
IIAI Open Conference Publication Series
IIAI Letters on Institutional Research
Vol. 005, LIR414
DOI: https://doi.org/10.52731/lir.v005.414

Japanese Tokenization using Simple Associative Arrays

Michiko Yasukawa ∗ , Koichi Yamazaki †

Abstract

This study addresses a technical challenge in text analysis for the practice of Institutional
Research (IR). In the research field of Natural Language Processing (NLP), development
focuses on accuracy and speed. Therefore, suitable data for evaluation and efficient pro-
gramming languages are used. On the other hand, tasks outside the scope of NLP are also
important in IR. For example, not only textual data, but also numerical data must be ana-
lyzed, and in some cases, the analysis of data stored in web servers is required. Since NLP
and IR involve different tasks, the tools required are also different. One serious problem for
text analysis in IR tasks is the limited development of Japanese tokenization. In this study,
we implement a Japanese tokenizer, focusing on its applicability in web servers. Since
function libraries in scripting languages for web environments are limited, our main techni-
cal challenge is to achieve efficiency in tokenization by combining the available functions.
To deal with this problem, our method uses associative arrays to reduce unnecessary steps
in tokenization. Evaluation experiments were conducted using Japanese text data, and the
results showed that our tokenizer is viable in web server environments.

Keywords: bibliometrics, management of research projects, open science, text mining

1 Introduction

Recently, generative AI has been actively developed and applied in various fields. Devel-
oping generative AI requires data to train the models. Amid this trend, it has been decided
that scientific papers and data resulting from publicly funded research in Japan will be made
available through open access1. Additionally, Japanese models of generative AI [1] have
been developed and made available by The National Institute of Informatics (NII).

The use of generative AI is expected to make Institutional Research (IR) more efficient
and meaningful. However, as AI that can make human-equivalent decisions has not yet
been realized, human experts with specialized knowledge will still be required to carry out
the work in IR. It is widely known that the output of generative AI may contain errors,
oversights, contradictions, and misleading expressions [2]. IR specialists must use human
intelligence, common sense, and ethics to perform their tasks, without being misled by

∗ Gunma University, Gunma, Japan
† Tokyo Denki University, Tokyo, Japan

1https://current.ndl.go.jp/car/222611

Figure 1: Tokenization for empowering institutional research

the errors of generative AI. For such purposes, IR specialists must identify reliable data
so that they can verify fact and truth. And, computer assistance should be helpful in this
verification.

At universities in Japan, text data almost always includes the Japanese language. For
example, the analysis of research and educational information [3] [4] [5] involves Japanese
text data. One serious problem here is that the currently available Japanese tokenization
tools are not sufficiently developed from a practical standpoint of IR tasks. Unlike English,
Japanese text data do not have spaces between words. Hence, in analyzing text data, tok-
enization for segmenting sentences into words is essential. When searching text data on a
web server (for sharing data among multiple people, or searching from any location), the
text data are tokenized, uploaded to the server’s database, and indexed using a database
function. However, search queries cannot be tokenized in advance. The tokenization pro-
cess is performed each time a search user enters a search query. Currently, there are three
options for tokenizing search queries, as shown in Figure 1.

1. Use an API server (e.g. WebAPI by Yahoo2).
2. Install a tokenizer (e.g. MeCab3) on the web server.
3. Tokenize queries by character N-grams.

Among these three options, the character N-gram is the easiest to implement because
it can be generated by a short piece of code in the scripting language on the web server.
There is no need to create an account on an external API server or install C/C++ software
with an administrator account on web servers. However, character N-gram search has a
fatal problem with poor search performance. It is known that character N-gram has very
low accuracy in Japanese when the text is separated into single characters (Uni-gram). And,
when the text is separated in two characters (Bi-gram), it becomes impossible to search by
one character query.

In this study, we will develop a tokenization tool that can be easily deploy, like character
N-gram. To be more specific, when searching Japanese text data, the only thing to do
is upload the files, which include the code for tokenization, onto the web server. Then,
IR specialists start quick search without worrying about installation issues related to C/C++
software, or without reading instruction guides for an API server. Now that highly advanced
AI tools are easily accessible through just a web browser, improving the usability of basic

2https://developer.yahoo.co.jp/webapi/jlp/ma/v2/parse.html
3https://taku910.github.io/mecab/

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki2

Figure 2: Nested loops and break from the loop

NLP tools for IR tasks is indispensable. While AI tools can be helpful, reliable work will
not be possible without human verification of the actual data for IR tasks.

The detailed technical issues to be resolved in this study are explained as follows. In
this study, we specifically devise a method for efficient dictionary lookup using PHP’s stan-
dard libraries. In text analysis on a local PC, rather than a web server, Python is com-
monly used for coding. For such purposes, MeCab’s Python interface4 is provided, and
the Python-native morphological analyzer Janome5 is also provided. On the other hand, in
web development, PHP is more widely used than Python. According to w3tech,6 PHP is
used by 74.5% of all the websites. However, PHP-native Japanese tokenization tools have
not been developed so far. There is “php-mecab”7 that executes MeCab from PHP. As it
is a PHP interface and not a native implementation, MeCab must be installed on the server
when using this interface. MeCab is implemented in C/C++. And, PHP has a similar syn-
tax with C/C++. Thanks to this similarity, necessary algorithms in MeCab, such as Viterbi
algorithm [6], can be easily reimplemented in PHP. However, PHP does not have function
libraries for efficient dictionary lookup. To be more specific, MeCab uses a particular data
structure, called “double array” [7] for dictionary lookup. Double array enables scalabil-
ity, allowing for high-speed processing even when the input data becomes large. PHP is a
scripting language, and memory access, etc. are fundamentally different from C/C++, so
such data structures written in C/C++ cannot be reimplemented by simple code porting.

2 Method

Japanese tokenization is performed through two main processes: (1) looking up tokens
in a token dictionary, and (2) selecting the most optimal token from the obtained tokens.
The problem to be solved in this study is to reduce unnecessary lookup steps and improve
the efficiency of the tokenization. To be more specific, the break from loop (as shown in
Figure 2) is inserted in the repeated lookup steps. This strategy is explained in detail below.

4https://taku910.github.io/mecab/bindings.html
5https://janome.mocobeta.dev/en/
6https://w3techs.com/technologies/details/pl-php
7https://github.com/ranvis/php-mecab

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Japanese Tokenization using Simple Associative Arrays 3

Figure 3: How to implement Japanese tokenization using associative arrays.

2.1 Dictionary Look-up

First, let us examine the yellow flowchart on the left of Figure 2. In this process, LookUp(d),
which is a dictionary lookup function, is executed 10 times. This corresponds to the case,
for example, where there are 10 tokens in one piece of text data, and the dictionary lookup
(checking whether the token is in the dictionary) is executed 10 times. If we assume that
LookUp(d) takes 1 ms per execution, it takes at least 10 ms from the start to the end of the
yellow flowchart. Next, let us examine the blue flowchart. Here, the yellow flowchart is
used as the predefined process, Sub(n). The repeated process of the blue flowchart executes
Sub(n) 10 times. Therefore, LookUp(d) is executed 100 times in total. If each execution
takes 1 ms, it takes at least 100 ms from the start to the end of the blue flowchart. This
situation corresponds to the case, for example, where there are 10 tokens in one piece of
text data, and there are 10 such pieces of text data. The green flowchart is basically the
same as the blue flowchart, but it includes a break in the process. For this reason, the
processing time for the green flowchart varies depending on the break condition. In the
worst case, Sub(n) is executed 100 times, whereas in the best case, Sub(n) is executed 10
times. In Figure 2, k corresponds to the number of characters in the input text. If the value
of k is large, the number of dictionary lookups will be gigantic. Therefore, it is essential to
eliminate unnecessary dictionary lookups.

2.2 Lattice and Prefix Tree

Japanese tokenization itself is a very simple process. It segments an input string (such
as a user’s search query) and converts it into a sequence of tokens. For example, given
the input string ABC, possible tokenization candidates include AB/C and A/BC, and the
most optimal sequence of the tokens is obtained. In Figure 3, the probabilistic calculation
indicates that AB/C is more optimal than A/BC. For this calculation, a dictionary of tokens
that has been created in advance is used.8

To select the best sequence of tokens from the candidates, a graph structure called a
lattice [8], which contains nodes and edges, is used. The lattice structure is illustrated at
the center of Figure 3, where the squares represent nodes, and the lines between the nodes
are edges. The lattice for the example input string ABC is constructed as follows. Take
a look at the first character of the input string ABC. It is A. What are the tokens whose
first character starts with A? Examining the red letters in Figure 3, we can see that there

8Parenthetically, the dictionary includes the Part of Speech (POS) and Katakana reading of each token.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki4

are A and AB. The nodes for A and AB are connected after the special node BOS, which
represents the beginning of a sentence. Then, move on to the next. What is the token that
starts with the second character of the input, B? We can see that it is BC. Connect the node
for BC after the node ending with A. What is the token that starts with the third character
of the input, C? We can see that it is C. Add a node for C after the node ending with B. As
there are no more characters, connect EOS, which indicates the end of the sentence. In the
token dictionary, the probability of token occurrence (emission cost) and the probability of
connection between tokens (connection cost) are defined for each token. Using this token
information, the most likely path between BOS and EOS is obtained by calculation. This
cost calculation simply involves adding the numerical values defined in the dictionary.9

Thus, tokenization can be viewed as a combination of the following processes: (a) dic-
tionary lookup, (b) creating a lattice, (c) cost calculation, and (d) optimal path selection.
These processes are simple enough, but since there are a huge number of node and path
candidates, a brute-force method will instantly fail. Hence, efficiency is necessary. This
is the difficult point in implementation of tokenization. To understand more about a sim-
ple brute-force method, let us look at some examples explained as follows. How many
dictionary lookups are performed in a nested loop for the substrings of ABC? The answer
is: six dictionary lookups are performed for A, AB, ABC, B, BC, and C. In the case of
ABCDE, the dictionary lookups are performed for A, AB, ABC, ABCD, ABCDE, B, BC,
BCD, BCDE, C, CD, CDE, D, DE, E. So, there are 15 dictionary lookups. As observed,
when the number of characters is k, and k is one or more, there are (k∗(k+1))/2 dictionary
lookups. Note that, if the number of characters is small enough, efficiency is not an issue.
For example, if the number of character is one (e.g., lookup for the string, “A”), dictionary
lookup is conducted only once. However, if the number of input characters is even slightly
higher, the number of substrings becomes non-negligible, and the unnecessary dictionary
lookups must be avoided.

One solution to this problem of the time-consuming lookup is to use a tree structure,
as shown on the left in Figure 3, called a Prefix Tree [8]. In this tree structure, the circles
represent vertices. The arrows represent branches, and the branches are associated with the
characters. The red double circle indicates the end of the token. The number 0 represents
the root of the tree. By tracing the vertices from the root, we identify four tokens: A, AB,
BC, and C. As can be seen, this tree represents the four tokens shown in the red letters
in Figure 3. The use of this tree structure makes the dictionary lookups efficient. Let us
consider an example of the tree search, where the input string is ABC. What is the token that
starts with A? The answer is: A, AB. (The number 0, 1, and 4. This is the end of search.)
What is the token that starts with B? (The number 0, 2, and 5. There is no red double circle
for the number 2, so B is skipped.) The answer is BC. (This is the end of search.) What
is the token that starts with C? The answer is C. (The number 0 and 3. This is the end of
search.) And, there is nothing even if we try to search further.

Meanwhile, let us recall the previous example, where the input is the string ABCDE
and the dictionary lookup is conducted in a brute-force search. We can conduct a string
search on the tokens shown in the red letters in Figure 3 and check whether A is there,
whether AB is there, whether ABC is there, whether ABCD is there, whether ABCDE is
there. It should be noted that in a tree structure, the search enumerates the tokens that start
with A, and we obtained A and AB. No further unnecessary searches are performed on

9Note that a high cost means that it is unlikely to be Japanese, so the path with the lowest cost is output. For
the efficiency of the cost calculation in large data, Viterbi algorithm is utilized in MeCab.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Japanese Tokenization using Simple Associative Arrays 5

the tree. Efficient tokenizers use this kind of ingenious data structures (fast lookup, and
concise in memory), such as double arrays for implementation. Note that building such
a complex dictionary takes time. Therefore, dictionaries are built for the tokenizers (e.g.,
MeCab) during installation. The binary-format dictionary is opened when tokenization is
executed and is ready for searching. For script languages in web environments (e.g., PHP),
however, an alternative method is necessary since accessing arbitrary binary files is not
recommended.

2.3 Associative Array for Efficiency

When sharing data over a web interface safely, standard text formats, such as JSON, are
recommended. Following this recommendation, our proposed method uses dictionary data
expressed as text data rather than tree-structured binary data. These dictionary files in the
text format are opened at runtime and loaded into the memory without harming the server
computers. A detailed explanation of this process is provided below.

The proposed method uses simple associative arrays. Specifically, the green part in
Figure 3 is added to determine if a string is (1) the end of a token, or (2) a part of a token.
This condition allows the break from the loop (as shown in Figure 2) and the search to be
terminated for strings that are neither the end nor a part of a token.

A concrete example is as follows. For the string ABCDE, if we search for A and AB,
we will find them. If we look up ABC, it is not in the token dictionary. Since ABC is neither
the end nor a part of a token, the loop of the dictionary lookup exits (this corresponds to the
break in the green flowchart in Figure 2). Then, ABCD and ABCDE are not be searched.

For the implementation of this dictionary lookup, the proposed method uses a mul-
tidimensional associative array, instead of a tree structure. The associative relationships
between the columns for KEY and TOKEN, and the columns for KEY and CHECK in
Figure 3 achieve this efficiency. When considering actual coding, a large multidimensional
array is inefficient; therefore, a single multidimensional associative array is decomposed
into multiple one-dimensional associative arrays. This table decomposition contributes to
the (1) faster dictionary opening, (2) faster token search, and (3) smaller dictionary size.
In actual coding, multiple duplicated tokens are grouped together and assigned a unique
KEY. Subsequently, an associative array is created to associate the unique KEY with the
representative token. Finally, a one-dimensional array of sequential numbers is created and
associated with the array of unique KEYs. Because the serial numbers are equivalent to the
array index numbers, the decomposed one-dimensional arrays can be represented in CSV
format instead of JSON format, greatly speeding up file opening.10

3 Experiment

We implemented the proposed method in PHP8 to develop a tokenizer.11 Since our tokenizer
is a reimplementation of MeCab, the same dictionary (IPADIC) [9] as MeCab was used. For
the experiment, a desktop PC (Ubuntu 20.04, Intel Core i9-9820X CPU @ 3.30GHz, 256
GB RAM) was used.

10Note that JSON decoding is a much heavier operation than loading CSV files onto the memory.
11Specifically, we used PHP 8.1.32.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki6

Figure 4: With large text data, what happens in tokenization?

3.1 Dataset and Comparison Method

To prepare experimental text data, we extracted text content from the PDF files of research
papers at annual meetings of NLP.12 The extracted text content was mixture of multilingual
text data including Japanese, English, etc. We refer this text data as ALL. Then, we created
another text data, where all alphanumeric characters and symbols were deleted, and only
characters for Japanese text were retained. We refer this text data as JPN.

As a comparison method, php-mecab was used. It is an interface for calling MeCab
from PHP scripts. By using the comparison method, the normality of the experiments is
verified. To be more specific, if the output of MeCab and the output of proposed method
are the same, then the proposed method works properly. Since our tokenizer is a reimple-
mentation of MeCab, it cannot do what MeCab cannot do. In addition, the proposed method
is less scalable than MeCab, so the experimental data must be smaller than what MeCab
can achieve. To correctly set the experimental conditions, we confirmed the limitation of
MeCab. There are two upper limits for input text:

1. Buffer overflow warning.
This is a soft limit, and the limit can be modified with the -b #SIZE option when
executing. As the default setting was only 8,192 bytes, the SIZE was set larger size
than the size of each dataset in the experiment.

2. Errors of overflow in the INTEGER type variable for the cost calculation.
This is a hard limit, and if MeCab reaches this limit, the process terminates, and no
execution results are obtained. Instead, an error message is displayed. Note that this
error can be resolved by splitting the input text into shorter pieces of text.

Using the aforementioned experimental data, we observed the behavior of MeCab when
the input text size was very large. Specifically, we confirmed the MB scale of the input text.
The results are presented in Figure 4. The X-axis in the figure represents the size of the data.
The Y-axis in the figure represents the elapsed time. The orange crosses indicate cases
where no results were obtained due to the fatal overflow error. The blue circles indicate

12https://anlp.jp/guide/nenji.html

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Japanese Tokenization using Simple Associative Arrays 7

(a) Processing time (b) Processing speed

Figure 5: Performance analysis of the comparison method (MeCab)

normal completion. At this data scale, errors occurred due to the overflow in the cost
calculation for both ALL (multiple languages) and JPN (Japanese language). The left-hand
figure shows the results for ALL, while the right-hand figure shows the results for JPN. As
can be seen, the fatal errors started occurring at 1–2MB for ALL, and 4–5MB for JPN.

Since we found that errors occurred at the MB scale, we performed experiments on
smaller text sizes at the KB scale. We created 100 pieces of text data for each of the five
data sizes (200 KB, 400 KB, 600 KB, 800 KB, 1000 KB). Then, the elapsed time and
processing speed of the tokenization were measured. The results are shown in Figure 5.
At the KB scale, no overflow errors were observed. The processing time of MeCab was
sufficiently short. In addition, the processing speed remained stable with increasing text
size. To ensure the validity of the evaluation experiments, we used the text data that were
confirmed to work properly with MeCab.

3.2 Baseline vs. Proposed

Our tokenization tool is designed to process search queries on a web server. Thus, we need
to consider the size of data that can be handled between the web server and client. When
search users conduct quick web searches, they do not manually input tens of thousands of
characters as a search query on the web client side. Moreover, there is an upper limit to
the amount of text data that each web browser can send to the web servers. For example,
Internet Explorer, which is no longer used, had the maximum character length of 2,083 for
URLs,13 and it was referenced as one of the standards in web environments. Currently,
different types of web browsers are used, and the upper limits are varied. Meanwhile, web
servers have upper limits, too. They do not accept unlimited input to prevent excessive
workload and DoS attacks. For example, Google’s Apps Script14 limits the number of
characters in a URL to 2,082 bytes.

Using this numerical value as a reference, we conducted experiments with input char-
acter counts ranging from 1 KB to 2.5 KB. In the experiments, the baseline method is
the simplest and least efficient method introduced as basic knowledge by Kudo [8]. This

13https://support.microsoft.com/en-us/topic/maximum-url-length-is-2-083-

characters-in-internet-explorer-174e7c8a-6666-f4e0-6fd6-908b53c12246
14https://developers.google.com/apps-script/reference/url-fetch/url-fetch-app

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki8

Figure 6: Processing time of the baseline and proposed methods

(a) Baseline (b) Proposed

Figure 7: Processing speed by text size

method is implemented only with a token dictionary (hash map), as shown in the white cells
in Figure 3. The proposed method is implemented with a token dictionary that is extended
by associative arrays, as shown in the white and green cells in Figure 3. The obtained re-
sults are shown in Figure 6. The figure shows the elapsed time for the data size in KB.
The processing time of the baseline method increases explosively as the data size increases.
This is because the loop in the baseline method does not include a break to terminate the
dictionary lookup. On the other hand, the proposed method does not experience a sudden
increase in processing time. Next, we compare the speeds of the baseline and proposed
methods. The results are shown in Figure 7, which presents the processing capacity (the
data size in KB) per second. Figure 7 (a) and (b) show that the proposed method has a
higher tokenization processing capacity than the baseline method. Both the baseline and
the proposed methods perform less well than the comparison method (MeCab), as shown
in Figure 5(b) and Figure 7. As observed in Figure 7, the speed gradually decreases as the

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Japanese Tokenization using Simple Associative Arrays 9

Table 1: Average processing time in seconds for tokenization (2.5 KB datasets)

Data
Comparison Baseline Proposed

INIT MAIN TOTAL INIT MAIN TOTAL INIT MAIN TOTAL
ALL 0.0002 0.0021 0.0023 0.3229 1.8031 2.1259 0.3699 0.0572 0.4271
JPN 0.0002 0.0026 0.0028 0.3229 1.0066 1.3295 0.3699 0.0600 0.4299

number of input characters increases, for both the baseline and proposed methods. Next, we
compare the processing times of the comparison, baseline, and proposed methods in detail
when the number of input characters is large.

Table 1 shows the average processing time for 2.5 KB datasets. In the table, INIT
indicates the initialization time, which is the time between the launch of the program and
opening of the dictionary. MAIN indicates the processing time for tokenization after the
dictionary opening. TOTAL indicates the total time from the program launch and the end
of tokenization. The results are shown for the two experimental datasets, ALL (multiple
languages) and JPN (Japanese language). The comparison method is php-mecab (MeCab
using the PHP interface). The dictionary sizes for the comparison, baseline, and proposed
methods are 51MB, 66MB, and 67MB, respectively. The comparison method (MeCab) had
the smallest dictionary size and the fastest tokenization process. The proposed method had
an expanded dictionary to speed up the tokenization process, so the dictionary size was
larger than that of the baseline method. In addition, the proposed method took more time
for the initialization process than the baseline method. However, the tokenization process
of the proposed method was faster than the baseline method. The reason for this was the
additional association arrays for efficient token search. MeCab only opens a dictionary that
has been built in advance. Thus, its initialization takes almost no time. Note that the time
MeCab took to build the dictionary at installation was 3.567 seconds, which was longer
than the baseline and shorter than the proposed method.

From the perspective of website usability,15 there are three main time limits [10]. If
the response time is 0.1 second, the user feel that the system is reacting instantaneously.
MeCab meets this standard. If the response time is more than 0.1 second but less than 1.0
second, the user will sense the delay, but no special feedback from websites is needed. From
a response time of 1–10 seconds, users should be given some feedback, such as a progress
indicator. The baseline method is too slow to operate on websites without the progress
indicator. In contrast, the proposed method can be operated with a response time less than
1.0 second, and is more viable on websites than the baseline method.16

Now, our question is: why was the proposed method faster than the baseline method,
but slower than the comparison method? This argument can be rationalized as follows. For
this investigation, we conducted an analysis on tokens in the tokenizer dictionary. Number
of characters and frequency of the IPADIC dictionary are shown in Figure 8. Regarding the
character number, the average and median were 3.5 and 3, respectively. Although some to-
kens had a large number of characters, most were short. While the baseline method does not
include break in the loop, the proposed method quickly terminates when the token is short
because of the break in the lookup dictionary steps. This strategy contributes to making the

15https://www.nngroup.com/articles/website-response-times/
16In addition to program execution time, web server operations generally take several to tens of milliseconds,

depending on the network speed.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki10

Figure 8: Length and frequency of the terms in mecab-ipadic

tokenizer efficient. However, the proposed method was not as efficient as MeCab. MeCab
utilizes double arrays, which is sufficiently efficient, enabling O(N). The proposed method
uses associative arrays in the loop, which enables O(KN). The baseline method includes a
nested loop, which results in O(N2). Owing to these differences in computational costs, the
three methods differ in terms of speed.17 It should be noted that the development of MeCab
started more than 20 years ago.18 Nowadays the hardware and software of computers have
advanced dramatically. Thanks to this advancement, our proposed method, which uses a
scripting language and is not as super efficient as MeCab, has been able to realize a prac-
tical level of processing speed in the web environment.19 This reality is noteworthy for IR
practitioners and web application developers.

4 Concluding Remarks

We have developed a tokenization tool that is implemented natively in PHP. It is easy to use
by simply uploading a set of files to the web server. Thus, there are no compilation errors
or complicated initial settings before using it. Our tool can be used to analyze text data for
research and education at universities.

Previous research on the proposed method includes the hash-coding and tree-search al-
gorithm, which was proposed by Burkhard in 1976 [13]. Our method, which uses simple
associative arrays, has limited scalability; however, it has the advantage of being able to be
implemented with a combination of standard functions in the scripting language. Our target
problem is tokenization that can be applied to small-scale data, such as user search queries.
Therefore, the proposed method is suitable for solving our target problem. In the field of
NLP research, efficiency for tokenization of large-scale Japanese text data is realized using
efficient programming languages [14] [15]. In addition, in the development of Japanese tok-
enization, evaluation experiments are conducted using formally written Japanese data [16],
which is suitable for comparing the accuracy in text segmentation. In IR practice, multi-
lingual data may be analyzed. In this study, actual research papers, which include other
languages than the Japanese language, were used for evaluation. Thus, the experimental
results of this study are expected to be used as a realistic benchmark in IR tasks such as

17The Appendix provides pseudocode for explaining the “algorithm analysis” [11] for this study.
18MeCab is explained in detail in the developer’s book [8].
19Although PHP8 has achieved significant performance improvements over PHP7 and earlier versions, ex-

tensive trial and error was required for “performance tuning” [12] of the implementation in this study to ensure
its feasibility in the web environment. The proposed method in this study was devised because the baseline
method that applied all possible optimization was not fast enough.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Japanese Tokenization using Simple Associative Arrays 11

educational text analysis and research information management.
As IR practitioners need to demonstrate diverse expertise and deal with interdisciplinary

tasks [17], NLP tools should be easily installed, and the time and effort must be spend
for more important tasks. From the perspective of contributing to society, this research
proposed a technology that has not yet been addressed by the NLP research community.
Therefore, our tokenizer can be useful not only for IR practitioners, but also for general
users. In future research, we aim to develop other practical tools that can be applied to text
analysis in IR tasks.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Number JP23K11764. We thank
the reviewers for their careful reading and detailed comments.

References

[1] S. Kurohashi, “From Data Platforms to Knowledge Infrastructure,” in Proceedings of
the 2024 Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval in the Asia Pacific Region, 2024, pp. 114–114.

[2] K. Wach, C. D. Duong, J. Ejdys, R. Kazlauskaitė, P. Korzynski, G. Mazurek, J. Pal-
iszkiewicz, and E. Ziemba, “The dark side of generative artificial intelligence: A crit-
ical analysis of controversies and risks of ChatGPT,” Entrepreneurial Business and
Economics Review, vol. 11, no. 2, pp. 7–30, 2023.

[3] N. Kai and T. Shimbaru, “Characteristic Analysis of Data Description in Highly Cited
Research Data,” IIAI Letters on Institutional Research, vol. 001, no. LIR010, pp. 1–9,
2022.

[4] H. Phan, S. Hasegawa, and W. Gu, “Implementation of Automated Feedback Sys-
tem for Japanese Essays in Intermediate Education,” IIAI Letters on Informatics and
Interdisciplinary Research, vol. 003, no. LIIR057, pp. 1–11, 2023.

[5] T. Tsumagari, Y. Nakazato, and T. Tsumagari, “A Study on the Influence of
Community-Based Education on Post-University Workers and Its Time Dependence,”
IIAI Letters on Institutional Research, vol. 004, no. LIR284, pp. 1–9, 2024.

[6] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE transactions on Information Theory, vol. 13, no. 2, pp.
260–269, 1967.

[7] J. Aoe and K. Morimoto, “Implementation of trie search strategies by double-array
structures,” IPSJ SIG Technical Reports, vol. 1991, no. 80 (1991-NL-085), pp. 9–16,
1991.

[8] T. Kudo, Theory and implementation of morphological analysis (Keitaiso kaiseki no
riron to jisso). Kindai kagaku sha Co.,Ltd., 2018.

[9] M. Asahara and Y. Matsumoto, “ipadic version 2.7. 0 User’s Manual,” 2003.

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki12

[10] R. B. Miller, “Response time in man-computer conversational transactions,” in Pro-
ceedings of AFIPS, 1968, pp. 267–277.

[11] R. Sedgewick, Algorithms in C, PARTS 1–4: Fundamentals, Data Structures, Sorting,
Searching (3rd Edition). Pearson Education, 1998.

[12] E. A. Mann, PHP Cookbook: Modern Code Solutions for Professional Developers.
O’Reilly Media, 2023.

[13] W. A. Burkhard, “Hashing and trie algorithms for partial match retrieval,” ACM Trans-
actions on Database Systems (TODS), vol. 1, no. 2, pp. 175–187, 1976.

[14] K. Akabe, S. Kanda, Y. Oda, and S. Mori, “Vaporetto: Efficient Japanese To-
kenization Based on Improved Pointwise Linear Classification,” arXiv preprint
arXiv:2406.17185, 2024.

[15] N. Yoshinaga, “Back to Patterns: Efficient Japanese Morphological Analysis with
Feature-Sequence Trie,” arXiv preprint arXiv:2305.19045, 2023.

[16] K. Maekawa, “Compilation of the Balanced Corpus of Contemporary Written
Japanese,” Journal of the Japanese Society for Artificial Intelligence, vol. 24, no. 5,
pp. 616–622, 2009.

[17] T. Oishi and T. Nishide, “A Survey on Self-Perception of Institutional Research Skills
and Knowledge by Focusing on the Gap with the Participants Needs of Training
Courses,” IIAI Letters on Institutional Research, vol. 004, no. LIR239, pp. 1–12, 2024.

Appendix A Commentary on Time Complexity

In Figure 2, flowchart examples are provided to explain the difference between nested loops
with and without a break. Some readers of this paper may be more familiar with pseudocode
than with flowcharts. Below, we provide examples of pseudocode and explain the time
complexity of non-nested loops, and nested loops with and without a break. Note that the
explanation is limited to the scope of this study. For details of the algorithm analysis and
O-notation, please refer to books on algorithms, such as Sedgewick’s book [11].

Appendix B Non-nested Loops

Non-nested loops are used, for example, performing an operation on the elements of an
array in order. This operation is categorized as “linear time,” in which the execution time
increases in proportion to the input size. This kind of algorithm is denoted as O(N). Here,
O-notation is a notation used in the analysis of algorithms to evaluate how execution time
increases with respect to the input size. An example pseudocode for this operation is shown
below:

Listing 1: Pseudocode for Non-nested Loops

f o r (i = 0 ; i < N; i ++){
d o s o m e o p e r a t i o n o n a r r a y (i) ;

}

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

Japanese Tokenization using Simple Associative Arrays 13

Appendix C Nested Loops Without Break

Nested “for” loops without breaks are used, for example, to look up a dictionary for the
extracted substrings from a string. The computation time for this operation is proportional
to N2, where N is the length of the input string. This kind of algorithm is denoted as O(N2).
An example pseudocode for this operation is shown below:

Listing 2: Pseudocode for Nested Loops

f o r (i = 0 ; i < N − 1 ; i ++){
f o r (j = i + 1 ; j < N; j ++){

l o o k u p d i c t i o n a r y f o r t h e s u b s t r i n g (i , j) ;
}

}

Appendix D Nested Loops With Break

Nested “for” loops with breaks are used, for example, to look up a dictionary for the ex-
tracted substrings from a string. If the inner loop is expected to finish in K iterations on
average, the computation time for this operation is proportional to K ×N. Here, K is not a
constant but an independent variable that does not depend on N. This kind of algorithm is
denoted as O(KN). An example pseudocode for this operation is shown below:

Listing 3: Pseudocode for Nested Loops with Break

f o r (i = 0 ; i < N − 1 ; i ++){
f o r (j = i + 1 ; j < N; j ++){

i f (s o m e c o n d i t i o n (i , j , N) == t r u e){
break ;

}
l o o k u p d i c t i o n a r y f o r t h e s u b s t r i n g (i , j) ;

}
}

In theory, the above operation is O(N) in the best case and O(N2) in the worst case
depending on the value for K. In reality, however, operation time is data-dependent. Specif-
ically, our evaluation experiments confirmed that the proposed method, which implements
an O(KN) algorithm, is slower than the comparison method MeCab, which implements an
O(N) algorithm, but faster than the baseline method, which implements an O(N2) algorithm
(see Figure 5(b) and Figures 7(a) and (b)). The reason for this evaluation result is that the
tokenizer’s dictionary has a bias in the length of the words, and many words have a small
number of characters (see Figure 8).

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited.

M. Yasukawa, K. Yamazaki14

