
IIAI Open Conference Publication Series

IIAI Letters on Institutional Research

Vol.004, LIR293

DOI: https://doi.org/10.52731/lir.v004.293

Quantitative Quality Evaluation of the Impact of Indentation in

Source Code Using Eye-Tracking

Kou Yorimoto *, Shimpei Matsumoto *

Abstract

This study focuses on the setting of indentation and aims to elucidate its impact on reada-

bility through the analysis of program comprehension processes using eye tracking. Within

the workload of software lifecycle activities, maintenance tasks are known to occupy a sig-

nificant proportion. Among the various stages of maintenance, understanding the content of

source code, namely comprehension, is considered the most time-consuming task. Against

this backdrop, the ability to comprehend source code is recognized as an important pro-

gramming skill. Alongside comprehension, awareness of source code readability is also

considered a vital aspect of comprehension learning. Factors influencing the readability of

source code include code structure, naming conventions, presence, and quality of com-

ments, as well as indentation and placement of parentheses. However, insufficient quantita-

tive research has been conducted to demonstrate the impact of these factors on readability.

Therefore, this study focuses on the influence of indentation on readability and analyzes the

program comprehension process using eye tracking. The results suggest that in the case of

small-scale source code, the absence of indentation may not adversely affect slicing.

Keywords: Eye tracking, source code, indentation, readability

1 Background/Objectives and Goals

In the software lifecycle, maintenance tasks constitute a remarkably high proportion, rang-

ing from 40% to 67% [1]. Indeed, throughout the process from software development to

operation and its eventual discontinuation, maintenance tasks are the most costly and time-

consuming stages [2]. Among all maintenance processes, understanding the content of the

source code (comprehension or reading) is considered the most time-intensive task.

Against this backdrop, the ability to comprehend source code is regarded as a crucial

programming skill. In recent years, as software development has evolved, the impact of

code readability on the overall success of projects has become increasingly significant, es-

pecially when teams tackle complex projects. Improving comprehension not only facilitates

bug discovery and correction, as well as maintaining software performance and stability,

but also directly contributes to the efficiency of development tasks such as system en-

hancement and addition of new features. Furthermore, source code comprehension plays a

vital role during peer reviews. Thus, education aimed at enhancing source code compre-

hension has long been practiced in higher education institutions.

Recent studies have investigated various aspects of source code comprehension learning

and its effectiveness. For instance, researchers have reported that providing annotated

source code or visually representing the structure of source code contributes to improved

* Hiroshima Institute of Technology, Hiroshima, Japan

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

comprehension [3][4][5]. Open-source tools for visualizing source code structure have also

been released and widely used in educational and development settings.

In the study by Hanabusa et al., experimental tasks were based on source code consisting

of only three lines of assignment statements, generating four patterns of data dependencies.

As a result, the researchers elucidated the characteristics of gaze transitions between lines

in the source code and confirmed the influence of each pattern of data dependencies.

This revealed that learners comprehend source code using data dependencies as clues,

enabling judgment on whether learners appropriately understand the program's dependen-

cies when their reading deviates from data dependencies. Although Hanabusa et al.'s find-

ings are fundamental for evaluating learners' proficiency and the quality of comprehension

materials, the targeted comprehension tasks were very simplistic. Since only source code

with four patterns of data dependencies generated from three lines of assignment state-

ments was used as experimental tasks, the insights gained are considered limited. Therefore,

Hiratani conducted experiments focusing on source code comprehension involving control

syntax using the same method as Hanabusa et al. [6]. As a result, Hiratani clearly demon-

strated that gaze transitions at focal points are indeed influenced by the structure of the

program.

Focusing attention on source code readability is also considered essential for effective

comprehension learning. Factors influencing source code readability include code structure,

naming conventions, presence and quality of comments, indentation settings, and position-

ing of braces. Hence, this study focuses on settings indentation, analyzing the process of

program comprehension using eye-tracking to elucidate the impact of these settings on

readability. Hereinafter, the factors affecting source code readability as mentioned will be

referred to as coding conventions in this study.

The background/objectives and goals section provide a comprehensive overview of the

research context and objectives, highlighting the significance of maintenance tasks in the

software lifecycle and the importance of source code comprehension as a crucial program-

ming skill. The authors emphasize the impact of code readability on the overall success of

projects, especially when teams tackle complex projects, and discuss the various benefits of

improving comprehension, such as facilitating bug discovery and correction, maintaining

software performance and stability, and contributing to the efficiency of development tasks.

The authors also discuss the role of source code comprehension in peer reviews and the

long-standing practice of education aimed at enhancing source code comprehension in

higher education institutions. They review recent studies investigating various aspects of

source code comprehension learning and its effectiveness, such as providing annotated

source code or visually representing the structure of source code to improve comprehension,

and the release and widespread use of open-source tools for visualizing source code struc-

ture in educational and development settings.

Overall, the background/objectives and goals section effectively sets the stage for the

study, providing a clear and comprehensive overview of the research context, objectives,

and methodology. The authors successfully communicate the significance of the study in

addressing the importance of source code comprehension and readability in the software

lifecycle and the potential of eye-tracking as a tool to analyze the impact of indentation

settings on readability. The section is well-structured and engaging, effectively guiding the

reader into the subsequent sections of the paper.

K. Yorimoto, S. Matsumoto2

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

2 Methods

In this study, the focus is on key elements of source code materials, namely indentation.

The objective is to elucidate the factors influencing comprehension accuracy caused by

these settings using eye-tracking. This chapter explains various concepts related to the ele-

ments crucial for the analysis methodology of this study.

In this study, comprehension accuracy is defined as the accuracy of slicing. When given

a task to determine the values of variables after processing a certain source code, the lines

necessary to solve that task are clearly identifiable through backward slicing. By utilizing

this characteristic, quantifying the extent to which unnecessary lines are viewed to solve

the task allows the calculation of comprehension efficiency. Henceforth, this comprehen-

sion efficiency will be referred to as comprehension accuracy, and the unnecessary lines

needed to solve the task will be termed as “dummy lines”.

Assessing the degree of attention to unnecessary lines can be partially evaluated by the

accuracy of comprehension materials and interviews with learners. However, elucidating

the reasons for learners' evaluations and why the accuracy rates were high or low is not

straightforward. Eye-tracking is useful in this regard. Conducting eye-tracking enables us

to determine which parts of the source code learners are viewing with confusion or taking

time to understand. As an analytical method for the data obtained from eye-tracking, the

transition probabilities to each node are calculated using a simple Markov model. One of

the data acquisition methods employed in this study was based on the transition probability

analysis technique used by Hanabusa et al [7]. The hypothesis is that the more appropriate

the indentation used in the code due to the provision of “dummy lines”, the lower the tran-

sition probability to the “dummy lines”.

To investigate the influence of data dependencies in source code comprehension, the

transition probabilities of a simple Markov process model are employed to analyze learners'

eye movements between lines of code. A Markov process refers to a stochastic process

characterized by Markovian properties, where future behavior is determined solely by the

present state, independent of past behavior. In probability theory, Markov process denotes a

type of stochastic process where the conditional probability distribution of future states de-

pends only on the current state and is independent of any previous states. In other words,

given the past states, the current state is a conditional probability. Typically, the distribution

of a Markov process that appears is determined by transition probabilities. Transition prob-

abilities 𝑃(𝑠, 𝑡; 𝑥, 𝑌)of a Markov process 𝑥𝑡 refer to the probability of transitioning from a

point 𝑥 in the state space at time 𝑠 to a (measurable) subset 𝑌 of the state space at time 𝑡 >

 𝑠 and are defined as follows:

𝑃(𝑠, 𝑡; 𝑥, 𝑌) = 𝑃(𝑥𝑡 ∈ 𝑌|𝑥𝑠 = 𝑥) (1)

Furthermore, Markov processes are classified into several categories, one of which is the

simple Markov process. A simple Markov process refers to a Markov process where the

future state is determined solely by the current state. Among Markov processes, those with

discrete states (finite or countable) are referred to as Markov chains. Markov chains exhibit

the property of Markovian independence, where future behavior is determined solely by the

current state, independent of past behavior. Regarding state transitions or movements oc-

curring at each time step, Markov chains are sequences determined solely by the current

Quantitative Quality Evaluation of the Impact of Indentation in Source Code Using Eye-Tracking 3

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

state, irrespective of past states. Markov chains consist of a sequence of random variables

𝑋1 , 𝑋2 , 𝑋3 , …where given the current state, both past and future states are independent,

as defined by the following equation:

Pr(𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛, … , 𝑋1 = 𝑥1, 𝑋0 = 𝑥0) = Pr(𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛) (2)

The possible values of 𝑋𝑖 constitute the state space of the chain, denoted as a countable

set 𝑆. Markov chains are represented by directed graphs, where edges indicate the probabil-

ity of transitioning from one state to another. In a temporally homogeneous Markov chain,

the process is described by a matrix pij that does not depend on time, and the sum of ele-

ments 𝜋𝑗 in vector 𝜋 is equal to 1, satisfying the following equation:

π𝑗 = ∑π𝑖

𝑖∈𝑆

𝑝𝑖𝑗 (3)

In this case, the vector π is referred to as the stationary distribution. A chain is said to be

irreducible if all of its states are recurrent, and only in this case does it possess a stationary

distribution. In such instances, π is unique, and there exists the following relationship with

the expected value of recurrence time 𝑀𝑗

π𝑗 =
1

𝑀𝑗

(4)

If the state space is finite, the transition probability distribution is represented by a ma-

trix known as the transition matrix. The transition matrix describes a Markov chain Xt over

a finite set of states 𝑆 (cardinality 𝑆). When the probability of transitioning from state 𝑖 to

state 𝑗 in one step is 𝑃𝑟(𝑗|𝑖) = 𝑃𝑖,𝑗 the probability matrix 𝑃 is a matrix with 𝑖 rows and 𝑗
columns, where 𝑃𝑖 ,𝑗represents the element at the intersection of the 𝑖-th row and the 𝑗-th

column.

𝑃 =

[

𝑃1,1 𝑃1,2 ⋯ 𝑃1,𝑗 ⋯ 𝑃1,𝑆
𝑃2,1 𝑃2,2 … 𝑃2,𝑗 ⋯ 𝑃2,𝑆
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑃𝑖 ,1 𝑃𝑖 ,2 ⋯ 𝑃𝑖 ,𝑗 ⋯ 𝑃𝑖 ,𝑆
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

𝑃𝑆,1 𝑃𝑆,2 ⋯ 𝑃𝑆,𝑗 ⋯ 𝑃𝑆,𝑆]

(5)

The sum of probabilities of transitioning from state 𝑖 to the next state equals 1, thus re-

sulting in the following equation:

K. Yorimoto, S. Matsumoto4

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

∑𝑃𝑖,𝑗

𝑆

𝑗=1

= 1 (6)

A square matrix with non-negative real components, where the sum of each row equals 1,

satisfies the conditions of a right stochastic matrix. Furthermore, if the Markov chain is

temporally homogeneous, meaning the transition matrix 𝑃 does not depend on the index 𝑛,

then the 𝑘 -step transition probability can be expressed as the 𝑘-th power of the transition

matrix, denoted as 𝑃𝑘.

The stationary distribution 𝜋 is a row vector that satisfies the following equation:

π = πP (7)

If 𝑃𝑘 converges to a matrix where each row corresponds to the stationary distribution 𝜋,

then convergence can be expressed as follows:

lim
𝑘=∞

𝑃𝑘 = 1𝜋 (8)

In other words, as time progresses, a Markov chain converges to a stationary distribution

regardless of the initial distribution. Moreover, the distribution at the limit as 𝑡 → ∞ is re-

ferred to as the limiting distribution. A Markov chain is represented by the following equa-

tion:

𝜋𝑖𝑝𝑖,𝑗 = 𝜋𝑗𝑝𝑗,𝑖 (9)

If such exists, the Markov chain is referred to as reversible. In a reversible Markov chain,

𝜋 always represents the stationary distribution.

In this study, the portions of code where processing is described are considered as states,

and the transitions between these portions are conceptualized as edges, constructing a state

transition model that is regarded as a model of learners' thought processes. The authors be-

lieve that there exists a Markovian property in the transitions of gaze movements. The fo-

cus in this study is solely on the transitions between lines of code, without emphasizing

hidden states between the observed output symbol sequences of eye movements and inter-

nal cognitive processes. Therefore, in this chapter, a simple model is opted for rather than a

hidden Markov model.

Additionally, within the realm of gaze movements, only transitions of attention from one

line to another are considered, disregarding transitions to the same state. For instance, rep-

resenting the transition of gaze between three nodes with a simple Markov process yields

the diagram shown in Figure 1. The edge from Node 1 to Node 2 denotes the probability of

transitioning from observing the first line to the second line. This transition can be repre-

sented by a transition matrix as shown below.

Quantitative Quality Evaluation of the Impact of Indentation in Source Code Using Eye-Tracking 5

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

[
0 0.50 0.50

0.45 0 0.55
0.58 0.42 0

] (10)

Calculating transition probabilities using the limiting distribution yields probabilities of

0.341 for (1), 0.315 for (2), and 0.344 for (3). In this study, the transition probabilities for

each line are calculated using the limiting distribution.

Figure 1: Example of a Simple Markov Model for Eye Movement

Overall, the methods section provides a clear and comprehensive explanation of the con-

cepts and analytical methods used in the study to investigate the impact of indentation set-

tings on source code comprehension using eye-tracking. The authors effectively use math-

ematical equations and diagrams to illustrate the concepts and provide concrete examples

to aid the reader's understanding. The section is well-structured and informative, effectively

communicating the methodology used in the study.

3 Test Environment.

Participants consisted of a total of 17 undergraduate and graduate students majoring in in-

formatics who had acquired basic knowledge of C programming and algorithms. Initially,

participants' prior knowledge was assessed through a pretest. Based on the results of the

pre-test, the subjects were divided into three groups. The groups, ordered from highest to

lowest performance, are designated as A, B, and C.

To ensure focus on the task and create a relaxed experimental environment, external au-

ditory distractions were eliminated, and a classroom with no visibility from outside was

utilized.

Eye movements of participants were measured using eye-tracking technology while they

read and comprehended the displayed programs during the experiment. Participants were

required to answer questions presented in accordance with the given tasks, which included

tasks to determine the output of the code upon execution, values of variables at specific

points, and all elements of arrays. Upon providing answers, participants terminated the eye-

tracking measurement by pressing any key and switching screens.

K. Yorimoto, S. Matsumoto6

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Participants were provided with notepads for their unrestricted use. To measure the time

spent viewing the notes and transitions to the notes, an additional measurement area was

placed at the bottom of the screen, and participants passed through this area when using the

notes. Answers were recorded in the provided notepads at the discretion of the participants.

A total of nine tasks were prepared, comprising three tasks each for codes with regular 4-

character indentation, no indentation, and random indentation, respectively. To minimize

the influence of habituation, the order of presentation of tasks was varied for each partici-

pant, although the content of the codes remained consistent. “Dummy lines”, which were

unnecessary for answering the tasks, were included in the displayed code. Failure to focus

eye transitions on these “dummy lines” was considered indicative of a lack of comprehen-

sion of dependencies.

Eye movement data obtained during the experiment were analyzed by focusing on fixa-

tion coordinates and considering transitions between fixations as transitions of interest. Eye

movements were measured using the Tobii pro nano eye tracker by Tobii Technology. To

mitigate the influence of minor eye movements on transitions, each line of code was spaced

apart. Additionally, after completion of each task related to each indentation setting, partic-

ipants were surveyed on cognitive load, and interviews regarding task difficulty and coding

practice settings were conducted.
The code used in this study was limited to small-scale and simple control structures.

The only difference between the codes for each task was the indentation settings, ensuring

that the difficulty level remained constant.

Regarding the content, participants were required to answer a total of 22 questions, com-

prising three types of loads: intrinsic task load, extraneous task load, and germane load,

with 7 questions for intrinsic task load, 7 questions for extraneous task load, and 8 ques-

tions for germane load. Given that the experiment involved three iterations of altering in-

dentation settings, each participant was subjected to 66 questions in total, i.e., 22 questions

multiplied by three stages. This sequential survey approach allowed for the examination of

differences between stages. To prevent variations in results due to fatigue, eye strain, and

presentation order, the sequence of tasks presented varied for each subject.

Specifically, questions pertaining to intrinsic task load focused on the content of the code,

such as variables and algorithms involved in reading the source code. Extraneous task load

questions addressed factors unrelated to processing, such as the number of lines of code,

design, and efficiency in learning. Germane load questions inquired whether reading the

source code contributed to skill improvement. The questionnaire was developed with ref-

erence to the cognitive load questionnaire used by Hanabusa et al [8].

Furthermore, participants rated their responses on a scale of 0 to 10, with higher numbers

indicating greater perceived load.

For intrinsic task load, higher ratings implied that the code content was beneficial for

skill enhancement. Conversely, higher ratings for extraneous task load indicated difficulty

in comprehending factors other than the code content, while higher ratings for germane

load were associated with increased learning effectiveness.

4 Experimental Results and Discussion

The experimental results and discussion section presents the findings of the study and pro-

vides a comprehensive analysis and interpretation of the results. The authors begin by ex-

plaining the statistical methods used in the study, specifically Welch's t-test for investigat-

Quantitative Quality Evaluation of the Impact of Indentation in Source Code Using Eye-Tracking 7

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

ing statistical significance and the use of symbols in graphical representations to denote

significance levels.

Additionally, in the graphical representations, symbols were used to denote significance

levels, with * indicating p < .1, ** indicating p < .05, and *** indicating p < .01.

The authors then present the obtained results in a series of figures, with Figure 2 depict-

ing the response time, Figure 3 illustrating the percentage of time spent viewing “dummy

lines”, Figures 4 presenting the transition probabilities to “dummy lines”, and Figure 5 re-

spectively delineating the intrinsic cognitive load, extraneous cognitive load, and germane

cognitive load.

The authors summarize the obtained results, noting a negative relationship between pro-

gramming proficiency and transition probability to “dummy lines” in both the case of regu-

lar 4-character indentation and random indentation. They also report a statistically signifi-

cant difference (p < .05, two-tailed) between evaluations A and C, as revealed by Welch's t-

test. Based on these findings, the authors suggest that a more precise explanation, rather

than the vague notion of "readability" associated with indentation, could be provided as a

consideration to enhance slicing accuracy for individuals less proficient in programming.

The authors also note that no significant differences in programming proficiency were

observed in the absence of indentation, and that the tasks in the study involved basic and

small-scale code. They suggest that this result indicates the possibility that learners tend to

write source code with inappropriate indentation settings because, in the case of small and

simple control structure programs, indentation settings have little impact on comprehension

efficiency.

The authors then discuss an interesting finding that although the group with a 4-character

indentation had the highest score for the probability of transition to dummy lines, the group

had the lowest percentage of time spent viewing “dummy lines”. They report that post-

experiment interviews revealed that participants intentionally reviewed “dummy lines”

multiple times in the 4-character indentation setting to reconfirm the code before answering

and suggest that this behavior may be linked to factors such as motivation to recheck the

code.

Regarding subjective evaluations conducted after the experiment, the authors report that

Welch's t-test indicated significant differences (two-tailed) in extraneous task load and

germane load based on indentation settings. They interpret these results as suggesting that

participants' subjective perceptions indicate an impact of indentation on aspects such as

stress during comprehension.

The authors also note that the observed differences in germane load suggest the im-

portance for instructors to emphasize indentation settings, particularly when incorporating

peer review into learning activities.

Overall, the experimental results and discussion section provides a clear and comprehen-

sive analysis and interpretation of the findings of the study. The authors effectively use sta-

tistical methods to investigate the significance of the results and provide a thorough discus-

sion of the implications of the findings for programming education and practice. The sec-

tion is well-structured and informative, effectively communicating the key findings of the

study and their implications for the field.

K. Yorimoto, S. Matsumoto8

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 2: Response time

Figure 3: Percentage of time spent viewing “dummy lines”

Figure 4: Transition probabilities to “dummy lines”

Quantitative Quality Evaluation of the Impact of Indentation in Source Code Using Eye-Tracking 9

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Figure 5: Cognitive load

5 Conclusion

The conclusion section provides a concise summary of the study, its objectives, methodol-

ogy, and key findings. The authors restate the purpose of the study, which was to elucidate

the impact of coding conventions on the readability of source code. They highlight the use

of eye-tracking techniques to analyze the process of program comprehension and quantita-

tively demonstrate the influence of different types of coding conventions and their settings

on reading efficiency.

The authors then summarize the key findings of the study, noting that through experi-

mental procedures employing eye-tracking, the proportion of time spent viewing designat-

ed “dummy lines”, transition probabilities, and results from cognitive load questionnaires

were examined. They report that the analysis suggested that the ambiguous term "readabil-

ity," often associated with the use of indentation, could be more rigorously explained as

considerations aimed at enhancing the accuracy of slicing for individuals less proficient in

programming.

However, the authors also note that statistical differences were not observed with minor

alterations such as the removal of indentation. They suggest that this finding indicates that

to some extent, coding conventions may be disregarded in codes with small-scale and sim-

plistic control structures, as utilized in the experiment.

Overall, the conclusion section effectively summarizes the key aspects of the study, in-

cluding its objectives, methodology, and key findings. The authors successfully communi-

cate the significance of their findings in elucidating the impact of coding conventions on

the readability of source code and the potential implications for programming education

and practice. The section is well-structured and concise, providing a clear and comprehen-

sive overview of the study and its implications.

Future work will include examining differences arising from coding conventions other

than indentation, as well as variations across programming languages.

K. Yorimoto, S. Matsumoto10

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Acknowledgement

This work was partly supported by Grant-in-Aid for Scientific Research (C) No. 22K02815

and No.23K02697 from the Japan Society for the Promotion of Science (JSPS).

References

[1] M. Carr, C. Wagner, “A study of reasoning processes in software maintenance Management,”

Information Technology and Management, vol.3, pp.181–203, 2002.

[2] A. Goldberg, “Programmer as reader”. IEEE Software, 4(5),62, 1987.

[3] H. Kanamori, T. Higashimoto, Y. Yoneda and T. Akakura. Proposal of "Learning to Read

Programs" in the Programming Process and Development of Learning Support System for

the "Understanding Meaning" Process. IEICE Transactions on Information and Systems,

97(12), 1843-1846, 2014.

[4] T. Oshiro, Y. Matsuzawa and S. Sakai. (2011). Proposal of Code Reading Support Tool Us-

ing Tour Map. Proceedings of the 73rd National Convention, 441-442, 2011(1).

[5] M. Tanaka, T. Ishio and K. Inoue, Proposal of Additional Annotation Document Tag for

Program Understanding. Technical Report of Software Engineering (SE), 2009(31(2009-

SE-163)), 201-208, 2009.

[6] A. Hiratani, "Analysis Based on Control Dependence of Limited Program Reading Patterns

Using Eye Movements," Bachelor's Thesis, Department of Intelligent Information Systems,

Faculty of Information Engineering, Hiroshima Institute of Technology, 2020.

[7] R. Hanabusa, Y. Hayashi, M. Hirashima, and S. Matsumoto, “A Data Dependency-Based

Analysis of Program Reading Patterns Using Eye Movements--For Programs Composed of

Assignment and Arithmetic Operations. --,” Journal of Educational Systems and Infor-

mation, Vol. 35, No. 2, pp. 192-203, 2018.

[8] R. Bednarik, M. Tukiainen, “An eye-tracking methodology for characterizing program

comprehension processes” Proc. of the 2006 symposium on Eye tracking research & appli-

cations pp. 125–132, 2006

Quantitative Quality Evaluation of the Impact of Indentation in Source Code Using Eye-Tracking 11

