

ical reasoning. This practical experience, combined with theoretical investigation into represen-

tational transformation, led to the conceptualization of the triangular relationship among 
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descriptive, relational, and graphical modes. 

Furthermore, the authors have systematically developed novel visualization methods within the 

Eduinformatics framework [9], [10]—an interdisciplinary field integrating educational sciences 

with informatics methodologies. These prior studies include visualization of curricula using syl-

labus data combined with cosine similarity and multidimensional scaling methods [11], compe-

tency-based curriculum mapping [12], [13], and the application of t-SNE (t-Distributed Stochas-

tic Neighbor Embedding) for higher-dimensional educational data visualization [14] [15] [16] 

[17]. Through this research trajectory focused on making educational structures visible and inter-

pretable, the importance of graphical representation as a mediating cognitive tool became increas-

ingly evident, ultimately leading to the formulation of the DRG model as a comprehensive frame-

work for understanding mathematical learning through representational transformation. 

4.2   Superiority of Visualization 

Visualized information enables the intuitive and spatial understanding of relationships and pat-

terns of change that are not immediately grasped through numerical or verbal descriptions alone. 

Contour lines on a map connect points of equal elevation, and the spacing between the lines 

indicates the degree of slope: wide intervals represent gentle gradients, while narrow intervals 

indicate steep ones. By connecting two points on the map with a line segment, it is also possible 

to create a cross-sectional diagram and to quantify the gradient between them as a ratio. Thus, a 

contour map functions not merely as a depiction of terrain but as a visual model for interpreting 

variations and tendencies in elevation (Figure 1). 

Figure 1: Contour lines on a map 

The spacing of isobars on a weather map represents the degree of change in air pressure. Nar-

rowly spaced isobars indicate strong winds, while widely spaced ones suggest weak winds; this 

allows one to predict the regions and directions of strong airflow. Since winds blow from high-

pressure to low-pressure areas, the arrangement of isobars makes it possible to intuitively grasp 

atmospheric motion. Here again, numerical data such as air pressure are expressed as lines, and 

through visualization, temporal change and spatial distribution become meaningful patterns. 

Musical notation, too, is a form of visualization. The placement of notes on the staff represents 
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pitch, their shape indicates duration, and their combinations reveal harmony and melodic flow. 

Simply by following the arrangement of notes, one can intuitively perceive rhythm, motion, and 

even musical expression. A score, therefore, is a visual representation that transforms the tem-

poral sequence of sounds into a spatial configuration, from which performers can read the struc-

ture of sound and emotion. 

Across these examples—maps, weather charts, and musical scores—certain common features 

emerge. First, by expressing quantitative relationships (differences in elevation, pressure, or 

pitch) as spatial forms, one can grasp numerical distributions and patterns of change intuitively. 

Second, from the configuration of lines and symbols, it becomes possible to interpret relation-

ships, directions of change, and even predict future states. Third, visualization is not a mere visual 

translation but an intellectual operation that mediates between numerical and verbal information 

through the language of form. 

In sum, visualization represents a transformation from quantity to form meaning, through which 

the structure and dynamics of information can be discerned. It thus enables the interpretation of 

relationships, changes, and predictions. Visualization, therefore, should not be regarded as a mere 

technique of representation, but rather as a cognitive bridge that allows learners to concretize and 

internalize abstract concepts. 

4.3   Geometry and the Formation of Concepts 

Geometry provides a vivid example of how linguistic and visual representations diverge. Con-

cepts such as “point,” “angle,” and “parallel” are usually introduced visually rather than verbally, 

so that the terminology itself often becomes more difficult than the explanation. Teachers may 

assert that when lines are parallel, corresponding angles are equal, or conversely, if corresponding 

or alternate angles are equal, the lines are parallel. Here, angle is treated as a numerical quantity, 

although its conceptual basis differs from that of length. Whereas length is measurable through 

proportional relationships based on unit definition, the angle requires a conceptual shift to radian 

measure, in which the proportionality between arc length and radius defines its magnitude. Un-

derstanding this transformation—from visual perception to quantitative abstraction—marks a 

crucial stage in mathematical cognition. 

4.4   Transformation among Representations in Geometry 

The process of reasoning in geometry can be described through the Descriptive–Relational–

Graphical (DRG) model (Figure 2). In Figure 2, the transformation Descriptive–Graphical (DG) 

⇒Descriptive–Relational (GR) represents the process of expressing a geometric configuration—

specifically, a quadrilateral whose diagonals bisect each other—through descriptive, relational,

and graphical forms. Students first draw the quadrilateral ABCD and identify the intersection O

of the diagonals, engaging in a graphical representation that allows them to recognize symmetry

and congruence visually. Describing this configuration as “a quadrilateral whose diagonals bisect

each other at their midpoints” transforms the visual schema into a descriptive representation, em-

phasizing the relationship among parts.

When students reason that the triangles formed by the diagonals have equal sides and equal 

included angles, they conclude that the opposite sides of the quadrilateral are parallel. This rea-

soning corresponds to a relational transformation, in which logical connections among lengths 

and angles are expressed verbally rather than through direct computation (Figure 3). 

In Figure 3, the transformation DR ⇒ Relational–Graphical (RG) shows the complementary 

route—from descriptive reasoning to relational formulation and finally to graphical confirmation. 
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Students first note that point O is the midpoint of both diagonals and that point P represents the 

center of the position vectors. From this reasoning, they infer that the opposite sides are equal 

and parallel, leading to the conclusion that the quadrilateral ABCD is a parallelogram. 

Figure 2: The transformation DG ⇒ GR 

Note: Equality of vectors implies equality of both magnitude and direction, whereas the concept 

of parallelism does not include direction. Together, these figures illustrate how understanding in 

geometry develops through bidirectional transformations among descriptive, relational, and 

graphical representations—embodying the transition from instrumental to relational understand-

ing as characterized by Skemp [7]. 

4.5   Reversibility and Creative Reconstruction 

Conversely, this relationship among representations is bidirectional. Starting from an abstract 

structure, one can reconstruct its visual form. For instance, by drawing two concentric circles 

centered at O and taking their diameters AC and BD, a parallelogram ABCD can be generated, 

and the parallelism AD ∥ BC emerges visually (Figure 4). Such reversibility between visualiza-

tion and formalization indicates not only mastery of procedures but also the ability to reconstruct 

knowledge creatively—an essential aspect of mathematical literacy and competency. From the 

perspective of the OECD Learning Compass 2030, these representational shifts foster agency 
[1]—the learner’s ability to navigate and construct meaning autonomously. Thus, the proof of a 

simple geometric property reveals the deeper cognitive architecture of learning—how visualiza-

tion, language, and symbolism interact to form understanding 
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4.6   Pedagogical Implications 

The pedagogical implications of visualization lie in its ability to mediate between perception and 

abstraction. When students are encouraged to visualize mathematical relations, they are not 

merely drawing pictures but constructing a representational bridge that connects intuitive expe-

rience with formal reasoning. Such activity enables learners to recognize underlying structures 

and to coordinate the three representational languages—verbal, symbolic, and diagrammatic—

through active transformation. 

Figure 3: The transformation DR ⇒ RG 

Figure 4: the parallelism AD ∥ BC emerges visually 
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In the classroom, visualization should be treated as an exploratory tool rather than an illustrative 

afterthought. Tasks that invite learners to depict relationships—such as plotting variable changes, 

mapping geometric transformations, or sketching function graphs—promote conceptual under-

standing through the organization of information in space. The teacher’s role is to guide students 

in interpreting these visuals: identifying what is represented, what correspondences exist between 

features of the diagram and mathematical entities, and how alternative representations can ex-

press the same idea differently. Through this process, learners begin to see how symbolic expres-

sions and verbal explanations can be translated into visual structure and back again. 

Visualization also plays a diagnostic role in revealing misconceptions. When a learner’s dia-

gram differs from an expected configuration, the discrepancy often exposes a gap in relational 

understanding. Teachers can use such visual evidence to identify which representational links—

verbal, symbolic, or diagrammatic—require reconstruction. Rather than viewing errors as fail-

ures, educators can interpret them as indicators of where conceptual rebuilding should occur. 

Furthermore, visualization nurtures metacognitive awareness. As students move between dia-

grams, formulas, and verbal reasoning, they become conscious of their own cognitive strategies 

and of the representational choices available to them. This awareness supports autonomous learn-

ing and the flexible application of knowledge across contexts. In this way, visualization serves 

not only as a learning aid but also as a foundation for relational competence: the capacity to 

navigate, connect, and reinterpret ideas through multiple representational systems. 

5 Conclusion 

This study began with a primary research question: How do transformations among descrip-

tive, relational, and graphical representations foster relational understanding and support 

the development of learner agency as envisioned by the OECD Learning Compass 2030? 

Through theoretical analysis grounded in Ainsworth's DeFT framework, Duval's semiotic repre-

sentation theory, and Skemp's distinction between instrumental and relational understanding, this 

study has demonstrated that representational transformation operates as the fundamental mecha-

nism through which learners construct coherent mathematical understanding. The findings reveal 

that when learners repeatedly move among the three modes proposed in this study's DRG (De-

scriptive-Relational-Graphical) model—articulating problems verbally, expressing relationships 

symbolically, and externalizing structures visually—they develop not merely procedural fluency 

but relational comprehension that connects meaning across representational systems. This dy-

namic process of translation and integration cultivates the transformative competencies central to 

the OECD Learning Compass 2030: autonomy in navigating complex problems, capacity for 

reflection through metacognitive awareness of representational choices, and agency in construct-

ing knowledge actively rather than receiving it passively. 

To address this overarching question, this study pursued three subsidiary inquiries. First, what 

are the distinct cognitive functions of descriptive, relational, and graphical representations 

in mathematical learning, and how do these functions complement one another? The anal-

ysis has shown that the three components of the DRG model serve distinct yet complementary 

cognitive functions. Descriptive representation enables articulation and reasoning through natural 

language, providing accessibility and connection to intuitive understanding. Relational represen-

tation expresses quantitative and logical structures through symbolic notation, enabling precision 

and generalization. Graphical representation externalizes spatial and structural relations, support-

ing perceptual reasoning and pattern recognition. These three modes function complementarily: 
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descriptive language grounds abstract concepts in communicable meaning, relational structures 

provide formal rigor, and graphical forms offer intuitive access to relationships that symbolic 

notation may obscure. Their complementarity lies not in redundancy but in mutual enrichment—

each mode reveals aspects of mathematical structure that others cannot fully capture. The DRG 

model thus provides a comprehensive framework for understanding how these representational 

systems interact to support mathematical learning. 

Second, in what ways does visualization serve as a mediating pathway that enables learn-

ers to construct, translate, and integrate meaning across representational systems? This 

study has demonstrated through geometric examples that visualization—the graphical compo-

nent of the DRG model—functions not as a secondary illustrative aid but as a cognitive bridge 

connecting internal cognition with external representation. When learners visualize mathematical 

relationships—whether through contour maps, geometric diagrams, or function graphs—they re-

organize sequential or symbolic information into spatial configurations that reveal structural pat-

terns. This transformation from temporal or symbolic sequence to spatial configuration enables 

learners to perceive relationships holistically, facilitating both comprehension and error detection. 

Visualization thus mediates the translation process within the DRG model: it converts verbal de-

scriptions into perceivable forms, renders algebraic relationships spatially interpretable, and pro-

vides a shared representational space where descriptive and relational modes can be coordinated 

and reconciled. 

Third, how can the bidirectional and recursive nature of representational transformation 

be leveraged pedagogically to move learners from instrumental understanding to relational 

understanding? The pedagogical implications are clear: instruction must design learning envi-

ronments that actively engage students in constructing, translating, and reflecting upon represen-

tations rather than simply receiving them. The bidirectional transformations illustrated in the ge-

ometric examples—moving from descriptive to graphical to relational (DG→GR), and from de-

scriptive to relational to graphical (DR→RG)—demonstrate that understanding deepens through 

recursive cycles of representation and re-representation within the DRG framework. Teachers 

can leverage this by posing tasks that require students to express the same mathematical idea in 

multiple forms, to justify why different representations are equivalent, and to choose appropriate 

representations for particular problem contexts. Such pedagogy shifts the focus from memorizing 

procedures to reconstructing meaning, thereby fostering the relational understanding that Skemp 

identified as essential for flexible and transferable knowledge. 

By answering these questions through theoretical analysis and examination of geometric exam-

ples, this study has demonstrated that representational transformation—as conceptualized 

through the DRG model—constitutes the core mechanism through which mathematical under-

standing develops. Learning is revealed not as linear accumulation but as recursive movement 

through the descriptive, relational, and graphical representational spaces, where meaning 

emerges from the coordination and integration of multiple expressive systems. Visualization 

plays a central role in this process, serving as an epistemic medium through which learners ex-

ternalize internal structures and reorganize conceptual relationships. Ultimately, this paradigm 

affirms that the capacity to translate, integrate, and visualize knowledge across the DRG frame-

work constitutes the foundation of understanding in mathematics and beyond, supporting the ed-

ucational vision of learner agency, transformative competence, and well-being articulated in the 

OECD Learning Compass 2030. 
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