Predicting Neoadjuvant Therapy Response in Breast Cancer Patients: A Multi-Omics and Machine Learning Perspective
DOI:
https://doi.org/10.52731/liir.v006.412Keywords:
Breast Cancer, Machine Learning, Multi-Omics, Neoadjuvant TherapyAbstract
Breast Cancer (BC) treatment response varies due to underlying heterogeneity. Personalized therapy based on multi-omics profiling enhances efficacy by identifying patientspecific biomarkers and optimizing strategies. Multiomics integrates diverse biological data to understand mechanisms and enable customized treatments. Advances in ML and DL revolutionize BC therapy response prediction, leveraging multi-omics to improve precision, identify biomarkers, and refine strategies, reducing morbidity and mortality. This study presents a comparative analysis of multi-omics-dependent models for predicting neoadjuvant therapy response, highlighting techniques like DeepSurv, Gradient Boosting Machine (GBM), and Weighted MultiSource Canonical Correlation Analysis (WMSCCA). These models use data sets such as TCGA, METABRIC, and ICGC to boost predictive power. DL enables automated feature extraction, while ML offers interpretability for balanced predictive analytics. Despite progress, challenges remain, including data limitations, lack of external validation, and interpretability issues.
References
Q. A. Al-Haija and A. Adebanjo, “Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network,” *Proc. 2020 IEEE Int. IOT, Electronics and Mechatronics Conf. (IEMTRONICS)*, Oct. 2020, Vancouver, BC, Canada, pp. xxx–yyy.
National Breast Cancer Foundation, “About breast cancer,” 2024. [Online]. Available: https://www.nationalbreastcancer.org/about-breast-cancer/
A.S. Qari, A.H. Mowais, S.M. Alharbi, M.J. Almuayrifi, A.A. Al Asiri, S.A. Alwatid, A.A. Aljohani, R.M. Alanazi, and F. Al Thoubaity, “Adjuvant and Neoadjuvant Therapy for Breast Cancer: A Systematic Review,” *Eur. J. Breast Health*, vol. 20, no. 3, pp. 156–166, May 2024.
M.-E. Akbari, M. Ghelichi-Ghojogh, Z. Nikeghbalian, M. Karami, A. Akbari, M. Hashemi, S. Nooraei, M. Ghiasi, M. Fararouei, and F. Moradian, “Neoadjuvant vs adjuvant chemotherapy in patients with locally advanced breast cancer: A retrospective cohort study,” *Ann. Med. Surg. (Lond)*, vol. 84, Nov. 2022, Art. no. 104921.
Z.-Y. Zhang, Q.-L. Wang, J.-Y. Zhang, Y.-Y. Duan, J.-X. Liu, Z.-S. Liu, and C.-Y. Li, “Machine learning applications in breast cancer survival and therapeutic outcome prediction based on multi-omic analysis,” *Yi Chuan*, vol. 46, no. 10, Oct. 2024, pp. 820–832.
M. M. Rashid and K. Selvarajoo, “Advancing drug-response prediction using multimodal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data,” *Briefings in Bioinformatics*, vol. 25, no. 4, Jul. 2024, Article bbae300. [Online]. Available: https://doi.org/10.1093/bib/bbae300
A. Yoshimura, I. Imoto, and H. Iwata, “Functions of breast cancer predisposition genes: Implications for clinical management,” *International Journal of Molecular Sciences*, vol. 23, no. 13, Jul. 2022, Art. no. 7481. [Online]. Available: https://doi.org/10.3390/ijms23137481
L. Marshall, B. N. Peshkin, T. Yoshino, J. Vowinckel, H. E. Danielsen, G. Melino, I. Tsamardinos, C. Haudenschild, D. J. Kerr, C. Sampaio, S. Y. Rha, K. T. FitzGerald, E. C. Holland, D. Gallagher, J. Garcia-Foncillas, and H. Juhl, “The essentials of multiomics,” *The Oncologist*, 2022.
D. Feldner-Busztin, P. F. Nisantzis, S. J. Edmunds, G. Boza, F. Racimo, S. Gopalakrishnan, M. T. Limborg, L. Lahti, and G. G. de Polavieja, “Dealing with dimensionality: the application of machine learning to multi-omics data,” *Bioinformatics*, vol. 39, no. 2, Feb. 2023, Art. no. btad021.
V. Malik, Y. Kalakoti, and D. Sundar, “Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer,” *BMC Genomics*, vol. 22, Art. no. 214, Mar. 2021.
S.-J. Sammut et al., “Multi-omic machine learning predictor of breast cancer therapy response,” *Nature*, vol. 601, pp. 623–629, Jan. 2022, doi: 10.1038/s41586-021-04278-5.
I. K. Nti, O. Nyarko-Boateng, and J. Aning, “Performance of machine learning algorithms with different K values in K-fold cross-validation,” *Int. J. Inf. Technol. Comput. Sci.*, vol. 13, no. 6, pp. 61–71, Dec. 2021.
D. Khan and S. Shedole, “Leveraging deep learning techniques and integrated omics data for tailored treatment of breast cancer,” *J. Pers. Med.*, vol. 12, no. 5, p. 674, Apr. 2022.
X. Tang, K. J. Thompson, K. R. Kalari, J. P. Sinnwell, V. J. Suman, P. T. Vedell, S. A. McLaughlin, D. W. Northfelt, A. M. Aspitia, R. J. Gray, J. M. Carter, R. Weinshilboum, L. Wang, J. C. Boughey, and M. P. Goetz, “Integration of multiomics data shows down regulation of mismatch repair and tubulin pathways in triple-negative chemotherapy-resistant breast tumors,” *Breast Cancer Res.*, vol. 25, no. 1, p. 57, May 2023.
M. Farooq, S. Hardan, A. Zhumbhayeva, Y. Zheng, P. Nakov, and K. Zhang, “Understanding breast cancer survival: Using causality and language models on multi-omics data,” *arXiv preprint arXiv:2305.18410*, May 2023.
H. R. Seireg, Y. M. K. Omar, F. E. Abd El-Samie, A. S. El-Fishawy, and A. Elmahalawy, “Ensemble machine learning techniques using computer simulation data for wild blueberry yield prediction,” *IEEE Access*, vol. 10, pp. [page range], 2022.
H. Fr¨ohlich, S. Patjoshi, K. Yeghiazaryan, C. Kehrer,W. Kuhn, and O. Golubnitschaja, “Premenopausal breast cancer: potential clinical utility of a multi-omics based machine learning approach for patient stratification,” *EPMA Journal*, vol. 9, no. 2, pp. 175–186, Apr. 2018.
L. Tong, J. Mitchel, K. Chatlin, and M. D. Wang, “Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis,” BMC Medical Informatics and Decision Making, vol. 20, Art. no. 225, Sep. 2020.
Y. Huang, P. Zeng, and C. Zhong, “Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning,” BMC Bioinformatics, vol. 25, Art. no. 132, Mar. 2024.
A. Alkhateeb, L. Zhou, A. Abou Tabl, and L. Rueda, “Deep learning approach for breast cancer InClust 5 prediction based on multiomics data integration,” in Proceedings of the 11th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB), Virtual Event, Oct. 2020.
M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm for deep neural network optimization,” Neural Computing and Applications, vol. 35, no. 23, pp. 1–18, Apr. 2023.
K. Ke, L. Shen, and J. Shao, “Early warning of axillary lymph node metastasis in breast cancer patients using multi-omics signature: A machine learning-based retrospective study,” International Journal of General Medicine, vol. 2024.
G. Zhang, C. Ma, C. Yan, H. Luo, J. Wang, W. Liang, and J. Luo, “MSFN: a multiomics stacked fusion network for breast cancer survival prediction,” Frontiers in Genetics, vol. 15, Aug. 2024.