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Abstract

The human brain can recognize objects hidden in even severely degraded images after
observing them for a while, which is known as a type of Eureka effect, possibly associ-
ated with human creativity. A previous psychological study suggests that the basis of this
”Eureka recognition” is neural processes of coincidence between input-dependent firing
and stochastic-spontaneous firing. Here we constructed an artificial-neural-network-based
model that simulated the characteristics of the human Eureka recognition.

Keywords: Eureka effect, Visual object recognition, Artificial neural network.

1 Introduction

Understanding and reconstructing human creativity in terms of neural modeling is important
for constructing creativity support systems [1]. Eureka effect, also known as enlightenment,
illumination, or Aha! effect, is thought to be associated with human creativity [2]. As
a phenomenon in a visual Eureka effect, humans can recognize objects hidden in even
severely degraded images (such as Mooney images [3]) suddenly after observing them for
a while. Once recognized, the objects remain clear in the conscious awareness.

In a previous psychological study of this “Eureka Recognition (ER)” [4], reaction time
(RT) of human subjects to recognize hidden objects in degraded binary (black-and-white)
images followed a certain equation in which the RT was determined by both “individual
ability” and “image difficulty that varies across images.” This quantitative relation was ex-
plained by assuming that the human brain stochastically activated missing components of
a hidden object in a degraded image and ER occurred when multiple missing components
were coincidentally activated. A coarse-grained mathematical model that repeats stochas-
tic activation until the coincidence occur, using psychologically-measured image difficulty,
explained the following characteristics of the psychological results: (I) RTs over subjects
for a degraded image followed a normal distribution on a logarithmic time scale, (II) means
and standard deviations of the above lognormal distributions over various degraded images
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showed a linear relation, and (III) image difficulty showed a discrete distribution charac-
terized by natural numbers. However, this coarse-grained model does not include specific
neural mechanisms of ER and how ER can be implemented by artificial neural network
(ANN) models. Note that the Ratcliff drift diffusion model [5], a well-studied standard
model for the task of perceptual decision making, can not explain the above three charac-
teristics.

In this study, we constructed an ANN-based model to simulate the ER characteristics
observed in the previous human study [4]. Being applied to the same degraded images used
in the human experiment (e.g., shown in Figure 1), our model successfully reproduced the
above three characteristics of ER. Our model can show differences and similarities between
the recognition of humans and a certain ANN, and it will contribute to the elucidation of
the mechanism of Eureka effect and human creativity.

(a)

(i) (ii) (iii) (iv) (v)

(b)

Figure 1: Examples of images used in this study. Five of the 90 images are shown as 
examples for each of the color (a) and binary (b) images. The same images were used in 

the previous psychological experiments.

2 Methods

2.1 Dataset and ANN image classifier

For input images, we used 90 binary images and their corresponding 90 original color im-
ages which were also used in the previous human experiment [4] (e.g., shown in Figure 1). 
For an ANN image classifier, we used ViT-B/32 (a Vision Transformer [6]) pretrained with 
ImageNet 1000 classes. Some of the 90 images were not included in the 1000 classes, and 
we added 15 new classes to the ANN by DONE (Direct ONE-shot learning [7]), using three 
Creative-Commons-license images on the internet as the training data for each of the 15 
classes. We determined “correct class” for each binary image as a coarse-categorically-
correct class [8] that were top-1 or top-2 output obtained when inputting the corresponding 
color image.
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Figure 2: Scheme of the model. The model consists of three parts: an ANN image classifier 
for “1. Feature extraction”, a recognition criterion based on multiple neural factors for “2. 

Combination coding”, and a stochastic process for “3. Spontaneous firing”.

2.2 ANN-based Model for Eureka Recognition

Our model is based on the previous coarse-grained model [4], which was inspired by two 
neurophysiological ideas: “combination coding” and “spontaneous firings.” Combination 
coding proposes that an object is recognized by a combination of simultaneously activated 
multiple neural clusters, each of which represents a visual feature component of the ob-
ject [9]. When the neural cluster components necessary for recognizing an object are not 
enough, the object is not recognized, which is considered to be the case when the visual 
input is a severely degraded image and is not recognized instantly. Here, it is known that 
cortical neurons spontaneously fire even without sensory input [10], and their spontaneous 
firings can be approximated by a stochastic process [11]. If these spontaneous firings coin-
cidentally fill the missing feature, the severely degraded image would be r ecognized. This 
is the mechanism of the previous coarse-grained model.

To integrate the mechanism of the previous coarse-grained model into an ANN model, 
we used a node (neuron) of the input feature vector of the final-dense l ayer o f A NN as 
a brain neural cluster that represents a visual feature component of the object (Figure 2). 
When the image was not immediately recognized, we added a stochastic process for the 
spontaneous firings t hat r andomly changes t he f eature v ector, as an ER p rocess. We re-
peated this stochastic process until the active neural cluster components necessary for rec-
ognizing an object in an image became enough, i.e., the input image was recognized. We 
defined RT as the number of the repetitions of the stochastic process until the recognition.

Specifically, to construct an ANN-based model that simulates RT for ER, we integrated 
the following three parts: an ANN image classifier (ViT-B/32), a recognition criterion based 
on multiple neural factors, and a stochastic process. Note that our model was not for classi-
fying a binary image but for obtaining RT, and the model considered only the correct class 
because in the human experiment the wrong answer was ignored. The ANN classifier has 
a final-dense layer, in which the input is a feature vector xxx with M  neurons (M = 768) and 
the output is a vector yyy for N classes (N = 1000 + 15, see Methods) that represents the fit-
ness rating to each class of the output by means of a weight matrix WWW (N ×M). The rating 
for i-th class yi (i = 1,2, · · · ,N) is proportional to the cosine similarity between the feature 
vector xxx (obtained from image) and the corresponding weight vector wwwi (i-th row vector of 
WWW ). Therefore, the weight vector for the correct class wwwc indicates neurons to fire or rest 
for the class.

For the recognition criterion, we defined “specific-neurons-to-fire” and “specific-neurons-
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to-rest” of the feature vector xxx as neurons whose corresponding weight values were respec-
tively top 5% and bottom 5% (i.e., fraction of feature elements contributing to recognition,
θ = 0.05) in the weight vector wwwc. Then, we obtained the sum of the numbers of firing
specific-neurons-to-fire (top 5%) and resting specific-neurons-to-rest (bottom 5%) in the
feature vector xxx, which we denote as K. Setting a threshold number Kthr, we regarded the
input image as being recognized when K ≥ Kthr. The threshold value was obtained in com-
mon for all 90 binary images as the minimum value of K among 90 color images (Kthr = 10),
because human subjects recognized all color images instantly and ER did not occur in the
human experiment.

When K was less than Kthr, the input image was not yet recognized, and the following
stochastic process was introduced as the spontaneous firing. Each of M neurons in xxx ran-
domly fired, rested, or retained the value obtained from the input image, with a probability
of p, p, or 1− 2p, respectively. The resultant feature vector with spontaneous firing was
defined as xxxsp. At each time step, K was evaluated for xxxsp, and this stochastic process was
repeated while K was less than Kthr (the feature vector was returned back to the original
xxx each step). When K satisfied the threshold, i.e., one or multiple missing components
were coincidentally activated, the stochastic process was terminated, and the RT for ER
was obtained as the number of time steps of this stochastic process.

The model parameters and variables are summarized in Table 1. There are no hyperpa-
rameters because we did not use a learning process by optimization to build the model but
just used a pretrained model.

Table 1: The model parameters and variables. See text for details.

Parameters Description
WWW N ×M weight matrix of the final-dense layer of ANN (pretrained).
wwwc Correct-class weight vector with M elements as a row vector of

weight matrix WWW of ANN (image-class dependent).
θ Fraction of feature elements contributing to recognition in the feature

vector (=0.05).
p Probability of the spontaneous firing (trial/individuality dependent);

the value was randomly assigned to each trial, following common
lognormal with mean −3.5 (≈ 0.0003 in linear) and SD 1.

Kthr Number of feature elements necessary for recognition
(= 10, as the minimum value among 90 color images).

Variables Description
xxx Feature vector with M elements obtained as the input of the

final-dense layer of ANN (image dependent).
xxxsp Feature vector with the spontaneous firing added to xxx.
K Sum of the number of firing specific-neurons-to-fire and

resting specific-neurons-to-rest in the feature vector xxx or xxxsp.
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3 Results and Discussion

The ANN-based model was applied to obtain RT for the 90 binary images, which were
used in the previous human study [4]. To validate the model in comparison with the human
results, we investigated if the model reproduced the characteristics of human data described
as (I) to (III) in Introduction section.

First, since humans can answer color images instantly and ER does not occur, we set
the minimum value of K among the 90 color images as the threshold value (Kthr = 10).
Therefore, RT was zero when any color image was input.

Next, 90 binary images were input to the model and RTs were obtained. In this case, 20
out of 90 binary images satisfied the threshold (Kthr = 10) before the stochastic process of
ER, and the ER stochastic process occurred for the other 70 images.

The simulation of ER stochastic process was performed using 100 different spontaneous-
firing probabilities p (corresponding to the individuality of 100 human subjects). We made
the spontaneous-firing probability p to distribute lognormally (according to the human re-
sults), and RT was obtained by simulations for each p value.
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Figure 3: Statistical characteristics of the reaction time. (a) Cumulative frequency of RT. 
Results for two example binary images are shown. (b) The relationship between the mean 
and standard deviation of log RT in the 70 binary images with the ER stochastic process. 

The gray line shows the regression line.

3.1 Statistical Characteristics

Figure 3(a) shows cumulative distributions of the common logarithm of RT with the one 
hundred p values for inputs of two example binary images (blue crosses and orange squares). 
These distributions were well fitted by normal distributions (blue and orange lines) as the 
property (I) of human study (see Introduction), providing values of the logarithmic means 
and SDs (as indicated by the black circle and gray bar for blue example).

Figure 3(b) shows the relationship between the means and SDs obtained by the model 
using the 70 binary images with the ER stochastic process. The result clearly shows a 
linear relationship between the means and SDs over the 70 images (R = 0.99), successfully 
reproducing the property (II) of human study.
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Figure 4: Difference between images. (a) Histogram of log RT (i.e., image difficulty) of 90 
binary images. (b) Relationship between the human experiment and our model simulation 
about the mean log of RTs of 90 binary images. The gray line shows a line passing through 

both the origin and the centroid.
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The linear relationship between mean and SD indicates that these lognormal distribu-
tions in Figure 3(a) just have different horizontal scales. The linear relationship is repro-
duced by a mechanism based on not accumulating processes but simultaneous processes, 
because the mean should have been proportional to the variance (not SD) in the case of 
accumulation processes. Note that typical models for perceptual decision making, such as 
drift diffusion model [5] and Bayesian attractor model [12], can not reproduce these results.

3.2 Differences between Images

Figure 4(a) shows a frequency distribution of the mean log of RT of the 90 binary images 
in our model. Twenty images with log RT as ”0” were recognized immediately without the 
ER stochastic process. This result successfully provided the corresponding property (III) of 
human study.

The histogram is not continuous, but has periodic peaks. In this model, the periodic 
peaks are reproduced because the difficulty of recognizing binary image is discretely ex-
pressed by the number of missing components necessary for recognition (as bars with in-
tegers). Roughly speaking, when the number of missing components necessary for recog-
nition is n, the binary image is not recognized until n components spontaneously fire at the 
same time, and thus RT is proportional to p−n on average.

Figure 4(b) quantitatively shows the relationship between the previous human experi-
ment and our model simulation about the mean log of RTs (i.e., image difficulty) of 90 bi-
nary images. It shows large differences with a small significant correlation (R = 0.28,P = 
0.007;α = 0.05) between them, possibly illustrating both differences and similarities in 
ways of coding visual objects to neural activities, which is still under elucidation across 
research fields. In order to investigate the differences and similarities, more detailed ana-
lyzes such as behavior of ANN states and parameter/model dependencies are required in 
the future.
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4 Conclusion

We simulated the reaction time for the Eureka effect in visual object recognition of degraded
difficult-to-recognize binary images by using an ANN-based model. Our model well repro-
duced the characteristics of the previous human experimental results [4] and quantitatively
showed the difference between human and the ANN-based model in image difficulty. The
coincidence of multiple stochastic neural activities, which plays an essential role in our
ANN-basd model, seems to be consistent with a conventional theory that creativity arises
from the association of multiple seemingly independent processes [1]. Of course just be-
cause our model is able to reproduce human results does not mean that their mechanism is
the same, however, at least our model, unlike other models for perceptual decision making,
is consistent with the above human results. Our model may contribute to the elucidation of
the mechanism of creativity and construction of creativity support systems.
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