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Abstract 

Implementing effective academic support for mandatory first-year courses requires precise deci-

sion-making about when to intervene, with whom, and with what level of certainty. This study 

extends our previous static prediction model (AUC=0.878 [1] using enrollment data alone) by 

addressing its key limitation: the inability to answer operational questions about intervention tim-

ing. Using data from a mandatory Information Literacy course at Hokuriku University (N=335, 

Economics and Management faculty, 2022-2023), we developed machine learning models that 

incrementally add dynamic formative assessment data from weeks 2-8 to static enrollment infor-

mation. Under strict time-constraints preventing data leakage, we evaluated models using Re-

call@Precision≥0.90—a practical metric balancing intervention resource constraints with stu-

dent rescue effectiveness. Results demonstrate that minimal behavioral features from weeks 2-8 

(submission rates, task completion counts) significantly improve Recall@P≥0.90 from 1.6% to 

3.2%, doubling rescue capacity while providing weeks of intervention lead time. 

Keywords: Early Warning Systems, Time-Constrained Prediction, Learning Analytics, Institu-

tional Research 

 

1 Introduction 

Academic support in first-year university courses faces a fundamental decision-making chal-

lenge: identifying which students need intervention, when intervention should occur, and with 

what level of confidence. In our previous work, we developed a static prediction model using 

only enrollment data to predict failure in a mandatory Information Literacy course, achieving 

AUC=0.878 [1]. However, this model could not answer crucial operational questions: When 

should we intervene? How little in-semester data is sufficient for reliable decisions? 

Traditional early warning research optimizes for accuracy or AUC, but operational implemen-

tation demands different metrics. High recall alone generates excessive false positives, over-

whelming limited support resources. High precision alone produces too few alerts. Real-world 

deployment requires balancing these constraints: achieving high precision (≥90%) while maxim-

izing recall. 

This study develops a dynamic early warning system that sequentially adds formative 
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assessment data to our static baseline model. We answer two research questions: 

• RQ1: Can minimal behavioral data from weeks 2-8 significantly improve recall of at-risk

students under strict precision constraints (≥90%)?

• RQ2: Do dynamic behavioral change patterns (Week 2-4 vs Week 5-8 comparison) add

predictive value beyond static behavioral aggregates?

2 Related Work

Recent learning analytics research emphasizes behavioral indicators over static demographics. 

Studies of LMS engagement patterns consistently show that behavioral trajectories provide 

stronger predictive signals than initial student attributes. However, few studies address when 

these signals become reliable for intervention decisions [2], [3], [4], [5]. 

A critical limitation in predictive modeling is data leakage—using future information to pre-

dict past outcomes. This study employs strict time-split validation: models at week t use only data 

through week t, ensuring findings reflect information available to practitioners [6]. 

Educational prediction studies typically report AUC or accuracy, but intervention programs 

face resource constraints prioritizing precision over recall. We use Recall@Precision≥0.90 as our 

primary metric: this measures the proportion of at-risk students correctly identified (recall) when 

the prediction threshold is set to achieve at least 90% precision. The 0.90 threshold reflects prac-

tical constraints—limited counseling resources mean that excessive false positives lead to inter-

vention fatigue, while the cost of missing truly at-risk students is high [7]. 

3 Methods 

3.1   Study Context and Data 

The Information Literacy course at Hokuriku University is a mandatory first-year course imple-

mented across all four faculties since 2022. This study analyzes students from the Faculty of 

Economics and Management (N=335, 2022-2023), representing 40% of first-year enrollment. 

We focus on this faculty for three reasons: (1) complete and consistent data collection, (2) sys-

tematic implementation of standardized rubric-based assessment, and (3) control for faculty-spe-

cific variations. The course operates under a multi-instructor framework with approximately 10 

class sections. 

The 15-week curriculum integrates Information Literacy (digital competencies, information 

ethics, AI basics) and Tableau Data Science (visual analytics, data storytelling). A critical design 

feature is the two-tier assessment structure. Weeks 2-8 use submission-only assignments (binary 

grading) to establish baseline engagement. Starting Week 9, the course transitions to rubric-

graded unit assignments evaluated on five dimensions: data preparation (20%), visualization ef-

fectiveness (25%), analytical insight (30%), presentation clarity (20%), and creativity (5%). Stu-

dents analyze real campus store sales data in a competition format judged by faculty and industry 

partners. 

Data sources include: (1) Static enrollment data: high school GPA, learning attitudes, PC ex-

perience; (2) Dynamic formative assessment data: weekly assignment scores, submission status 

(on-time/late/missing), submission timestamps; (3) Outcome: binary pass/fail classification. 
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3.2   Time-Constrained Feature Engineering 

To prevent data leakage, we generate features using only data available through week t. We ex-

tend static enrollment features with behavioral trajectory indicators: 

Compliance Indicators: Non-submission streaks (maximum consecutive non-submissions 

through week t), cumulative submission rate, delay rate, first assignment submission status. 

Performance Trajectories: Score improvement trajectory (change from week 1 to week 2), 

cumulative mean score, performance variance. 

Behavioral Change Patterns: We operationalize four patterns based on submission rate 

thresholds: (1) Consistently Good (>80% in both weeks 2-4 and weeks 5-8), (2) Deteriorat-

ing (>80% in weeks 2-4 but <60% in weeks 5-8), (3) Recovering (<60% in weeks 2-4 but 

>80% in weeks 5-8), (4) Consistently Poor (<60% in both periods). Students not fitting these

categories are classified as "Other." The Week 4/5 boundary reflects a pedagogical transi-

tion from guided practice to autonomous application.

3.3   Progressive Model Architecture 

We implement progressive model comparison: 

Model 0: Enrollment data only (~120 features) 

Model 1: Model 0 + Week 2-8 static behavioral indicators (+10 features) 

Model 2: Model 1 + Week 2-8 dynamic change patterns (+15 features) 

Model 3: Model 2 + Week 9 rubric-graded unit assignment feedback (+5 features) 

We use XGBoost classifiers with 5-fold cross-validation on 2022 training data and temporal 

validation on 2023 test data [8]. 

4 Results 

4.1   Progressive Model Performance (RQ1) 

Table 1 summarizes performance metrics across our four progressive models. Model 0 (enroll-

ment-only) establishes a strong baseline (AUC=0.596), but achieves only 1.6% Recall@P≥0.90, 

identifying merely one at-risk student with 90% confidence. Adding weeks 2-8 behavioral indi-

cators (Model 1) improves AUC to 0.712 and doubles rescue capacity to 3.2% recall. Model 2, 

incorporating dynamic behavioral change patterns, further improves to AUC=0.749 while main-

taining 3.2% recall. Model 3, adding Week 9 performance feedback, reaches AUC=0.832 with 

4.8% recall. 
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Table 1: Progressive Model Performance Comparison 

Model AUC AUC-PR Recall @P≥0.90 Features Added 

Model 0: Enrollment 0.596 0.128 1.6% Enrollment only 

Model 1: + Behavior 0.712 0.327 3.2% + Behavior patterns

Model 2: + Dynamic 0.749 0.341 3.2% + Behavioral change

Model 3: + Perfor-

mance 
0.832 0.436 4.8% + Week 9 Tableau

Figure 1 presents ROC curves comparing all four models. The progression from Model 0 

(blue) through Model 3 (purple) demonstrates systematic improvement in discriminative ability, 

with Model 3 achieving superior performance across all operating points. The gap between 

Model 0 and Model 1 is particularly notable, confirming that even minimal behavioral data sub-

stantially improves prediction beyond enrollment information alone. 

Figure 1: ROC Curves Comparison Across All Models 

Figure 2 shows Precision-Recall curves, which are particularly informative for imbalanced 

datasets like ours. Model 3 (purple) achieves the highest precision at all recall levels, with AUC-

PR=0.436 [7]. The substantial gap between Model 0 (AUC-PR=0.128) and Models 1-3 empha-

sizes the critical value of behavioral data for identifying at-risk students under precision con-

straints. 

S. Tajiri, K. Takamatsu, N. Shiratori, K. Sugimori, S. Matsumoto, S. Imai, T. Oishi, M. Mori, M. Murota4



 
 

Copyright © by IIAI. Unauthorized reproduction of this article is prohibited. 

Figure 2: Precision-Recall Curves Comparison 

4.2   Behavioral Pattern Analysis (RQ2) 

Figure 3 presents SHAP (SHapley Additive exPlanations) values revealing which features most 

strongly influence Model 2's predictions. The analysis demonstrates that behavioral indicators 

dominate predictive importance. Among the top features, average submission rate (late period) 

and number of submitted tasks show the strongest associations with failure risk. Notably, while 

some enrollment attributes like PROG competency scores remain important, behavioral engage-

ment metrics provide the most actionable signals for early intervention [9]. 
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Figure 3: SHAP Feature Importance Analysis for Model 2 

Figure 4 analyzes failure rates across different behavioral patterns identified in weeks 2-8. The 

most striking finding concerns students showing deterioration patterns—those who started well 

but declined in weeks 5-8. This group exhibits a 72.7% failure rate despite strong initial perfor-

mance (n=11). In contrast, students maintaining consistently good engagement throughout weeks 

2-8 show only 9.4% failure rate (n=297). This finding is particularly actionable: it suggests that 

monitoring behavioral trajectories reveals disengagement earlier than static metrics, enabling tar-

geted intervention for students at highest risk. 
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Figure 4: Failure Rate by Behavioral Pattern (Weeks 2-8) 

 

5 Discussion 

5.1   Key Findings 

Three critical findings emerge that directly extend our previous static prediction work: 

Finding 1: Behavioral Data Doubles Prediction Capacity. Behavioral data doubles prediction 

accuracy compared to enrollment-only models (Recall@P≥0.90: 1.6% → 3.2%). This 

demonstrates that submission patterns and engagement trajectories provide substantial pre-

dictive value beyond static enrollment information. 

Finding 2: Week 4 as Optimal Intervention Timing. Adding dynamic change patterns (com-

paring Week 2-4 vs Week 5-8) to static behavioral features yields no improvement in Re-

call@P≥0.90 (Model 1→Model 2: 3.2%→3.2%). Since Week 5-8 data adds no predictive 

value, intervention decisions can be made at Week 4—the end of the early observation pe-

riod—providing maximum lead time for student support. 

Finding 3: Deterioration Patterns as Priority Targets. Students showing deteriorating pat-

terns—strong initial performance followed by declining engagement—represent the high-

est-risk group (72.7% failure rate). Unlike consistently poor performers who may lack foun-

dational skills, deteriorating students demonstrate initial capability but require re-engage-

ment support. 

5.2   Practical Implications 

Three critical findings emerge that directly extend our previous static prediction work: these find-

ings provide actionable guidance for early warning system implementation. The first is actionable 
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behavioral indicators. Early warning pre-dictions based on behavioral trajectories (submission 

rates, task completion patterns) provide signals that educators can directly observe and act upon, 

unlike static demographic factors that cannot be changed after enrollment. The second is re-

source-constrained decision making. The doubling of rescue capacity from 1.6% to 3.2% under 

Precision≥0.90 constraints represent tangible improvement in institutional capacity to help stu-

dents. Since Week 5-8 dynamic patterns add no predictive value beyond Week 2-8 static aggre-

gates, intervention decisions can be made earlier in the semester. The last is implementation sim-

plicity. Behavioral features (submission compliance, engagement trajectories) require only stand-

ard LMS data readily available at most institutions, enabling deployment without specialized 

infrastructure or complex analytical tools. 

5.3   Limitations 

Several limitations constrain generalizability. First, single-institution, single-faculty analysis 

(N=335) limits statistical power and transferability. Second, binary pass/fail outcomes may mask 

important nuances in student performance. Third, this study establishes prediction capability but 

does not evaluate intervention effectiveness—the crucial next step involves randomized con-

trolled trials testing whether early warnings improve outcomes. 

 

6 Conclusions 

This study successfully extends our previous static prediction research by demonstrating that op-

erationally viable early warning systems can be developed through careful attention to temporal 

constraints, practical metrics, and fairness considerations. Our key contribution is showing that 

behavioral disengagement signals emerge earlier and more reliably than performance metrics, 

enabling effective intervention with minimal observation periods while doubling rescue capacity 

compared to enrollment-only approaches. 

The finding that deteriorating behavioral patterns—not low initial performance—represent the 

highest risk group has important implications for intervention design. Rather than focusing solely 

on academically underprepared students identified through enrollment data, dynamic early warn-

ing systems should prioritize re-engagement support for students showing declining participation 

despite initial capability. 

Future research should focus on three priorities: (1) validation across diverse academic con-

texts and institutions, (2) randomized controlled trials evaluating intervention effectiveness, and 

(3) development of adaptive systems that adjust prediction thresholds based on institutional ca-

pacity and student population characteristics. The ultimate goal of early warning research should 

be the development of actionable, fair, and effective systems that improve student success 
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